(完整word)石油炼制工艺学总结-2,推荐文档

(完整word)石油炼制工艺学总结-2,推荐文档
(完整word)石油炼制工艺学总结-2,推荐文档

第七章催化加氢

一、重点概念

催化加氢:催化加氢是在氢气存在下对石油馏分进行催化加工过程的通称。

加氢处理:指在加氢反应过程中,只有≤10%的原料油分子变小的加氢技术。

加氢裂化:指在加氢反应过程中,原料油分子中有10%以上变小的加氢技术。

加氢精制:指在氢压和催化剂存在下,使油品中的硫、氧、氮等有害杂质转变为相应的硫化氢、水、氨而除去,并使烯烃和二烯烃加氢饱和、芳烃部分加氢饱和,以改善油品的质量。有时,加氢精制指轻质油品的精制改质,而加氢处理指重质油品的精制脱硫。

催化加氢技术包括加氢处理和加氢裂化两类。

加氢精制催化剂的预硫化:目前加氢精制催化剂都是以氧化物的形式装入反应器中,然后再在反应器将其转化为硫化物。

加氢脱硫(HDS)反应:石油馏分中的含硫化合物在催化剂和氢气的作用下,进行氢解反应,转化为不含硫的相应烃类和H2S。

加氢脱氮(HDN)反应:石油馏分中的含氮化合物在催化剂和氢气的作用下,进行氢解反应,转化为不含氮的相应烃类和NH3。

加氢脱氧(HDO)反应:含氧化合物通过氢解反应生成相应的烃类及水。

空速:指单位时间里通过单位催化剂的原料油的量,有两种表达形式,一种为体积空速(LHSV),另一种为重量空速(WHSV)。

氢油比:单位时间里进入反应器的气体流量与原料油量的比值。

设备漏损量:即管道或高压设备法兰连接处及循环氢压缩机运动部位等处的漏损。

溶解损失量:指在高压下溶于生成油中的气体在生成油减压时这部分气体排出时而造成的损失。

二、重点简答题

1、加氢精制的目的和优点。

(1)加氢精制的目的在于脱除油品中的硫、氮、氧杂原子及金属杂质,同时还使烯烃、二烯烃、芳烃和稠环芳烃选择加氢饱和,从而改善油品的使用性能。

(2)加氢精制的优点是,原料油的范围宽,产品灵活性大,液体产品收率高

(>100%(体)),产品质量好。而且与其它生废渣的化学精制方法相比还有利于保护环境和改善工人劳动条件。因此无论加工高硫原油还是加工低硫原油的炼厂,都广泛采用这种方法来改善油品的质量。

2、加氢过程的化学反应

化学反应有加氢脱硫(HDS)、加氢脱氧(HDO)、加氢脱氮(HDN)、加氢脱金属(HDM)、不饱和烃的加氢饱和

其特点:

各类硫化物加氢脱硫反应很强的放热反应,因而过高的反应温度对硫化物的加氢脱硫反应是不利的。反应温度越高,反应的平衡转化率越低。在相同的反应温度下,反应压力越低,平衡转化率越低,在相同的反应压力下,反应温度越高,平衡转化率越低。在较高的温度下,压力的影响较显著,在低压下,温度下影响比较明显。随着含硫化合物分子中环烷环和芳香环数目的增加,其加氢反应速率是降低的,这主要是由于空间位阻作用所致。反应活性因分子结构和分子大小而异,各种硫化物在加氢精制反应的活性顺序如下:RSH>RSSR’> RSR’ >噻酚此类反应均是放热反应,但是有时随着反应温度的升高,总的加氢脱氮速率有一个极大值。

含氧化合物的加氢精制条件下分解很快,但是对杂环氧化物,当有较多取代基时,反应活性较低。

3、与其他石油二次加工产品比较,加氢裂化产品的特点。

(1)加氢裂化的液体产率高;

(2)加氢裂化的气体产率很低;

(3)加氢裂化产品的饱和度高,烯烃极少,非烃含量也很低,故产品的安定性好。柴油的十六烷值高,胶质低;

(4)原料中多环芳烃在进行加氢裂化反应时经选择断环后,主要集中在石脑油馏分和中间馏分中,使石脑油馏分的芳烃潜含量较高,中间馏分中的环烷烃也保持较好的燃烧性能和较高的热值。而尾油则因环状烃的减少,BMCI值降低,适合作为裂解制乙烯的原料;

(5)加氢裂化过程异构能力很强,无论加工何种原料,产品中的异构烃都较多。

(6)通过催化剂和工艺的改变可大幅度调整加氢裂化产品的产率分布。

4、馏分越重,加氢脱氮越困难的原因?

①馏分越重,含氮量越多;②馏分越重,其氮化物的分子结构就越复杂,空间位阻效应越强,环化合物也增多。

5、加氢裂化中的循环氢的作用有那些?

①提供反应所需氢气;②抑制生焦,保护催化剂;③起热载体作用,带走反应过程放出的热量,维持反应床层温度;④起稀释作用,使原料沿反应床层分布均匀。

6、加氢裂化过程的化学反应:

反应包括烷烃与烯烃的加氢裂化反应(C+离子原理)、环烷烃的加氢裂化反应、芳烃的加氢裂化反应。

7、加氢精制催化剂(具有加氢和裂化两种功能)的预硫化的原因?

活性金属组分的氧化物并不具有加氢活性,只有以硫化物状态存在时才具有较高的活性,但是这些金属的硫化物在运输过程中容易氧化,所有催化剂要预硫化。

8、催化剂失活的原因?

①重质原料中的重金属元素会沉积在催化剂上,堵塞其微孔,促使加氢精制催化剂永久性失活;

②加氢精制催化剂在运转过程中产生的积炭,积炭占有活性中心,使其暂时失活;

③水蒸气占有微孔中心,让催化剂活性降低。

9、三种加氢工艺流程对比?

①一段流程航煤收率高而汽油收率低;流程结构和投资以一段流程为最优。

②串联流程生产较灵活,但航煤收率偏低。

二段流程生产灵活性最大,航煤收率高。

一段流程对原料要求较高;二段流程、串联流程对原料要求不高,可处理高比重、高干点、高硫、高残炭、高氮的原料油。

总之,一段加氢裂化流程较简单,航煤收率高,但汽油收率较低,操作不够灵活,只能处理较好的原料油;串联流程操作较灵活,可最大限度地生产汽油、

航煤和柴油,但航煤收率偏低;两段流程操作最灵活,可处理高比重、高干点、高硫、高残炭及高氮的原料,汽油、煤油、柴油收率较高,但流程较复杂,操作费用较高。

10、三种加氢工艺对比?

(1)单段加氢裂化工艺:一个反应器,一段加氢裂化的目的是生产中间馏分,对催化剂的要求是具备较高的加氢、脱硫、脱氮活性,在一定场合也要求具备一定的异构化活性。

特点:催化剂的裂化性能较低;中馏分选择性好且产品分布稳定;流程简单,设备投资少且操作容易;床层反应温度较高,末期气相产率较高;原料适用性差,其干点与含N量不能过高;运转周期相对较短。

优点:流程简单,设备投资少。

(2)两段加氢裂化工艺:两个反应器, 分别装不同性能催化剂,第一个主要进行加氢精制,第二个主要进行加氢裂化。

与单段、但段串联工艺比较有以下特点:气体产率低,液体产率高;产品质量好,芳烃含量非常低;氢耗较低;产品方案灵活;原料适应性强,可加工更重质、更劣质原料。

优点:对原料适应性强,可加工各种原料;产品灵活性大。

(3)单段串联加氢裂化:第一反应器装入脱硫脱氮活性好的催化剂; 第二个反应器装入分子筛加氢裂化催化剂。

与单段工艺比较具有以下特点:产品方案灵活,仅通过改变操作方式及工艺条件或者更换催化剂,可以根据市场需求对产品结构在相当大范围内进行调节;原料适用性强,可以加工更重的原料;可以在相对较短的温度操作,降低干气的产率,因而热裂化被有效抑制,可大大降低干气产率。

三种流程比较:

①一段流程航煤收率高而汽油收率低;流程结构和投资以一段流程为最优。

②串联流程生产较灵活,但航煤收率偏低。

③二段流程生产灵活性最大,航煤收率高。

④一段流程对原料要求较高;二段流程、串联流程对原料要求不高,可处理高比重、高干点、高硫、高残炭、高氮的原料油。

总之,一段加氢裂化流程较简单,航煤收率高,但汽油收率较低,操作不够灵活,只能处理较好的原料油;串联流程操作较灵活,可最大限度地生产汽油、航煤和柴油,但航煤收率偏低;两段流程操作最灵活,可处理高比重、高干点、高硫、高残炭及高氮的原料,汽油、煤油、柴油收率较高,但流程较复杂,操作费用较高。

11、加氢裂化采用不同加氢工艺的原因?

工艺类型和流程的选择与原料性质、产品要求和催化剂等因素有关。

加氢裂化的原料可为轻质馏分、中间馏分、减压馏分减压渣油等,不同的原料有不同的性质,必须以其性质来选择工艺,况且一般的产品要求都不同,催化剂的要求也不同,故其要求要选择适当的工艺来生产,达到效率的最大化。

12、为什么石脑油加氢精制一般都采用两段加氢精制工艺过程?

石油二次热加工中的焦化石脑油馏分质量较差,一般含有20%左右的二烯烃,总烯烃含量可高达40%,同时还含有大量的硫、氮化合物,所以一般都采用两段加氢精制工艺过程。第一段在低温下加氢,饱和易结焦的二烯烃;二段再采用较苛刻的操作条件,进行脱硫、脱氮和烯烃饱和。焦化石脑油采用一段法是可以生产优质石脑油的。但是由于烯烃含量高,床层温升很大,可达125℃。如此大的温升不仅不好操作,而且会缩短催化剂使用周期。

在两段加氢精制中,适当降低第一反应器入口温度,使部分烯烃饱和转移到第二反应器来进行反应,总温升合理的分配在两个反应器的床层中,既易操作,又有利于延长催化剂使用周期,因此焦化石脑油制取合格的乙烯裂解料,应采用两段加氢精制为宜。

13、加氢精制的影响因素?

①反应压力,由于加氢是体积缩小的反应,从热力学的角度而言,提高压力对化学平衡是有利的,同时在高压下,催化剂表面的上反应物和氢气浓度都增大,其反应速度也随之加快。

②反应温度,加氢是强放热反应,所以从化学平衡的角度来看,过高的反应温度对反应是不利的,同时过高的反应温度还会由于裂化反应加剧而降低液体收率以及催化剂因积炭而过快失活。

③空速,降低空速可以使反应物与催化剂的接触时间延长、精制深度加深、

有利于提高产品质量。但是过低的空速会使反应时间过长,由于裂化反应显著而降低液体产物的收率,氢耗也会随之增大,同时对于大小一定的反应器,降低空速意味着降低其处理能力。

氢油比,在压力、空速一定时,氢油比影响反应物与生成物的气化率、氢分压以及反应物与生成物与催化剂的接触的实际时间。较高的氢油比使原料的气化率提高,同时也增大了氢分压,这些都有利于提高加氢反应速率。但是从另一方面来看,氢油比增大意味着反应物分压降低和反应物与催化剂的实际接触时间缩短,这又是对加氢反应是不利的。

13、阐述氢油比是如何影响加氢精制过程的?

氢油比对加氢精制的影响主要有三个方面:一是影响反应的过程;二是对加氢催化剂寿命产生影响;三是对装置操作费用及设备投资的影响。

仅就反应而言,当氢油比比较低时,产物的相对分子质量减少而使汽化率增加,再有反应热引起的床层温升,从而导致反应器出口的氢分压与入口相比有相当大的降低。可见,氢油比的增减实际就是反应过程的氢分压增减。

氢油比对脱硫率的影响规律:当反应温度较低而空空速较高时,脱硫率随着氢油比增加而提高,到一定的程度又有所下降;但是当反应温度较高、空速较低时,随着氢油比的增加而脱硫率没有下降的趋势。

氢油比对脱氮率的影响规律:无论反应温度与空速的高低,其脱氮率都没有一个最高点。

总之,氢油比低,导致氢分压下降,造成脱硫率、脱氮率有所下降;氢油比过高时,反应床层中的气流速度相当,减少了催化剂床层的液体藏量,从而减少了液体反应物在催化剂床层的停留时间,以致使脱硫率、脱氮率有所降低。另一方面,硫化氢的浓度增加,有利于提高脱硫率,流率增加使硫化氢浓度降低,也会降低脱氮率效果。

14、加氢裂化催化剂为什么要预硫化? 原料油中含适量的硫会污染催化剂吗? 为什么?

原因:因为刚还原后的催化剂,具有很高的氢解活性,如不进行硫化,将在进油初期发生强烈的氢解反应,放出大量的反应热,使催化剂床层温度迅速升高,出现超温现象。上面出现这种现象,往往会造成严重后果,轻则造成催化剂大量

积炭,损害催化剂的活性和稳定性,重则烧坏催化剂和反应器。对催化剂进行硫化,目的在于抑制催化剂过度的氢解反应,以保护催化剂的活性和稳定性,改善催化剂初期选择性。

不会,因为有限的硫含量可以抵制氢解反应和深度脱氢反应。

第八章催化重整

一、概念题

催化重整:是以汽油为原料,在催化剂的作用和氢气存在下,生产高辛烷值汽油或苯、甲苯、二甲苯等石油化工原料的工艺过程,即是指在催化剂的作用下,烃类分子重新排列成新分子结构的工艺过程。

重整:烃类分子在一定条件下发生化学反应重新排列成新的分子结构。

氢解反应:含N、S、O等杂质在氢气存在条件下转化为氨气、硫化氢和水而除掉的反应。

芳烃潜含量:原料中C6 C8环烷烃全部转化为芳烃再加上原料中的芳烃含量。

重整转化率(芳烃转化率):重整生成油中的实际芳烃含量与原料的芳烃潜含量之比。

氢油比:氢油比即循环氢流量与原料油流量之比。

水氯-平衡:由生产过程中,催化剂上氯含量会发生变化,为了保持重整催化剂的脱氢功能和酸性功能应有良好的配合,而采取注氯注水等方法来保证最适宜的催化剂含氯量。

二、简答题

1、重整生产目的及其构成

(1)生产高辛烷值汽油组分其包括以下系统:(1)原料预处理系统;(2)重整反应系统;

(2)生产轻质芳烃(C6~C8)其包括以下系统:○1原料预处理系统;○2

重整反应系统;○3溶剂抽提系统;○4芳烃精馏系统。

(3)副产大量氢气

2、催化重整的化学反应及其特点

芳构化反应(1)六元环烷脱氢,反应速度最快、强吸热反应、分子越大,平衡转化率越高,体积增大的反应和可逆反应;(2)五元环烷异构脱氢,反应速度

较快、强吸热反应、体积增大的反应和可逆反应;(3)烷烃环化脱氢,反应速度最慢,吸热反应、体积增大的反应和可逆反应。

异构化反应,是轻度放热的可逆反应,按正碳离子反应机理进行。提高温度对这一反应不利,但实际上是温度高异构物产率高,这是因为温度高反应速度高。

加氢裂化反应,该反应包括裂化、加氢、异构化,按正碳离子反应机理进行,是中等放热的不可逆反应。不能得到芳烃,是非理想反应;裂化使分子变小而提高辛烷值,但生成小分子烃类使汽油产率降低;反应速度较慢,提高温度和氢分压使反应速度加快

氢解反应----由金属中心催化

积炭反应(叠合和缩合)

2、在催化重整反应系统中,循环氢的目的是什么?

重整过程中循环氢的目的是:改善反应器内温度分布;起热载体作用;抑制生焦反应;稀释反应原料。

3、催化重整的化学反应

芳构化反应:○1六元环烷脱氢○2五元环烷异构脱氢○3烷烃环化脱氢

异构化反应

加氢裂化反应

氢解反应

积炭反应(叠合和缩合)

4、重整催化剂的失活的原因

催化剂表面积炭

长时间处于高温下引起铂晶粒聚集使分散度减小

中毒一是永久性中毒:砷、铅、铜、铁、汞、钠等;二是暂时性中毒:硫、氮等

水氯不平衡,卤素流失。

5、现代重整催化剂是由哪几部分组成?

由基本活性组分(如铂)、助催化剂(如铼、锡等)和酸性载体(如含卤素的γ-氧化铝)所组成。其中贵金属铂是重整催化剂的基本活性组分,是催化剂的核心。

6、重整的原料的选择有哪三方面的要求?

馏分组成、族组成、毒物及杂质的含量。

7、重整原料的预处理由哪几个单元组成?

预脱砷、预分馏、预加氢、脱水和脱硫/氯

8、重整催化剂再生的工序?

其再生的过程包括烧焦、氯化更新和干燥。

9、原料预处理的目的和作用?

目的是切割符合重整要求的馏分和脱除对重整催化剂有害的杂质及水分;

作用是根据重整产物的要求切取适宜馏程的馏分作为重整原料。

10、催化重整中的芳构化反应有哪些特点?

芳构化反应一般包括六元环烷脱氢、五元环烷异构脱氢和烷烃环化脱氢。其反应特点分别为:反应速度最快、强吸热反应、体积增大的反应和可逆反应;反应速度较快、强吸热反应、体积增大的反应和可逆反应;反应速度最慢,吸热反应、体积增大的反应和可逆反应。

从上面几个反应可以看出,这类反应的特点是吸热、体积增大、生成苯并产生氢气、反应速度快、可逆反应,它是重整过程生成芳烃的主要反应。

11、为什么要对原料进行预处理?包括哪些内容?

重整原料的选择主要有三方面的要求,即馏分组成、族组成和毒物及杂质含量。重整原料通常为石脑油(直馏汽油馏分)(主要原料),加氢裂化汽油,处理后的焦化汽油等。重整原料中含有少量的砷、铅、铜、铁、硫、氮等杂质会使催化剂中毒失活。水和氯的含量控制不当也会造成催化剂减活或者失活。为了保证催化剂在长周期运转中具有较高的活性,必须严格控制重整原料中杂质含量,所以要对原料进行预处理。

原料预处理包括原料的预分馏,预脱砷,预加氢三部分,有时还有专门为重整原料脱水和脱硫。其目的是得到馏分范围,杂质含量都合乎要求的重整原料。原料预处理目的是切割符合重整要求的馏分和脱除对重整催化剂有害的杂质及水分。

预分馏的作用是切取合适沸程的重整原料。在预分馏塔,切去<80℃或<60℃的轻馏分,同时也脱去了原料油的部分水分。预加氢作用为脱除原料油中对催化

剂有害的杂质,同时也使烯烃饱和以减少催化剂的积碳。当原料油的含砷量较高时,则须按催化剂的容砷能力(一般为3~4%)和要求使用的时间来计算催化剂的装入量,并适当降低空速。也可以采用在预分馏之前预先进行吸附法或化学氧化法脱砷。

12、如何利用分子管理的策略显著提高原料的芳烃潜含量?

5C 以前的轻组分不能生产芳烃,对提高汽油辛烷值也无实际意义,相反,它们发生较多的加氢裂化反应,导致液体重整汽油收率下降,循环氢纯度降低,为了提高重整汽油芳烃产率,需要将其脱除,重整汽油芳烃潜含量则可提高。原料切割出6C ~8C 馏分去抽提,可有效提高重整进料的芳烃潜含量。

13、影响重整转化率的因素?

催化剂的组成与活性;原料的性质及组成;反应压力;氢油比;空速;环境控制与氯水平衡;催化剂积炭程度等等。

14、为什么重整反应器采用多个串联,中间加热的形式?

重整是指烃类分子重新排列成新的分子结构,而不改变分子大小的加工过程。催化重整是指原料油中的正构烷和环构烷在催化剂存在下转化为异构烷和芳烃的过程。

其主要包括以下反应:芳构化反应,其为强吸热反应;②异构化反应,其为轻度放热反应;加氢裂化反应,其为中等放热反应,总的而言,催化重整反应是强吸热反应。

所有的重整过程均采用固定床系列反应器:第一反应器的主要反应是环烷脱氢,第二反应器发生C5环烷异构化生成环己烷的同系物和脱氢环化,第三反应器发生轻微的加氢裂化和脱氢环化。经预处理后的精制油,由泵抽出与循环氢混合,然后进入换热器与反应产物换热,再经加热炉加热后进入反应器。由于重整反应是吸热反应以及反应器又近似于绝热操作,物料经过反应以后温度降低,为了维持足够高的温度条件(通常是500℃左右),重整反应部分一般设置3~4个反应器串联操作,每个反应器之前都设有加热炉,给反应系统补充热量,从而避免温降过大。最后一个反应器出来的物料,部分与原料换热,部分作为稳定塔底重沸器的热源,然后再经冷却后进入油气分离器。

总的来说,因为重整反应时多种反应,其各个反应对催化剂的要求要不同,

且同一种反应在一个反应器也不能完成反应,故重整反应器采用多个串联;因催化重整反应总体而言是吸热反应,且去反应温度为480—530℃,为了保证目的产物的产率,故在每一个反应器的前面都设置一个加热炉,即采用中间加热的形式。所以,重整反应器采用多个串联,中间加热的形式。

15、为什么芳烃转化率(重整转化率)可超过100%?

芳烃转化率是重整生成油中的实际芳烃含量与原料的芳烃潜含量之比。芳烃潜含量包括原料中C6~C8环烷烃全部转化为芳烃再加上原料中的芳烃含量。从热力学角度看, 碳原子数>6的烷烃都可以转化为芳烃, 且平衡转化率较高,因烷烃环化脱氢是重整反应的一种,可见实际芳烃含量除了C6~C8环烷烃转化为芳烃和原料中的芳烃含量外,还有烷烃转化为芳烃。所以,依芳烃转化率定义可知,对于原料固定,其的芳烃潜含量也一定,当有大量的烷烃转化成芳烃时,际芳烃含量可以大于芳烃潜含量,即重整转化率可超出100% 。

16、重整反应的主要影响因素

1)反应温度:480~530℃较高的反应温度:①利:对芳构化反应速度及反应平衡俱有利②弊:加氢裂化反应加剧,使液收下降;催化剂积炭加快。

2)反应压力,较低的反应压力:①利于芳构化反应,汽油及芳烃收率较高,副产氢气纯度较高②催化剂积炭加快。

3)空速:采用适宜的空速。延长反应时间对环烷烃芳构化意义不大,而对烷烃的环化脱氢芳构及加氢裂化反应影响较大。

4)氢油比:氢油比增大有利于保护催化剂,但能耗增加。

17、简述三个重整反应器中各进行的主要反应及其特点

第一反应器进行的主要是六元环烷烃脱氢反应,其特点是反应速率最快,且是强吸热反应;第二反应器进行的是五元环烷烃异构脱氢反应,其特点是吸热反应但反应速率较第一反应器慢;第三反应器进行的是以烷烃环化脱氢为主的吸热反应,其反应速率较慢,需在较为苛刻的条件下才能进行。

18、加氢裂化中的循环氢油什么作用?重整过程中循环氢有何作用?

加氢裂化中的循环氢油的作用:

氢油比是指进入到反应器中标准状态下的氢气与冷态进料(20℃)的体积之比。使用循环氢油有助于提高汽油比。

在一定的程度上,提高氢油比可以使原料的气化率提高,增大氢分压,这不仅有利于加氢反应,有利于减缓催化剂的积炭速度,延长操作周期,但是却增加了动力消耗和操作费用。同时,氢油比增大意味着反应物分压降低和反应物与催化剂的实际接触时间缩短,这又是对加氢反应是不利的,所以不能超出一定的范围。此外,循环氢起着热载体的作用,加氢过程是放热反应,大量的循环氢可以提高反应系统的热容量,从而降低因加氢反应放热引起的反应温度上升的幅度。在加氢精制过程中,反应的热效应不大,可采用较低的氢油比;在加氢裂化过程中,热效应较大,氢耗量较大,可采用较高的氢油比。

重整过程中循环氢的作用:

重整过程中,使用循环氢是为了抑制催化剂结焦,它同时还具有热载体和稀释气的作用。在总压不变时,重整过程用循环氢有利于提高氢油比,提高氢油比意味着提高氢分压,有利于抑制催化剂上的积炭,但会增加压缩机功耗,减小反应时间。一般对于稳定性较好的催化剂和生焦倾向较小的原料,可采用较小的氢油比,反之则采用较大的氢油比。简而言之,就是改善反应器内温度分布,起热载体作业;抵制生焦反应,保护催化剂活性寿命;稀释反应原料,使物料更均匀地分布于床层中。

19、重整催化剂为什么要有双重功能性质?由什么组分来保证实现?

重整催化剂要具有脱氢和裂化、异构化两种活性功能,因为重整反应决定着它要具有两者功能,它们分别为金属活性中心和酸性中心,分别由金属盒卤素提供,即由金属和卤素组分来保证实现。故催化剂担体上的金属组分和酸性组分之间应有一个恰当的比例才能得到活性、选择性、稳定性良好的催化剂。

20、重整催化剂为什么要预硫化?与加氢裂化催化剂预硫化目的有何不同?

因为刚还原后的催化剂,具有很高的氢解活性,如不进行硫化,将在进油初期发生强烈的氢解反应,放出大量的反应热,使催化剂床层温度迅速升高,出现超温现象。上面出现这种现象,往往会造成严重后果,轻则造成催化剂大量积炭,损害催化剂的活性和稳定性,重则烧坏催化剂和反应器。对催化剂进行硫化,目的在于抑制催化剂过度的氢解反应,以保护催化剂的活性和稳定性,改善催化剂初期选择性。

重整催化剂预硫化是为了抵制催化剂的氢解活性和深度脱氢活性,而加氢催

化剂预硫化是为了使催化剂的活性组分呈金属硫化物的形式,具有较高的活性。

21、简述催化重整在石油加工中的作用?(简述催化重整的概念、生产目的、产品特点及在炼油工业中的作用。)

催化重整指在催化剂的作用下,烃类分子重新排列成新分子结构的工艺过程;

其生产目的是为了生产高辛烷值汽油和生产轻质芳烃(C6~C8);其的产品主要有高辛烷值汽油、生产轻质芳烃(C6~C8)和大量的副产品氢气;

其作用:这是因为它有三方面的功能:一是能把辛烷值很低的直馏汽油变成80至90号的高辛烷值汽油。二是能生产大量苯、甲苯和二甲苯,这些都是生产合成塑料、合成纤维和合成橡胶的基本原料。三是可副产大量廉价氢气

22、“后加氢”、“循环氢”的作用各是什么?脱戊烷塔的作用是什么?

后加氢的作用是对二碳、三碳馏分进行催化,以脱除乙炔、甲基乙炔和丙二烯。脱戊烷塔的作用从塔顶脱除溶于重整产物中的少量气体烃和戊烷重整过程中循环氢的作用:

重整过程中,使用循环氢是为了抑制催化剂结焦,它同时还具有热载体和稀释气的作用。在总压不变时,重整过程用循环氢有利于提高氢油比,提高氢油比意味着提高氢分压,有利于抑制催化剂上的积炭,但会增加压缩机功耗,减小反应时间。一般对于稳定性较好的催化剂和生焦倾向较小的原料,可采用较小的氢油比,反之则采用较大的氢油比。简而言之,就是改善反应器内温度分布,起热载体作业;抵制生焦反应,保护催化剂活性寿命;稀释反应原料,使物料更均匀地分布于床层中。

催化重整工艺条件的总结表:

23、重整的良好原料是什么? 试说明原因并阐述对重整原料的选择有哪些要求? (1) 环烷烃是理想的重整原料,含量越多越好。(2) 重整原料的选择三个要求:馏分组成、族组成、毒物及杂质含量

1) 原料油的馏程:馏程根据生产目的确定。

目的产物适宜馏程,℃

苯 60~85

甲苯 85~110

二甲苯 110~145

苯-甲苯-二甲苯 60~145或选60~130

高辛烷值汽油 80~180

轻芳烃-汽油 60~180

2) 环烷烃是理想的重整原料,含量越多越好。

3) 原料中少量的砷、铅、铜、铁、硫、氮等杂质会使催化剂中毒失活。

第九章延迟焦化

石油烃类的热反应

渣油热加工过程的反应温度一般在400-550 ℃之间,主要有两类反应:裂解反应(吸热),缩合反应(放热反应)。

1、烷烃热裂解反应类型:

(1) C-C键断裂生成较小分子的烷烃和烯烃;

(2) C-H键断裂生成碳原子数保持不变的烯烃和氢。

渣油热反应的特点

渣油热反应比单体烃更能反映出平行-顺序反应的特征。

渣油热反应时容易生焦,除了由于渣油自身含有较多的胶质和沥青质外,还因为不同族的烃类之间的相互作用促进了生焦反应。

渣油在热分解过程中的相分离问题。

热反应通常表现为吸热。(分解反应占主导)

反应深度小时,为一级反应,反应深度较大时,不再符合一级反应规律。

焦炭化过程

焦炭化过程是以渣油为原料,在高温(500-550 ℃)下进行深度热裂化反应的一种热加工过程。反应产物有,气体、汽油、柴油、蜡油和焦炭。

产品特点

减压渣油经焦化过程可以得到70%-80%的馏分油,焦化汽油和焦化柴油中不饱和烃含量高,而且含硫、含氮等非烃类化合物的含量也高,因此,安定性差,必须经过加氢精制才能作为发动机燃料。焦化蜡油主要是作为加氢裂化或催化裂化的原料,有时也用于调合燃料油,焦炭除作为燃料外,还可用作高炉炼钢用。焦化气体作燃料或石油化工原料。

工艺特点

是渣油轻质化过程,可以加工残炭值及重金属含量很高的各种劣质渣油,过程简单、投资和操作费用低。但焦炭产率高、液体产物的质量差。

有延迟焦化和流化焦化

减粘裂化

是一种以渣油为原料的浅度热裂化过程,把重质高粘度渣油通过浅度热裂化反应转化为较低粘度和较低倾点的燃料油。

减粘裂化流程图

计算题(5分)

1

计算原料的芳烃潜含量。生成油的芳烃产率为49,计算芳烃转化率?根据计算结果分析,为什么芳烃转化率会大于100%?

解:芳烃潜含量=7.4%×78/84+4.1+16.6×92/98+6.2+15.5×106/112+1.0

=48.42

芳烃转化率=49/48.42

=101%

转化率大于100%是由于除了环烷烃转化为芳烃,部分烷烃也转化为芳烃。而在潜含量的定义中没有包括烷烃转化芳烃。

2、某提升管入口油气流率和出口油气流率分别为7.5m3/s和15.2m3/s,提升管内径为1.2m,长度为25m,计算提升管内油气停留时间。

答:①提升管的内径D=1.2m, 则提升管截面积F=πD2×1/4=1.132(m2)

②计算提升管下部气速:u下= v下/F=7.5/1.132=6.7(m/s)

③计算提升管上部气速:u上= v上/F=15.2/1.132=13.4(m/s)

④提升管的平均气速:u = =9.7(m/s)

⑤停留时间为:t=25/9.7=2.6(s)

试计算其体积平均沸点及恩氏蒸馏曲线的斜率。

答:tv = ( t10 + t30 + t50+ t70+ t90)/5 = (60+81+96+109+126)/5 = 94.4 ℃

S = (t90--- t10)/(90-10)=(126-60)/80 = 0.825 ℃/%

石油炼制工艺学总结-1

石油炼制工艺学总结-1 第一章绪论 燃料:汽油、煤油、柴油、喷气燃料 化学工业的重要原料有:三烯指乙烯、丙烯;丁二烯、三苯指苯、甲苯、二甲苯;一炔指乙炔;一萘指萘 三大合成:合成纤维,合成橡胶,合成塑料 石油及其产品的组成和性质 1、简述石油的元素组成、化学组成。 石油主要由C、H 、S 、N 、O等元素组成,其中C占83~87%,H占11~14 %。石油中还含有多种微量元素,其中金属量元素有钒、镍、铁、铜、钙等,非金属元素有氯、硅、磷、砷等,石油中各种元素多以化合物的形式存在。 石油主要由烃类和非烃类组成,其中烃类有:烷烃、环烷烃、芳烃,非烃类有含硫化合物、含氧化合物、含氮化合物、胶状沥青状物质。 石油中的含硫化合物给石油加工过程和石油产品质量带来的危害有:腐蚀设备、影响产品质量、污染环境、使催化剂中毒。 2、蜡 石蜡,分子量300~450,C17~C35,相对密度0.86~0.94,熔点30~70℃。 主要组成:正构烷烃为主,少量的异构烷、环烷烃,芳烃极少。 微晶蜡(地蜡)地蜡,又称天然石蜡(新疆山区,埃及、伊朗) 分子量500~800,C30~C60,滴熔点70~95℃。 主要组成:带有正构或异构烷基侧链的环状烃,尤其是环烷烃;含少量正构烷烃和异构烷烃。微晶蜡具有较好的延性、韧性和粘附性。 3、石油烃类组成表示方法 单体烃组成 表明石油馏分中每一种单体烃的含量数据。 族组成 表明石油馏分中各族烃相对含量的组成数据。 结构族组成的表示方法把石油馏分看成是“平均分子”,芳香环、环烷环、烷基侧链等结构单元组成

RA─分子中的芳香环数 RN─分子中的环烷环数 RT─分子中的总环数,RT=RA+RN CA%─分子中芳香环上碳原子数占总碳原子数的百分数 CN%─分子中环烷环上碳原子数占总碳原子数的百分数 CR%─分子中总环上碳原子数占总碳原子数的百分数,CR%=CA%+CN% CP%─分子中烷基侧链上碳原子数占总碳原子数的百分数 4、胶状-沥青状物质 沥青质:指不溶于低分子(C5~C7 )正构烷烃,但能溶于热苯的物质。 可溶质:指既能溶于热苯,又能溶于低分子(C5~C7 )正构烷烃的物质。含饱和分、芳香分和胶质。 胶质 胶质是一种很粘稠的流动性很差的液体或半固体状态的胶状物,颜色为黄色至暗褐色。受热熔融,相对密度~1.0,VPO法分子量约800~3000。 胶质具有很强的着色能力,50ppm的胶质就可使无色汽油变为草黄色。 胶质能溶于石油醚、苯、乙醚及石油馏分。 胶质含量随沸点升高而增多,渣油中含量最大。 胶质易氧化缩合为沥青质,受热易裂解及缩合。 沥青质 沥青质是一种深褐至黑色的、无定型脆性固体。相对密度略大于1.0,VPO法分子量约3000~10000。加热不熔,300℃以上时会分解及缩合。 沥青质能溶于苯、二硫化碳、四氯化碳中,不溶于石油醚。 沥青质无挥发性,全部集中在渣油中。 胶质和沥青质的存在使渣油形成一种较稳定的胶体分散体系。 胶质、沥青质能与浓硫酸作用,产物溶于硫酸。 5、石油的馏分组成 <200 ℃(或180 ℃ ):汽油馏分或石脑油馏分 200 ~350 ℃:煤柴油馏分或常压瓦斯油(AGO) 350 ~500 ℃:润滑油馏分或减压瓦斯油(VGO)(减压下进行蒸馏)

炼厂基本工艺流程

海科公司主要装置知识汇总 常减压装置: 原料:原油 产品:汽油(7-8%)、柴油(20-30%)、蜡油(20-30%)、渣油(40%左右) 常减压蒸馏:将原油按其各组分的沸点和饱和蒸汽压的不同而进行分离的一种加工手段。这是一个物理变化过程,分为常压过程和减压过程。我公司大常减压装置加工能力是100万吨/年。 精馏过程的必要条件: 1)主要是依靠多次气化及多次冷凝的方法,实现对液体混合物的分离。因此,液体混合物中各组分的相对挥发度有明显差异是实现精馏过程的首要条件。 2)塔顶加入轻组分浓度很高的回流液体,塔底用加热或汽提的方法产生热的蒸汽。 3)塔内要装设有塔板或者填料,使下部上升的温度较高、重组分含量较多的蒸气与上部下降的温度较低、轻组分含量较多的液体相接处,同时进行传热和传质过程。 原油形状:天然石油通常是淡黄色到黑色的流动或半流动的粘稠液体,也有暗绿色、赤褐色的,通常都比水轻,比重在0.8-0.98之间,但个别也有比水重的,比重达到1.02。许多石油都有程度不同的臭味,这是因为含有硫化物的缘故。 石油主要由C和H两种元素组成,由C和H两种元素组成的碳氢化合物,是石油炼制过程中加工和利用的主要对象。 主要元素:C、H、S、O、N

微量元素:Ni、V、Fe、Cu、Ga、S、Cl、P、Si 常减压装置的原理:根据石油中各种组分的沸点不同且随压力的变化而改变的特点,通过蒸馏的办法将其分离成满足产品要求或后续装置加工要求的各种馏分。因此,原油蒸馏的基本过程是:加热、汽化、冷凝、冷却以及在这些过程当中所发生的传质、传热过程。 常减压蒸馏是石油加工的第一个程序,第一套生产装置。根据原油的品质情况和生产的目的不同,常减压蒸馏装置通常有三种类型,一种是燃料型,另一种是燃料润滑油型,还有一种是化工型。 燃料型生产装置,主要生产:石脑油、煤油、柴油、催化裂化原料或者加氢裂化、加氢处理原料、减粘原料、焦化原料、氧化沥青原料或者直接生产道路沥青;燃料润滑油型生产装置,主要生产除燃料之外,还在减压蒸馏塔生产润滑油基础油原料;化工型生产装置主要生产的是裂解原料。 原油预处理(电脱盐)部分、换热网络(余热回收)及加热炉部分、常压蒸馏部分、减压蒸馏部分。 三塔流程:初馏塔、常压蒸馏塔、减压蒸馏塔 焦化联合装置: 我公司延迟焦化装置规模37.5万吨/年,加氢精制装置40万吨/年,干气制氢装置规模3000Nm3/年。 焦化联合装置配套配合生产,焦化部分采用国内成熟的常规焦化技术,运用一炉两塔工艺,井架式水力除焦系统,无堵焦阀,尽量多产汽、柴油。加氢部分采用国内成熟的加氢精制工艺技术,催化剂采用中国石油化工集团公司抚顺石油化工研究所开发的FH-UDS、FH-UDS-2加氢精制催化剂。反应部分采用炉前

石油炼化常用的七种工艺流程

石油炼化七种工艺流程 从原油到石油要经过多种工艺流程,不同的工艺流程会将同样的原料生产出不同的产品。 从原油到石油的基本途径一般为: ①将原油先按不同产品的沸点要求,分割成不同的直馏馏分油,然后按照产品的质量标准要求,除去这些馏分油中的非理想组分; ②通过化学反应转化,生成所需要的组分,进而得到一系列合格的石油产品。 石油炼化常用的工艺流程为常减压蒸馏、催化裂化、延迟焦化、加氢裂化、溶剂脱沥青、加氢精制、催化重整。 (一)常减压蒸馏 1.原料: 原油等。 2.产品: 2.石脑油、粗柴油(瓦斯油)、渣油、沥青、减一线。 3.基本概念: 常减压蒸馏是常压蒸馏和减压蒸馏的合称,基本属物理过程:原料油在蒸馏塔里按蒸发能力分成沸点范围不同的油品(称为馏分),这些油有的经调合、加添加剂后以产品形式出厂,相当大的部分是后续加工装置的原料。 常减压蒸馏是炼油厂石油加工的第一道工序,称为原油的一次加工,包括三个工序:a.原油的脱 盐、脱水;b.常压蒸馏;c.减压蒸馏。 4.生产工艺: 原油一般是带有盐份和水,能导致设备的腐蚀,因此原油在进入常减压之前首先进行脱盐脱水预处理,通常是加入破乳剂和水。 原油经过流量计、换热部分、沏馏塔形成两部分,一部分形成塔顶油,经过冷却器、流量计,最后进入罐区,这一部分是化工轻油(即所谓的石脑油);一部分形成塔底油,再经过换热部分,进入常压炉、常压塔,形成三部分,一部分柴油,一部分蜡油,一部分塔底油;剩余的塔底油在经过减压炉,减压塔,进一步加工,生成减一线、蜡油、渣油和沥青。 各自的收率:石脑油(轻汽油或化工轻油)占1%左右,柴油占20%左右,蜡油占30%左右, 渣油和沥青约占42%左右,减一线约占5%左右。 常减压工序是不生产汽油产品的,其中蜡油和渣油进入催化裂化环节,生产汽油、柴油、煤油等成品油;石脑油直接出售由其他小企业生产溶剂油或者进入下一步的深加工,一般是催化重整生产溶剂油或提取萃类化合物;减一线可以直接进行调剂润滑油。 5.生产设备: 常减压装置是对原油进行一次加工的蒸馏装置,即将原油分馏成汽油、煤油、柴油、蜡油、渣油等组分的加工装置。原油蒸馏一般包括常压蒸馏和减压蒸馏两个部分。 a.常压蒸馏塔 所谓原油的常压蒸馏,即为原油在常压(或稍高于常压)下进行的蒸馏,所用的蒸馏设备叫做原油 常压精馏塔(或称常压塔)。 常压蒸馏剩下的重油组分分子量大、沸点高,且在高温下易分解,使馏出的产品变质并生产焦炭,破坏正常生产。因此,为了提取更多的轻质组分,往往通过降低蒸馏压力,使被蒸馏的原料油沸点范围降低。这一在减压下进行的蒸馏过程叫做减压蒸馏。

石油炼制工艺学总结-2

第七章催化加氢 一、重点概念 催化加氢:催化加氢是在氢气存在下对石油馏分进行催化加工过程的通称。 加氢处理:指在加氢反应过程中,只有≤10%的原料油分子变小的加氢技术。 加氢裂化:指在加氢反应过程中,原料油分子中有10%以上变小的加氢技术。 加氢精制:指在氢压和催化剂存在下,使油品中的硫、氧、氮等有害杂质转变为相应的硫化氢、水、氨而除去,并使烯烃和二烯烃加氢饱和、芳烃部分加氢饱和,以改善油品的质量。有时,加氢精制指轻质油品的精制改质,而加氢处理指重质油品的精制脱硫。 催化加氢技术包括加氢处理和加氢裂化两类。 加氢精制催化剂的预硫化:目前加氢精制催化剂都是以氧化物的形式装入反应器中,然后再在反应器将其转化为硫化物。 加氢脱硫(HDS)反应:石油馏分中的含硫化合物在催化剂和氢气的作用下,进行氢解反应,转化为不含硫的相应烃类和H2S。 加氢脱氮(HDN)反应:石油馏分中的含氮化合物在催化剂和氢气的作用下,进行氢解反应,转化为不含氮的相应烃类和NH3。 加氢脱氧(HDO)反应:含氧化合物通过氢解反应生成相应的烃类及水。 空速:指单位时间里通过单位催化剂的原料油的量,有两种表达形式,一种为体积空速(LHSV),另一种为重量空速(WHSV)。 氢油比:单位时间里进入反应器的气体流量与原料油量的比值。 设备漏损量:即管道或高压设备法兰连接处及循环氢压缩机运动部位等处的漏损。 溶解损失量:指在高压下溶于生成油中的气体在生成油减压时这部分气体排出时而造成的损失。 二、重点简答题 1、加氢精制的目的和优点。 (1)加氢精制的目的在于脱除油品中的硫、氮、氧杂原子及金属杂质,同时还使烯烃、二烯烃、芳烃和稠环芳烃选择加氢饱和,从而改善油品的使用性能。 (2)加氢精制的优点是,原料油的范围宽,产品灵活性大,液体产品收率高

石油炼化常用工艺流程

石油炼化常用工艺流程 (一)常减压: 1、原料:原油等; 2、产出品:石脑油、粗柴油(瓦斯油)、渣油、沥青、减一线; 3、生产工艺: 第一阶段:原油预处理 原油预处理:原油一般是带有盐份和水,能导致设备的腐蚀,因此原油在进入常减压之前首先进行脱盐脱水预处理,通常是加入破乳剂和水。 原油经过流量计、换热部分、沏馏塔形成两部分,一部分形成塔顶油,经过冷却器、流量计,最后进入罐区,这一部分是化工轻油(即所谓的石脑油);一部分形成塔底油,再经过换热部分,进入常压炉、常压塔,形成三部分,一部分柴油,一部分蜡油,一部分塔底油; 剩余的塔底油在经过减压炉,减压塔,进一步加工,生成减一线、蜡油、渣油和沥青。 各自的收率:石脑油(轻汽油或化工轻油)占1%左右,柴油占20%左右,蜡油占30%左右,渣油和沥青约占42%左右,减一线约占5%左右。 常减压工序是不生产汽油产品的,其中蜡油和渣油进入催化裂化环节,生产汽油、柴油、煤油等成品油;石脑油直接出售由其他小企业生产溶剂油或者进入下一步的深加工,一般是催化重整生产溶剂油或提取萃类化合物;减一线可以直接进行调剂润滑油; 4、常减压设备: 常压塔、减压塔为常减压工序的核心设备尤其是常压塔,其也合称蒸馏塔,两塔相连而矗,高瘦者为常压塔,矮胖的为减压塔 120吨万常减压设备评估价值4600万元。 (二)催化裂化: 催化裂化是最常用的生产汽油、柴油生产工序,汽油柴油主要是通过该工艺生产出来。这也是一般石油炼化企业最重要的生产的环节。 1、原料:渣油和蜡油 70%左右-------,催化裂化一般是以减压馏分油和焦化蜡油为原料,但是随着原油日益加重以及对轻质油越来越高的需求,大部分石

原油蒸馏的工艺流程精编WORD版

原油蒸馏的工艺流程精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

原油蒸馏的工艺流程 第一节石油及其产品的组成和性质 一、石油的一般性状、元素组成、馏分组成 (一)石油的一般性状 石油是一种主要由碳氢化合物组成的复杂混合物。世界各国所产石油的性质、外观都有不同程度的差异。大部分石油是暗色的,通常呈黑色、褐色或浅黄色。石油在常温下多为流动或半流动的粘稠液体。相对密度在0.8~0.98g/cm3之间,个别的如伊朗某石油密度达到1.016,美国加利福尼亚州的石油密度低到0.707。 (二)石油的元素组成 石油的组成虽然及其复杂,不同地区甚至不同油层不同油井所产石油,在组成和性质上也可能有很大的差别。但分析其元素,基本上是由碳、氢、硫、氧、氮五种元素所组成。其中碳、氢两中元素占96%~99%,碳占到83%~87%,氢占11%~14%。其余的硫、氧、氮和微量元素含量不超过1%~4%。石油中的微量元素包括氯、碘、磷、砷、硅等非金属元素和铁、钒、镍、铜、铅、钠、镁、钛、钴、锌等微量金属元素。 (三)石油的馏分组成 石油的沸点范围一般从常温一直到500℃以上,蒸馏也就是根据各组分的沸点差别,将石油切割成不同的馏分。一般把原油从常压蒸馏开始镏出的温度(初馏点)到180℃的轻馏分成为称为汽油馏分,180℃~350℃的中间馏分称为煤柴油馏分,大于350℃的馏分称为常压渣油馏分。 二、石油及石油馏分的烃类组成

石油中的烃类包括烷烃、环烷烃、芳烃。石油中一般不含烯烃和炔烃,二次加工产物中常含有一定数量的烯烃。各种烃类根据不同的沸点范围存在与对应的馏分中。 三、石油中的非烃化合物 石油的主要组成使烃类,但石油中还含有相当数量的非烃化合物,尤其在重质馏分油中含量更高。石油中的硫、氧、氮等杂元素总量一般占1%~4%,但石油中的硫、氧、氮不是以元素形态存在而是以化合物的形态存在,这些化合物称为非烃化合物,他们在石油中的含量非常可观,高达10%~20%。 (一)含硫化合物(石油中的含硫量一般低于0.5%) 含硫化合物在石油馏分中的分布一般是随着石油馏分的沸点升高而增加,其种类和复杂性也随着馏分沸点升高而增加。石油中的含硫化合物给石油加工过程和石油产品质量带来许多危害。 1、腐蚀设备 在石油炼制过程中,含硫化合物受热分解产生H 2 S、硫醇、元素硫等活性硫化物,对 金属设备造成严重的腐蚀。石油中通常还含有MgCl 2、CaCl 2 等盐类,含硫含盐化合物相互 作用,对金属设备造成的腐蚀将更为严重。石油产品中含有硫化物,在储存和使用过程中 同样腐蚀设备。含硫燃料燃烧产生的SO 2、SO 3 遇水后生成H 2 SO 3 、H 2 SO 4 会强烈的腐蚀金属 机件。 2、影响产品质量 硫化物的存在严重的影响油品的储存安定性,是储存和使用中的油品容易氧化变质,生成胶质,影响发动机的正常工作。

石油炼制工艺

石油炼制工艺 一、石油概述 1.常用油品的分类 (1)燃料油品:汽油、煤油、柴油、燃料重油、液化石油和化工轻油等(2)润滑油品:润滑油、润滑脂和石蜡等 2.石油的基本性质 (1)原油的组成:原油是一种混合物质,主要由碳元素和氢元素组成,统称为“烃类”。其中碳元素占83%-87%,氢元素占11%-14% (2)原油的分类:石蜡基原油(直链排列的烷烃含量占50%以上) 环烷基原油(环烷烃和芳香烃含量较大) 中间基原油(性质介乎以上二者) 3.原油的组分:轻组分:分子量比较小,沸点较低,易于挥发称为轻组分 重组分:组分较重,沸点较高,称为重组分 4. 原油的“馏分”:石油炼制的基本手段之一,就是利用各组分的不同 沸点,通过加热蒸馏,将其“切割”成若干不同沸点范围的“馏分”,“馏分” 就是指馏出的组分,这是石油炼制技术上一个最常用的术语。 二、石油炼制的方法和手段 1.原油的蒸馏:原油进行炼制加工的第一步,是石油炼制过程的龙头。炼 油厂一般以原油蒸馏的处理能力作为该厂的生产规模。通 过常减压蒸馏把原油中不同沸点范围的组分分离成各种 馏分,获得直馏的汽油、煤油、柴油等轻质馏分和重质油 馏分及渣油。常减压蒸馏基本属物理过程,包括三个工序: 原油的脱盐、脱水;常压蒸馏;减压蒸馏 2.二次加工:从原油中直接得到的轻馏分是有限的,大量的重馏分和渣油 需要进一步加工,将重质油进行轻质化,以得到更多的轻 质油品,这就是石油炼制的第二部分,即原油的二次加工。 包括催化裂化和加氢裂化、催化重整、延迟焦化、减粘和 加氢处理等。 3.油品精制和提高质量的有关工艺:包括为使汽油、柴油的含硫量及安全 性等指标达到产品标准进行的加氢精制;油品的脱色、脱 臭;炼厂气加工;为提高油品质量的有关加工工艺等 三、石油的炼制工艺 (一)从对所要生产的产品要求来看可以分为四种类型 1.燃料型工艺流程:以生产汽、煤、柴油等燃料油品为主 2.燃料化工型工艺流程:是在生产燃料油时,多生产一些化工原料 3.燃料润滑油型工艺流程:以生产润滑油为主 4.燃料润滑油化工工艺流程:生产润滑油兼化工原料这里主要介绍燃料型工艺流程,燃料型加工方案的目的是尽量把原油炼制为汽油、煤油、柴油等燃料油品,可选用常减压蒸馏—催化裂化—焦化加工艺流程,其特点是流程简单,生产装置少。如果有些原油含硫、氮、金属等杂质以及难裂化的芳烃含量较高,其重馏分进行催化裂化不能达到理想的效果,则有必要采取常减压—催化裂化—加氢裂化—焦化工艺流程。这两种工艺流程的示意图如下:

石油炼制基本原理

石油炼制的基本原理 原油进入炼油厂后,按沸点的不同在蒸馏装置切割成沸点从低到高、密度从小到大的各类馏分油,依次为液化气、直馏石脑油、直馏航煤馏分油、直馏柴油馏分油、直馏蜡油、渣油。 常减压装置的液化气和直馏石脑油主要作为乙烯原料使用,少部分作为重整原料;直馏航煤馏分油至航煤加氢精制装置处理,生产航煤产品;直馏柴油馏分油至柴油加氢精制装置处理,生产柴油产品。 直馏蜡油与焦化蜡油一起由加氢裂化装置进行深加工,得到液化气、加氢石脑油、加氢航煤、加氢柴油和加氢尾油,分别用于下游装置的原料和直接用于产品生产,其中一部分蜡油经润滑油系统和石蜡加氢装置处理后生产润滑油基础油和石蜡产品。 渣油由延迟焦化装置或者催化裂化装置进行深加工,生产出液化气、焦化汽油、焦化柴油、焦化蜡油、焦炭,焦化汽油、焦化柴油经柴油加氢精制处理得到轻质乙烯原料和柴油产品;焦化蜡油进加氢裂化装置进一步深加工,焦炭则作为CFB锅炉的燃料。 常减压蒸馏流程 石油炼制过程之一,是在热的作用下(不用催化剂)使重质油发生裂化反应,转变为裂化气(炼厂气的一种)、汽油、柴油的过程。热裂化原料通常为原油蒸馏过程得到的重质馏分油或渣油,或其他石油炼制过程副产的重质油。 1912年热裂化已被证实具有工业化价值。1913年,美国印第安纳标准油公司将W.M.伯顿热裂化法实现工业化。1920~1940年,随着高压缩比汽车发动机的发展,高辛烷值汽油用量激增,热裂化过程得到较大发展。第二次世界大战期间及战后,热裂化为催化裂化所取代,双炉热裂化大都改造为重质渣油的减粘热裂化。

化学反应热裂化反应很复杂。每当重质油加热到450℃以上时,其大分子分裂为小分子。同时,还有少量叠合(见烯烃叠合)、缩合发生,使一部分分子转变为较大的分子,热裂化是按自由基反应机理进行的。在400~600℃,大分子烷烃分裂为小分子的烷烃和烯烃;环烷烃分裂为小分子或脱氢转化成芳烃,其侧链较易断裂;芳烃的环很难分裂,主要发生侧链断裂。热裂化气体的特点是甲烷、乙烷-乙烯组分较多;而催化裂化气体中丙烷-丙烯组分、丁烷-丁烯组分较多。 工艺过程工业装置类型主要有双炉热裂化和减粘热裂化两种。前者的原料转化率(轻质油收率)较高,大于45%,目的是从各种重质油制取汽油、柴油;后者的转化率较低(20%~25%),目的是降低减压渣油的粘度和凝点,以提高燃料油质量,双炉热裂化汽油的辛烷值和安定性不如催化裂化汽油,目前已不发展;减粘热裂化在石油炼厂中仍有较广泛的应用。 双炉热裂化所谓双炉,是指在流程中设置两台炉子以分别加热反应塔的 轻重进料,操作时原料油直接进入分馏塔下部,与塔进料油气换热蒸出原料中所含少量轻质油和反应产物中的汽油、柴油后,在塔中部抽出轻循环油。塔底为重循环油。两者分别送往轻油、重油加热炉(为避免在炉管中结焦,故将轻、重循环油分别在两炉中加热到不同温度),然后进入反应塔进行热裂化反应。反应温度为485~500℃,压力1.8~2.0MPa;反应产物经闪蒸塔分出裂化渣油后,进入分馏塔分馏。汽油和柴油总产率约为60%~65%。所得柴油凝点-20℃以至-30℃、十六烷值(见柴油)约60(比催化裂化柴油高约20个单位);汽油辛烷值较低(马达法辛烷值约55~60)且安定性差,热裂化渣油是生产针状焦(见石油焦)的良好原料。双炉热裂化的能耗约1900MJ/t原料(为催化裂化的65%~70%)。 减粘热裂化是一种浅度裂化过程,用以降低渣油的凝点和粘度以生产燃料油,从而可以减少燃料油中掺和轻质油的比例。同时,还生产裂化汽油和柴油。减粘热裂化流程有加热炉式和反应塔式两种类型,主要差别是前者不设反应塔,热裂化反应在炉管中进行,加热温度高(约450~510℃)、停留时间短(决定于温度);后者在加热炉后设反应塔,主要热裂化反应在反应塔内进行,加热温度低(约445~455℃)、停留时间长(10~20min)。两者产品产率基本相同,轻质油产率约为18%~20%。反应塔式减粘热裂化的操作周期较长、能耗较低,是近年来应用较多的一种工艺。 二、石油炼制过程-催化重整-芳烃抽提 也称芳烃萃取,用萃取剂从烃类混合物中分离芳烃的液液萃取过程。主要用于从催化重整和烃类裂解汽油中回收轻质芳烃(苯、甲苯、各种二甲苯),有时也用于从催化裂化柴油回收萘,抽出芳烃以后的非芳烃剩余物称抽余油。轻质芳烃与相近碳原子数的非芳烃沸点相差很小(如苯80.1℃,环己烷80.74℃,2,2,3- 三甲基丁烷80.88℃),有时还形成共沸物,因此实际上不能用精馏方法分离。利用芳烃在某些溶剂中溶解度比非芳烃大的特点,采用液液萃取方法可以回收纯度很高的芳烃。常用萃取剂有二乙二醇醚(二甘醇)、三乙二醇醚(三甘醇)、四乙二醇醚(四甘醇)、环丁砜等,也用二甲基亚砜、N-甲基吡咯烷酮、N-甲酰

石油炼制工艺学复习资料

一、单项选择题 1 、常压塔顶一般采用A 循环回流B塔顶冷回流C塔顶热回流 2、常压塔侧线柴油汽提塔的作用是A提高侧线产品的收率B降低产品的干点C保证闪点 3、相邻组分分离精确度高则两个组分之间有A脱空B重叠C即不脱空也不重叠4、常压塔顶的压力是由()决定的。A加热炉出口压力B进料段的压力C塔顶回流罐的压力 5、加热炉出口的温度A等于进料段的温度B大于进料段的温度C小于进料段的温度 6、减压塔采用塔顶循环回流是为了A更好利用回流热B提高真空度C改善汽液相负荷 7、燃料型减压塔各侧线产品A分离精度没有要求B产品的使用目的不同C都需要汽提 8、流化床反应器的返混A对传热不利B对反应有利C对反应不利 9、提升管反应器是A固定床B流化床C输送床 10、催化裂化分馏塔脱过热段的作用是A取走回流热B提高分馏精度C把过热油气变成饱和油气 1、减压塔顶一般采用A循环回流B冷回流C二级冷凝冷却 2、常压塔设置中段循环回流A为了提高分馏精度B为了减少回流热C为了改善汽液相负荷 3、塔的分馏精度出现脱空是A、分馏效果好B、分馏效果不好 4、常压塔底温度A高于进料段温度B低于进料段温度C等于进料段温度 5、为了提高减压塔拔出率A不断提高进料温度B提高塔的分离精度C提高塔的真空度 6、润滑油型减压塔和燃料型减压塔A气液相负荷分布是一样B塔的分离要求不一样C塔板数是一样的 7、再生可导致催化剂A水热失活B中毒失活C结焦失活 8、催化裂化再吸收塔的作用是A吸收干气中C3、C4 组分B吸收干气中汽油组分C吸收干气中的硫化氢 9、催化裂化反应随反应深度加大A气体产率先增大后减少B焦碳产率先增大后减少C汽油先增大后减少 10、催化裂化的吸热反应是A氢转移反应B异构化反应C分解反应 二、判断题(在正确的答案题号打√错误的画X ) 1 、催化重整只能生产高辛烷值汽油。 2 、催化重整汽油的安定性不好。 3 、催化重整生产汽油时原料不需要预分馏。 4 、重整原料的脱水是采用共沸精馏的分离方法。 5 、催化重整不能副产氢气。 6 、催化重整的化学反应都是吸热反应。 7 、新鲜重整催化剂使用前不需要还原。8 、催化剂的寿命和总寿命是不一样的 9 、重整催化剂助剂的作用是为了改善主催化剂的性能。 10 、当重整原料的砷含量大于300 μ g/g 时不需要进行预 11 、催化重整循环氢的作用之一是保护催化剂。 12 、重整催化剂的氮中毒是非永久性中毒。 13 、加氢精制催化剂和加氢裂化催化剂性能是一样的。 14 、加氢精制不发生裂化反应。15 、加氢裂化一般在较低的压力下进行。

石油炼制工艺学

石油炼制工艺学复习提纲 第二章石油及其产品组成和性质 1.石油的元素组成:基本元素(5种)C H S N O 微量元素 2.杂原子(S N O和微量元素)存在的影响:a石油加工过程(催化剂失活、腐蚀、能耗↑)b产品的质量杂质含量的高低与油品轻重有关 3.我国原油较为典型的元素组成特点:低硫高氮高镍低钒 4.直馏馏分:原油直接分馏得到 5.石油的馏分组成:石油气,汽油(石脑油),喷气燃料(航煤),轻柴油,重油(润滑油),常压渣油,减压渣油 6.我国原油组成特点:轻质馏分含量低、渣油含量高 7.石油及其馏分的烃类(C、H)组成(分布情况): a天然气(干气):主要由甲烷(>80%)、乙烷、丙烷,丁烷、二氧化碳组成 b炼厂气氢气、C1~C4(烷烃和烯烃) c汽油馏分(≤C11) d中间馏分(C11~C20的煤油、柴油) e高沸馏分(C20~C36)f渣油g蜡 8.石油中的非烃类化合物: 主要是含硫、含氮、含氧化合物及胶质、沥青质 a含硫化合物b含氧化合物(主要石油酸) c含氮化合物d胶质、沥青质:原油中的大部分硫、氮、氧及绝大部分金属集中在渣油的胶质、沥青质中 第三章石油产品及其质量要求 1.石油产品分类(6大类产品) 燃料油品:气体燃料、LPG、汽油、航空煤油、柴油、燃料油占80%以上 润滑剂:其中内燃机油、齿轮油、液压油三大主要品种 溶剂油和化工原料蜡沥青焦 2.燃料的使用性能(能判断对应性能的指标) 燃烧性(抗爆性):辛烷值(汽油)十六烷值(柴油)芳烃% 烟点辉光值粘度发热值密度(航煤)安定性:实际胶质诱导期烯烃% (汽油)碘价氧化安定性10%残炭颜色(柴油)碘价实际胶质动态热氧化安定性(航煤) 腐蚀性:硫% 硫醇% 水溶性酸碱铜片腐蚀银片腐蚀(航煤) 低温性:凝点粘度冷滤点(柴油)结晶点冰点(航煤) 3.辛烷值标准组分:异辛烷(2,2,4-三甲基戊烷)=100 正庚烷=0 4.替代燃料(知道一些):LPG、CNG、二甲醚(十六烷值55~60) 生物柴油GTL合成油品 5.汽油的清洁化要求:无铅化低(蒸气压、硫、烯烃、芳烃、90%馏出温度) 较高的含氧化合物 6.我国汽油性质特点:硫含量高汽油中烯烃含量高汽油中芳烃水平相对较低汽油的蒸汽压偏高 含氧化合物低辛烷值分布差汽油的蒸汽压偏高 7.柴油清洁化要求:低硫、低芳烃(稠环芳烃)、高十六烷值 8.与汽油相比,柴油特点:节油经济环保清洁动力(热值高)安全 9.润滑油的作用:密封、冷却、减磨 10.润滑油组成:基础油添加剂 11.基础油的分类(按粘度指数) 12.内燃机油的牌号(代表的含义):按质量等级和粘度等级分类 质量等级分类(按字母顺序依次提高):a汽油机油:S(A~M)等b柴油机油:C(A~J)等 c通用油(汽/柴通用):SD/CC、SE/CC、SF/CD

石油炼化公司的各个装置工艺的流程图大全及其简介

炼化公司的各个装置工艺的流程图大全及其简介 从油田送往炼油厂的原油往往含盐(主要是氧化物)带水(溶于油或呈乳化状态),

可导致设备的腐蚀,在设备内壁结垢和影响成品油的组成,需在加工前脱除。电脱盐基本原理: 为了脱掉原油中的盐份,要注入一定数量的新鲜水,使原油中的盐充分溶解于水中,形成石油与水的乳化液。 在强弱电场与破乳剂的作用下,破坏了乳化液的保护膜,使水滴由小变大,不断聚合形成较大的水滴,借助于重力与电场的作用沉降下来与油分离,因为盐溶于水,所以脱水的过程也就是脱盐的过程。 CDU装置即常压蒸馏部分 常压蒸馏原理:

精馏又称分馏,它是在精馏塔内同时进行的液体多次部分汽化和汽体多次部分冷凝的过程。 原油之所以能够利用分馏的方法进行分离,其根本原因在于原油内部的各组分的沸点不同。 在原油加工过程中,把原油加热到360~370℃左右进入常压分馏塔,在汽化段进行部分汽化,其中汽油、煤油、轻柴油、重柴油这些较低沸点的馏分优先汽化成为气体,而蜡油、渣油仍为液体。 VDU装置即减压蒸馏部分

减压蒸馏原理: 液体沸腾必要条件是蒸汽压必须等于外界压力。 降低外界压力就等效于降低液体的沸点。压力愈小,沸点降的愈低。如果蒸馏过程的压力低于大气压以下进行,这种过程称为减压蒸馏。 轻烃回收装置是轻烃的回收设备,采用成熟、可靠的工艺技术,将天然气中比甲烷或乙烷更重的组分以液态形式回收。

RDS即渣油加氢装置,渣油加氢技术包含固定床渣油加氢处理、切换床渣油加氢处理、移动床渣油加氢处理、沸腾床渣油加氢处理、沸腾床渣油加氢裂化、悬浮床渣油加氢裂化、渣油加氢一体化技术及相应的组合工艺技术。

石油炼制工艺学试题.

一、填空题 1、油品含烷烃越多,则其粘度(越小),特性因数(越大),折光率(越小),粘度指数(越大)。 2、催化裂化反应生成(气体)、(汽油)、(柴油)、(重质油)(焦炭) 3、加氢精制的主要反应有(加氢脱硫)、(脱氮)、(脱氧)、(脱金属) 4、原油蒸馏塔的分离(精确度)要求不太高, 相邻产品间允许有 (重叠), 即较轻馏分的(终馏点)点可高于较重馏分的(初馏点)点。 5、石油产品主要有(燃料)、(润滑剂)、(石油沥青)、(石油蜡)、(石油焦)(溶剂与化工原料)。 6、考察重整催化剂综合性能主要是考察(反应性能)、(再生性能)和(其他物理性能)。 7、含硫化合物的主要危害有(设备腐蚀)、(催化剂中毒)、(影响石油产品质量)和(污染环境)。 8、重整催化剂的再生过程包括(烧焦)、(氯化更新)和(干燥)。 9、石蜡基原油特性因数(K>12.1 ),中间基原油特性因数(K=11.5-12.1 ),环烷基原油特性因数(K=10.5-11.5 )。(填K值范围) 10、目前,炼厂采用的加氢过程主要有两大类:(加氢精制)和(加氢裂化),此外还有用于某种生产目的的加氢过程,如(加氢处理)、(临氢降凝)、(加氢改质)、(润滑油加氢)等。 11、在催化裂化装置再生器中烧去的“焦炭”包括(催化炭)炭、(可汽提炭)炭、(附加炭)炭、(污染炭)炭。 12、催化重整工艺采用(多个)反应器,反应器入口温度(由低到高)排列,催化剂装入量最多的是(最后一个)反应器。 13、催化裂化催化剂失活原因主要有(水热失活)、(结焦失活)、(中毒失活)三个方面。 14、原油蒸馏塔回流有多种形式, 主要有: (冷回流)、(热回流)、(二级冷凝冷却)、(循环回流)。 15、石油中的非烃化合物包括(硫化物)、(氮化物)、(氧化物)和(胶质沥青质)。

石油炼制工艺考题

1 《石油炼制工程》复习题 一、名词解释 1、压缩比:气缸总体积与燃烧室体积之比。 2、沥青质:把石油中不溶于低分子正构烷烃,但能溶于热苯的物质称为沥青质。 3、含硫原油:硫含量在0.5~2%之间的原油。 4、加氢裂化双功能催化剂:由金属加氢组分和酸性担体组成的双功能催化剂。 5、剂油比:催化剂循环量与总进料量之比。 6、碱性氮化物:在冰醋酸和苯的样品溶液中能够被高氯酸-冰醋酸滴定的含氮化合物。 7、水—氯平衡:在重整催化剂中,为使催化剂保持合适的氯含量而采用注水注氯措施,使水氯 处于适宜的含量称为水-氯平衡。 8、催化裂化总转化率:以新鲜原料为基准计算的转化率。总转化率 = ×100%。 9、汽油的安定性汽油在常温和液相条件下抵抗氧化的能力。 10、空速每小时进入反应器的原料量与反应器内催化剂藏量之比称为空间速度(简称空速)。 11、氢油比氢气与原料的体积比或重量比。 12、自燃点油品在一定条件下,不需引火能自行燃烧的最低温度。 13、催化重整催化重整是一个以汽油(主要是直馏汽油)为原料生产高辛烷值汽油及轻芳烃的 炼油过程。 14、辛烷值两种标准燃料混合物中的异辛烷的体积分数值为其辛烷值,其中人为规定标准燃料异 辛烷的辛烷值为100,标准燃料正庚烷的辛烷值为0。 15、汽油抗爆性衡量汽油是否易于发生爆震的性质,用辛烷值表示。 16、二级冷凝冷却二级冷凝冷却是首先将塔顶油气(例如105℃)基本上全部冷凝(一般冷却到 55~90℃),将回流部分泵送回塔顶,然后将出装置的产品部分进一步冷却到安全温度(例如40℃ )以下。 17、加氢裂化在较高压力下,烃分子与氢气在催化剂表面进行裂解和加氢反应生成较小分子的转 化过程。 18、催化碳催化裂化过程中所产生的碳,主要来源于烯烃和芳烃。催化碳 = 总炭量-可 汽提炭-附加炭。 19、馏程从馏分初馏点到终馏点的沸点范围。

石油炼制过程和主要工艺简介

石油炼制的主要过程和工艺简介 石油、天然气是不同烃化合物的混合物, 简单作为燃料是极大的浪费,只有 通过加工处理,炼制出不同的产品,才能充分发挥其巨大的经济价值。 石油经过 加工,大体可获得以下几大类的产品:汽油类(航空汽油、军用汽油、溶剂汽油); 煤油(灯用煤油、动力煤油、航空煤油);柴油(轻柴油、中柴油、重柴油);燃 料油;润滑油;润滑油脂以及其他石油产品(凡士林、石油蜡、沥青、石油焦炭 等)。有的油品经过深加工,又获得质量更高或新的产品。 石油加工,主要是指对原油的加工。世界各国基本上都是通过一次加工、 次加工以生产燃料油品,三次加工主要生产化工产品。原油在炼厂加工前,还需 经过脱盐、脱水的预处理,使之进入蒸馏装置时,其各种盐类的总含盐量低于 5mg/L ,主要控制其对加工设备、管线的腐蚀和堵塞。 原油一次加工,主要采用常压、减压蒸馏的简单物理方法将原油切割为沸点 范围不同、密度大小不同的多种石油馏分。各种馏分的分离顺序主要取决于分子 大小和沸点高低。在常压蒸馏过程中,汽油的分子小、沸点低(50?200C ),首 先馏出,随之是煤油(60?5C )、柴油(200?0C )、残余重油。重油经减压蒸 馏又可获得一定数量的润滑油的基础油或半成品 (蜡油),最后剩下渣油(重油)。 一次加工获得的轻质油品(汽油、煤油、柴油)还需进一步精制、调配,才可做 为合格油品投入市场。我国一次加工原油, 20%左右的蜡油。 原油二次加工,主要用化学方法或化学 转化,以提高某种产品收率,增加产品品种, 艺很多,要根据油品性质和设计要求进行选择。主要有催化裂化、催化重整、焦 化、减粘、加氢裂化、溶剂脱沥青等。如对一次加工获得的重质半成品(蜡油) 进行催化裂化,又可将蜡油的40%左右转化为高牌号车用汽油,30%左右转化为 柴油,20%左右转化为液化气、气态烃和干气。如以轻汽油(石脑油) 为原料, 采用催化重整工艺加工,可生产高辛烷值汽油组分(航空汽油)或化工原料芳烃 (苯、二甲苯等),还可获得副产品氢气。 石油三次加工是对石油一次、二次加工的中间产品(包括轻油、重油、各种 石油气、石蜡等),通过化学过程生产化工产品。如用催化裂化工艺所产干气中 的丙稀生产丙醇、丁醇、辛醇、丙稀腈、腈纶;用丙稀和苯生产丙苯酚丙酮;用 碳四(C4)馏分生产顺酐、顺丁橡胶;用苯、甲苯、二甲苯生产苯酐、聚脂、 只获得25%?40%的直馏轻质油品和 -物理方法,将原油馏分进一步加工 提高产品质量。进行二次加工的工

石油炼制过程

分类 习惯上将石油炼制过程不很严格地分为三类过程:(1)一次加工(2)二次加工(3)三次加工。 炼厂总体工艺图如下

原油一次加工 把原油蒸馏分为几个不同的沸点范围(即馏分)叫一次加工;一次加工装置;常压蒸馏或常减压蒸馏。是将原油用蒸馏的方法分离成轻重不同馏分的过程,常称为原油蒸馏,它包括原油预处理、常压蒸馏和减压蒸馏。一次加工产品可以粗略地分为:①轻质馏分油(见轻质油),指沸点在约370℃以下的馏出油,如粗汽油、粗煤油、粗柴油等。②重质馏分油(见重质油),指沸点在370~540℃左右的重质馏出油,如重柴油、各种润滑油馏分、裂化原料等。③渣油(又称残油)。习惯上将原油经常压蒸馏所得的塔底油称为重油(也称常压渣油、半残油、拔头油等)。

原油二次加工(裂化、重整、精制和裂解) 二次加工过程:将一次加工得到的馏分再加工成商品油叫二次加工;二次加工装置:催化、加氢裂化、延迟焦化、催化重整、烃基化、加氢精制等。一次加工过程产物的再加工。主要是指将重质馏分油和渣油经过各种裂化生产轻质油的过程,包括催化裂化、热裂化、石油焦化、加氢裂化等。其中石油焦化本质上也是热裂化,但它是一种完全转化的热裂化,产品除轻质油外还有石油焦。二次加工过程有时还包括催化重整和石油产品精制。前者是使汽油分子结构发生改变,用于提高汽油辛烷值或制取轻质芳烃(苯、甲苯、二甲苯);后者是对各种汽油、柴油等轻质油品进行精制,或从重质馏分油制取馏分润滑油,或从渣油制取残渣润滑油等。 裂化 一是热裂化 就是完全依靠加热进行裂化。主要原料是减压塔生产中得到的含蜡油。通过热裂化,又可取得汽油、煤油、柴油等轻质油。但是,热裂化所得到的产品,其质量不够好 二是催化裂化 就是在裂化时不仅加热而且加入催化剂。由于催化剂就像人们蒸制馒头时加入酵母一样,能大大加快反应速度,所以,催化裂化比热裂化获得的轻质油多(汽油产率可达60%左右),而且产品的质量也比较好 三是加氢催化 就是在加入氢气的情况下进行催化裂化。这种方法的优点是使所得到的轻质油收率更高,质量更好,而且原料没有严格的要求,原油以至渣油都可以用;缺点是

石油炼制工艺学

石油炼制工艺学(2) 一、单项选择题 1、减压塔顶一般采用 A、循环回流B、冷回流C、二级冷凝冷却 2、常压塔设置中段循环回流 A、为了提高分馏精度B、为了减少回流热C、为了改善汽液相负荷 3、塔的分馏精度出现脱空是 A、分馏效果好B、分馏效果不好 4、常压塔底温度 A、高于进料段温度B、低于进料段温度C、等于进料段温度。 5、为了提高减压塔拔出率 A、不断提高进料温度B、提高塔的分离精度C、提高塔的真空度。 6、润滑油型减压塔和燃料型减压塔 A、气液相负荷分布是一样。B、塔的分离要求不一样。C、塔板数是一样的7、再生可导致催化剂 A、水热失活B、中毒失活C、结焦失活 8、催化裂化再吸收塔的作用是 A、吸收干气中C3、C4组分。B、吸收干气中汽油组分。C、吸收干气中的硫化氢。 9、催化裂化反应随反应深度加大 A、气体产率先增大后减少。B、焦碳产率先增大后减少。C、汽油先增大后减少 10、催化裂化的吸热反应是 A、氢转移反应B、异构化反应C分解反应 1、A 2、C 3、A 4、B 5、C 6、B 7、A 8、B 9、C 10、C 二、判断题(在正确的答案题号打√错误的画X) 1、催化重整的目的只是生产芳烃。 2、碳6以下的烃类很难生成芳烃所以不进行重整。 3、催化重整原料预分馏是为了得到不同生产目的馏分。 4、重整原料中水和反应生成的水能导致催化剂上氯的流失。 5、当重整原料的砷含量小于200μg/g时不需要进行预脱砷。 6、催化重整催化剂的硫中毒一般是暂时性的。 7、催化重整化学反应中加氢裂化对生成芳烃有利。 8、催化重整各个反应器的温度是一样的。 9、催化重整催化剂是双功能催化剂。 10、催化重整化学反应都是吸热反应。 11、催化重整催化剂再生后不需要更新。 12、重整催化剂的失活主要是积炭失活。 13、加氢精制一般采用强酸性催化剂。 14、加氢裂化是正碳离子机理所以产物中不含烯烃。 15、加氢精制中氢油比的变化对加氢没有影响。 16、加氢精制和加氢裂化没有区别。 17、稠环芳烃环越多加氢越不容易。

石油炼制工艺学期末复习资料沈本贤主编

第二章石油及其产品的组成与性质 1、&馏程:初馏点到终馏终点这一温度范围称油品沸程。 2、& 初馏点: 蒸馏中流出第一滴油品时的气相温度。 3、终馏点: 蒸馏终了时的最高气相温度(干点)。 4、馏分: 在某一温度范围内蒸出的馏出物。 5、馏分组成: 蒸馏温度与馏出量(体)之间的关系 6、蒸汽压: 在某温度下,液体与其液面上的蒸汽呈平衡状态,蒸汽所产生的压力称为饱与蒸汽压,简称蒸汽压 7、& 相对密度:油品的密度与标准温度下水的密度之比。(4℃,15、6℃); 或:油品的质量与标准温度下同体积水的质量之比。 8、& 特性因数:特性因数就是表示烃类与石油馏分化学性质的一个重要参数。特性因数反映了石油馏分化学组成的特性,特性因数的顺序:烷烃>环烷烃>芳香烃 烷烃(P):≥12 ;环烷烃(N):11~12 ;芳烃(A): 10~11 9、平均分子量:油品的分子量就是油品各组分分子量的平均值。 10、粘度: 流体流动时, 由于分子相对运动产生内摩擦而产生内部阻力,这种特性称为粘性,衡量粘性大小的物理量称为粘度。 11、动力粘度:两液体层相距1cm,其面积各为1cm2, 相对移动速度为1cm/s, 这时产生的阻力称为动力粘度。 12、运动粘度:流体的动力粘度与同温同压下该流体的密度之比。 13、恩氏粘度:在某温度下, 在恩氏粘度计中流出200ml油品所需的时间与在20℃流出同体积蒸馏水所需时间之比。 14、& 粘温特性: 油品粘度随温度变化的性质称为粘温特性。 15、临界温度:当温度高至某一温度时,无论加多大压力,也不能把气体变为液体;这个温度称为临界温度; 16、临界压力:临界温度相应的蒸汽压称为临界压力。 17、比热(C):单位物质(kg或kmol)温度升高1℃时所需要的热量称为比热。 18、蒸发潜热:单位物质(kg或kmol)由液体汽化为汽体所需要的热量称为蒸发潜热。也称汽化潜热。 19、& 热焓(H):将1Kg油品由某基准温度(常以-17、8℃, 即0F为基准)加热到某温度时, 所需的热量称为热焓。 20、结晶点:在油品到达浊点温度后继续冷却,出现肉眼观察到结晶时的最高温度。

石油炼制技术进展

石油炼制技术进展 昆明理工大学化学工程学院 二〇一三年五月 ------------------------------------------------------- 石油炼制是国民经济的支柱产业和基础产业,资源、资金、技术密集,产业关联度高,经济总量大,产品应用范围广,在国民经济中占有十分重要的地位。 石油炼制工艺一般是指将原油加工成各种燃料(汽油、煤油、柴油)、润滑油、石蜡、沥青等石油产品或石油化工原料(如正构烷烃、苯、甲苯、二甲苯等)的工艺过程。石油炼制技术大致经历了如下阶段:第一阶段:20世纪初,热裂化重油生产

汽油;第二阶段:30~40年代,催化裂化(SiO2-Al2O3);第三阶段:50年代,铂重整(促进加氢技术发展);第四阶段:60年代,分子筛裂化催化剂;第五阶段:70~80年代,重质油轻质化;第六阶段:90年代,清洁油品的生产。目前石油炼制工艺及相互关系如图1。催化对石油炼制技术的发展贡献巨大,如图2。 图1石油炼制工艺及其相互关系

图2催化对石油炼制技术发展的重要作用示意图 1、常减压蒸馏技术 常减压蒸馏是原油加工的第一道工序,将原油进行初步的处理、分离,为二次加工装置提供合格的原料,其流程简图如图3。 常减压蒸馏装置的构成:一般包括:电脱盐、常压蒸馏、减压蒸馏三部分,有些装置还有:航煤脱硫醇、初馏塔等部分。 常减压蒸馏主要产品:常压系统,石脑油、重整原料、煤油、柴油等产品。 减压系统:润滑油馏分、催化裂化原料、加氢裂化原料、焦化原料、沥青原料、燃料油等。 常减压蒸馏发展的趋势:总体原油加工能力不会有大的增长;装置数目不断减少;装置能力不断扩大。

相关文档
最新文档