§16.1隐函数存在定理

合集下载

隐函数存在定理

隐函数存在定理

§16.1
隐函数存在定理
(c) “同号两边伸”
因为 F ( x , y0 ) , F ( x , y0 ) 关于 x 连续,故由
(0 ) , 使得 (b) 的结论,根据保号性,
F ( x , y0 ) 0 , F ( x , y0 ) 0 , x ( x0 , x0 ).
隐函数存在定理
y y0
y0

+ +
+
y0
O x0
x0 x0 x
y0
0 _ _ _
_
O x0
x0 x0 x
(a) 一点正,一片正
(b) 正、负上下分
y0
y
++++


y0
y
++++

y0 y0
O
y0 y0
x

U ( P0 )
(b) “正、负上下分 ”
因 Fy ( x , y ) 0 , ( x , y ) S , 故 x [ x0 , x0 ], 把 F ( x , y) 看作 y 的函数,它在 [ y0 , y0 ] 上 严格增,且连续 ( 据条件 (i) ).
y 特别对于函数 F ( x0 , y ), 由条 0
Γ: F (x,y)=0 y0= f (x0) Γ: y = f (x) F (x0, y0) =0 ( 满足一定 条件或在某 一局部) 图1 隐函数存在性条件分析示意图
2014年5月8日星期四
O O
y
P0(x0,y0)
F (x, f (x)) =0x源自华北科技学院基础部9
《数学分析》(2)

隐函数存在定理ppt课件

隐函数存在定理ppt课件
Σ: z = F (x,y)
Γ: F (x,y)=0
y0= f (x0) Γ: y = f (x)
OO P0(x0,y0)
y
F (x, f (x)) =0
( 满足一定 x 条件或在某
F (x0, y0) =0
一局部) 图1 隐函数存在性条件分析示意图
08.04.2020
华北科技学院基础部
9
《数学分析》(2) §16.1 隐函数存在定理
(0,-1)
08.04.2020
华北科技学院基础部
5
《数学分析》(2) §16.1 隐函数存在定理
注24、隐类似函地数可存定在义性多条元件隐函分数析.例如: 由方程
F 条(件x ,时y,,z)由 0 F(确x,定y)的=0隐能函确数定z隐函f数(x,yy=)f,(由x)方并程使 该F 隐(x 函,y 数,z 具,u 有) 连0 续确、定可的微隐等函良数好u 性 质f?(x ,y,z),等
一前面、关F于(x隐, y函) 数= (0 情组)形的微分法都假定:隐函数 存1在、,隐且函它数们的概导念数或偏导数也存在。
本显章函讨数论:隐因函变数量存可在由性自问变题量及的连某续一性分、析可式微来性表。示
的函数称为显函数.例如: y1sin 3x,zx2y2.
08.04.2020
华北科技学院基础部
(a) 一点正,一片正
隐函数存在定理
y y0
+

++
y0
_+__•0
y0
_•
O x 0 x 0 x0 x
(b) 正、负上下分
y
y0
y0
++•++
•ห้องสมุดไป่ตู้
y0
• - - - -

隐函数存在定理

隐函数存在定理

换句话说, 存在函数 y f (x), 定义在
(x0 , x0 ) 上, 当 x (x0 , x0 ) 时, 有
(x, f (x)) U (P0 ), F(x, f (x)) 0, 且 y0 f (x0 ); (2) y f (x) 在 (x0 , x0 ) 上连续; (3) y f (x) 在 (x0 , x0 )上有连续的导
F(x, f (x), g(x)) 0,G(x, f (x), g(x)) 0.
例5 点 (1,1,2)在方程 x2 ( y 2 z 2 ) 5 及
(x z)2 y 2 2 所表示的曲面上, 证明在这点
的一个邻域内, 两曲面的交线能用形如
z

f (x), y
g(x)
注3. 隐函数一般需要同时指出自变量与 因变量的取值范围. 例如, 由方程 x2 y2 1 可确定如下两个隐函数
y 1 x2 , x [1,1], y [0,1],
y 1 x2 , x [1,1], y [1,0].
注4. 类似可定义多元隐函数. 例如, 由方 程 F(x, y, z) 0 确定的隐函数 z f (x, y).
这表明两曲面的交线在点 (1,1,2)附近能用形 如 z f (x), y g(x) 的一对方程表示.
u 1 (F,G) , u 1 (F,G) , x J (x, v) y J ( y, v)
v 1 (F,G) , v 1 (F,G) . x J (u, x) y J (u, y)
例4 问在点 (0,1) 附近是否存在连续可微函 数 f (x, y) 和 g(x, y) 满足 f (0,1) 1, g(0,1) 1, 且

《高等数学之隐函数》课件

《高等数学之隐函数》课件

在物理学中的应用
在物理学中,隐函数被广泛应用于描 述物理量之间的关系,例如,热传导 方程、电磁场方程等。
隐函数还可以用于解决一些物理问题 ,例如,求解微分方程、确定物理量 的变化规律等。
THANKS 感谢观看
进一步研究隐函数的重要基础。
03 隐函数的求导法则
链式法则
链式法则
当一个函数嵌套在另一个函数中时, 链式法则用于求导。具体来说,如果 有一个复合函数 y = f(g(x)),则 dy/dx = (dy/dg) * (dg/dx)。
举例
假设 y = sin(x^2),则 dy/dx = cos(x^2) * 2x。
隐函数还可以用于解决一些几何问题,例如,确定某一点的切线或者求某一点的 法向量等。
在经济学中的应用
在经济学中,隐函数被广泛应用于成 本函数、收益函数、需求函数等,这 些函数描述了经济变量之间的关系, 例如,成本函数描述了生产一定数量 的产品所需要的成本。
隐函数还可以用于解决一些经济学问 题,例如,最大化利润、最小化成本 等。
隐函数和显函数的转换
有时候可以将隐函数转换为显函数,或者将显函数 转换为隐函数,这需要使用例如在某些情况下更 加灵活和适用,但是它也有一些缺点,例如 求解比较困难。
隐函数的几何意义
隐函数的几何意义
隐函数可以用几何图形来表示,通过求解方程可以得到因变量和 自变量之间的关系,并且可以用图形来表示这种关系。
隐函数的图像
隐函数的图像通常是曲线或者曲面,可以通过绘制图像来更好地理 解隐函数的性质和特点。
隐函数的应用
通过几何意义可以更好地理解隐函数的实际应用,例如在物理和工 程领域中可以通过求解隐函数来找到某些物理量的关系。
02 隐函数定理

2.隐函数定理

2.隐函数定理
3-3
隐函数及其导数continued...
隐函数定义
设对邻域Nδ (x0)内任意一组变量x1, x2, …, xn,相应地总 有满足方程G (x1, x2, …, xn, y) = 0的唯一的y值存在,那 么就说方程G (x1, x2, …, xn, y) = 0在邻域Nδ (x0)内确定一 个隐函数.记作y = f (x1, x2, …, xn).
3-2
隐函数的导数 ⎯ 经济学中的必要性
隐函数及其导数continued...
G (x1, x2, …, xn, y) = 0或G (t, y) = 0.
经济学中的隐函数:例如,在一个经济模型中,一个内生 变量y和一组外生变量x1, x2, …, xn或参数t常常满足一个方程 在一定条件(或一定的经济背景)下,对任意一组外生变 量,由方程G (x1, x2, …, xn, y) = 0可确定唯一的y值,因而y 是x1, x2, …, xn的隐函数. 在经济问题的分析中,内生变量 ⎯ 数学中因变量,外生变 量 ⎯ 对应数学中的自变量. 在经济问题分析中,往往需要计算隐函数的导数或偏导 数.我们需研究外生变量xi(或参数t)的变化是如何影响 内生变量y的变化,即需求内生变量关于外生变量或参数的 偏导数∂y/∂xi或∂y/∂t.
第k列
(****)
其中k = 1,2,…,m;h = 1,2,…,n.
3-11
隐函数及其导数continued...
法一:(复合函数法)由定理3.4.2,将结论1)表示 的方程组(***)的两端看作x1, x2, …, xn的复合函数, 关于xh求偏导数,则得一个含有m个未知量和 m个 方 程的线性方程组
iii)f ' ( x ) = −
∂G ∂x

关于隐函数存在定理证明教学的新探讨

关于隐函数存在定理证明教学的新探讨

关于隐函数存在定理证明教学的新探讨1.问题的提出数学分析教学中“隐函数存在定理”的证明,是一个较为复杂,不易被学生很快理解和掌握的定理。

现把该定理复述如下:定理:设F(x,y)在(x,y)的领域内连续,并有连续的偏导数F′(x,y),如果F(x,y)=0?摇?摇?摇F′(x,y)≠0则在(x,y)的某领域内,方程F(x,y)=0有唯一的连续解y=f(x),也就是说,这时存在某η0,使得在[x-η,x+η]上存在着一函数y=y(x),使得:1)y=y(x);2)y(x)在[x-η,x+η]上连续;3)在[x-η,x+η]上恒等式F(x,y(x))=0成立;4)满足条件1)—3)的函数y(x)是唯一的。

在定理所给条件下,找到满足结论条件的隐函数y=f(x),从几何直观来看就是:若在(x,y)附近z=F(x,y)为光滑曲面,则它在点(x,y)附近与z=0的交线为光滑曲线,并能表示为y为x的函数(当F′(x,y)≠0),如图1所示。

对于这个定理,一般的分析教科书上多采用的传统证法是基于它的几何意义,而从下面几方面去进行推断。

(一)定理的结论,实质是找曲面z=F(x,y)和平面z=0的交线y=f(x),使得这曲线过(x,y)且在x附近连续,唯一。

(二)要这曲线过(x,y)必须曲面过(x,y),即F(x,y)=0。

(三)要这曲线在x附近连续,只需曲面z=F(x,y)在(x,y)附近连续。

(四)要曲线唯一,也就需证,对x附近任一x,有唯一确定的y。

在定理题设中有,F′(x,y)≠0,不妨假定它大于0,由于F′(x,y)连续,因此存在(x,y)的某个领域,其中每一点F′都大于0。

在该领域内,固定x=x,令φ(y)=F(x,y),由于φ′(y)0,因此φ(y)是单调上升的,只要证明存在y及y,使得φ(y)0,φ(y)0,则由一元连续函数的中值定理,就存在一点M(x,y)使F(x,y)=0,这是定理证明的核心。

其几何意义是:曲面z=F(x,y)垂直于x轴的平面x=x的交线z=F(x,y),剖面图形如图2所示。

隐函数的微分法.ppt

隐函数的微分法.ppt

0;中 0,
,两 边 对x求 导 , 得
Fx
1
Fy
dy dx
Fz
dz dx
0
Gx
1
Gy
dy dx
Gz
dz dx
0
F
y
dy dx
Fz
dz dx
Fx
Gy
dy dx
Gz
dz dx
Gx
当 Fy Fz 0时 ,
Fx
Gy Gy
dy Gx
Fz
Fy
Gz , dz Gy
Fx Gx ,
dx Fy Fz dx Fy Fz
(2) F ( x0 , y0 , u0 , v0 ) 0,G( x0 , y0 , u0 ,v0 ) 0,
(3) 偏导数所组成的函数行列式(或称雅可比式)
F F
J
(F ,G) (u, v )
u G
v G
u v
在点 P( x0 , y0 ,u0 ,v0 ) 不等于零,则方程组
F( x, y, u,v) 0 G( x, y,u,v) 0 在点P( x0 , y0 , u0 ,v0 )的某一邻域内恒能唯一确定一 组具有连续偏导数的函数u u( x, y),v v( x, y) , 它们满足条件u0 u( x0 , y0 ),v0 v ( x0 , y0 ) ,并有
3
x0
y0 y 1
法二:直接求导法
sin y ex xy 1 0, y y(x)
两边对 x 求导
两边再对 x 求导
sin y ( y)2 cos y y
y x 0
ex cos
y y
x
(0,0)
令 x = 0 , 注意此时 y 0 , y 1

高等数学北大第二版隐函数存在定理24页PPT

高等数学北大第二版隐函数存在定理24页PPT
函数y=f(x) , 使得 y0 f x0 且
F x ,fx 0 , x x 0 ,x 0 ,
并且 yfx在 x0 ,x0 内有连续的导
函数
fxF Fx yx x,,y y yfx.
定理证明从略,仅就求导公式推导如下:
则在点 x0 , y0 的某个邻域内,方程 Fx,y,z0
唯一确定一个隐函数 z zx, y, 满足
F x ,y ,z x ,y 0 , z x 0 ,y 0 = z 0 ,
且 z x, y 有连续偏导数:
z Fx , x Fz
z Fy . y Fz
x 1
f a
d b
ed bf ; ad bc
cd
F(x,u,v) 0, G(x,u,v) 0.
ae
y 2 c f af ec . a b ad bc
u=u(x),v=v(x)
克莱姆法则告诉我们: 二元一次方程组有惟一
解 0.
cd
设 F (x,u,v)e xa u b,vG (x,u ,v)fx c u d,v
D(u,v) 2u 2v
当 (x,y)(0,0)时满足上述 u,v不 方同 程时 ,组 也为 的 就零 有
J 0,从而(x,在 y)的邻域内能确 uu定 (x,y隐 ),v函 v(x,数 y).
方程组两边对 x 求导,并移项得
uxvuvx 2x, 2uux 2vvx y.
求 u , v . x x

u x

u f1( x
xu)

f2

v x
v x

u g1(x
1)

g2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2

x y y 2 2 , Fx ln x y arctan 2 2 x x x y y x y 2 2 , F y ln x y arctan 2 2 x y x y Fx x y dy . y x dx Fy


由于 x的任意性,这就证明了对于O x0 , 中任一x , 总能从 F x , y 0得到唯一的y与x相对应.这就是函数关系, 记为 y f x 。
PutianUniversity
§1. 隐函数存在定理
(2)下证y f x 在O x0 , 内连续.
PutianUniversity
§1. 隐函数存在定理
考虑一元函数F x, y0 b .
F x, y0 b 0.
由于F x0 , y0 b 0,所以必存在2 0,在邻域O x0 ,2 内,
取=min 1 ,2 ,于是在邻域O x0 , 内同时有
PutianUniversity
§1. 隐函数存在定理
例4. 证明有唯一可导的函数y y( x )满足方程 sin y shy x , 并求出导数y '( x ).
证明 : 令F x , y sin y shy x , 它在整个平面上连续. Fx 1, Fy cos y chy也连续.
PutianUniversity
§1. 隐函数存在定理
例 2 验证方程 x 2 y 2 1 0 在点(0,1) 的某邻域内能 唯一确定一个单值可导、且 x 0 时 y 1的隐函 数 y f ( x ) ,并求这函数的一阶和二阶导数在
x 0 的值.

F ( x, y) x 2 y 2 1 则 Fx 2 x , F y 2 y , 均连续。 x0 0, y0 1. F (0,1) 0, F y (0,1) 2 0,
2 2 F ( x , y ) x y 1 0 例如:
在点 (0,1)的某个邻域 D 内由方程 x 2 y 2 1 0 可以确
1
定唯一的 y 1 x 2 。在点的某个邻域 D2 内由方程
x 2 y 2 1 0 可确定唯一的 y 1 x .
2
PutianUniversity
Fx x, y y f ' x lim x 0 x Fy x, y


PutianUniversity
§1. 隐函数存在定理
注:(1)定理的结论是局部性的,即在点 ( x0 , y0 ) 的 某个邻域内由方程 F ( x, y) 0 可以唯一确定一个可 微的隐函数。

依定理知方程 x 2 y 2 1 0 在点 (0,1) 的某邻域内 能唯一确定一个单值可导、且 x 0 时 y 1的函数
y 1 x2 .
PutianUniversity
§1. 隐函数存在定理
函数的一阶和二阶导数为
Fx dy x, y dx Fy
d2y y xy 2 dx y2
i 1, 2, , n .
PutianUniversity
§1. 隐函数存在定理
下面给出方程组 F x , y , u, v 0 G x , y , u, v 0 的隐函数存在定理.
定理3 若函数F x, y, u, v 及G x, y, u, v 满足 :
§1. 隐函数存在定理
(2)定理的条件是充分的,非必要的。
y x 0在(0, 0)点只有Fy 0 。不满足 3 即使方程F x , y 0能确定隐函数,也不见的能从
中解出,例如 1 y x sin y 0 2 从中解出y .
F x, y0 b 0.
F x, y0 b 0, F x, y0 b 0.
设 x为O x0 , 中任一点,由以上讨论知
F x , y0 b 0,
PutianUniversity


F x , y0 b 0.


§1. 隐函数存在定理
因为Fy 0. 由隐函数存在定理知 sin y shy x在任何一点都能唯一确定y 为x的函数y f
x , 且f x 具有连续导函数,
Fx 1 y' . Fy cos y chy
PutianUniversity
§1. 隐函数存在定理 二、多变量及方程组情形
定理2 若函数F x1 , x2 ,, xn ; y 满足以下条件 :
1
在区域D : xi xi
0
ai ,
0
y y
0
b i 1, 2, n
上具有对一切变量的连续偏导数;
(2) F x1 , x2 , , xn 0;
F x, y 0.
F x, y1 0 和 F x, y1- 0.
这表示对于邻域O x1 , 内的任一点x , 它所对应 的函数值y成立着 y y1 .
3
最后证明y f x 的可微性.
PutianUniversity
§1. 隐函数存在定理
d2y dx 2 1.
x 0
dy dx
0,
x 0
x y x y 1 , y3 y2
PutianUniversity
§1. 隐函数存在定理
y dy 例 3 已知 ln x y arctan ,用公式求 . x dx
2 2

y 令 F ( x , y ) ln x y arctan , x
则有以下结果: (1)在点 x0 , y0 的某一临域内, F x , y 0唯一确定 一个函数y f x , 且y0 f x0 .
PutianUniversity
(2) y f x 在O x0 , 内连续;
§1. 隐函数存在定理
(3) y f x 在O x0 , 内具有连续导数, 且 Fx x , y y' . Fy x , y
0 0

(3) Fy x1 , x2 ,, xn
则有以下结果 :

0
0
0

0;

1
在点 x1 , x2 ,, xn , y 的某一临域内,方程

0
0
0
PutianUniversity
§1. 隐函数存在定理
F x1 , x2 , , xn ; y 0 唯一确定一个函数y f x1 , x2 , , xn 且
让y在 y0 b, y0 b 内变化, 显然有
Fy x0 , y 0
由函数的连续性知F x0 , y0 b 0, F x0 , y0 b 0.
考虑一元函数F x, y0 b .
由于F x0 , y0 b 0,所以必存在1 0,在邻域O x0 ,1 内,
PutianUniversity
§1. 隐函数存在定理
例1、设有方程F x, y x2 y2 1 0.
它在 0, 1 及其某个临域内唯一地确定了一个 函数: y 1 x2 ;
它在 0,-1 及其某个临域内唯一地确定了一个 函数: y 1 x2 ;
下证(1).由条件(3),Fy x, y 0, 不妨设Fy x0 , y0 0.
由Fy x, y 的连续性,
证明: 由条件(1), F x, y 在D上连续.
可知Fy x, y 在点 x0 , y0 的某个邻域内也大于0,
不妨设在D上Fy x, y 0.





F x x , y y F x x , y F x x , y F x , y

Fy x x , y 1y y Fx x 2 x , y x
PutianUniversity










§1. 隐函数存在定理
设 x, x x是O x0 , 内任意一点,记 y f x ,
由函数y f x 的定义可知

y y f x x .


F x , y 0,


F x x , y y 0.


所以 0 F x x , y y F x , y
考虑一元函数F x , y .


上式说明函数在y0 b及y0 b异号,由根的存在性定理,
存在 y y0 b, y0 b ,使得 F x , y 0.
又因Fy x , y 0, 故F x , y 关于y是严格单增的,




因而使F x , y 0的 y必定唯一.
§1. 隐函数存在定理
一、 F x, y 0情形
在此之前,我们所接触的函数,其表达式大多是自 变量的某个算式,如
y x 1 , u e (sin xy sin yz sin zx)
xyz
这种形式的函数称为显函数.但在不少场合常会遇到 另一种形式的函数,其自变量与因变量之间的对应法 则是由一个方程式所决定的.这种形式的函数称为隐 函数.
PutianUniversity
§1. 隐函数存在定理
由于Fy x, y 在整个D上大于0,因此将x x0固定,
因为F x0 , y0 0,
y0 b y y0 b 这表明F x0 , y 在区间 y0 b, y0 b 上严格单增.
相关文档
最新文档