气体分离膜

合集下载

气体膜分离技术

气体膜分离技术
竞争压力
气体膜分离技术面临着来自其他分离技术的竞争压力,如蒸馏、吸附、吸收等。为了在市 场上获得竞争优势,需要不断提高技术的性能和降低成本。
技术创新
通过技术创新不断改进气体膜分离技术的性能和降低成本是市场成功的关键。这包括研发 新型膜材料、优化膜组件的设计和操作参数,以及开发新的应用领域。
未来发展方向与趋势
新型膜材料的研发
随着材料科学的不断发展,未来 将有更多新型的膜材料涌现,为 气体膜分离技术的发展提供新的
可能性。
集成化与智能化
未来气体膜分离技术将朝着集成 化和智能化的方向发展,实现多 级分离、能量回收和自动控制等
功能。
应用领域的拓展
随着气体膜分离技术的不断改进 和成本的降低,其应用领域将进 一步拓展,包括氢气、二氧化碳 等特殊气体的分离,以及生物医
气体膜分离技术
• 气体膜分离技术概述 • 气体膜分离技术的基本原理 • 气体膜分离技术的主要工艺流程
• 气体膜分离技术的实际应用案例 • 气体膜分离技术的挑战与前景
01
气体膜分离技术概述
定义与原理
定义
气体膜分离技术是一种基于气体在压 力驱动下通过高分子膜的选择性渗透 进行混合气体分离的先进技术。
原理
利用不同气体在膜中溶解和扩散速率 的不同实现选择性分离。在压力差的 作用下,渗透速率较快的组分优先透 过膜,从而达到分离目的。
分类与特点
分类
根据膜材料和分离机理,气体膜分离 技术可分为有机膜分离和无机膜分离 两类。
特点
操作简单、能耗低、无相变、无污染、 分离效率高、可实现大规模连续生产 等。
应用领域
工业气体分离
用于从混合气体中分离出氢气 、氮气、氧气等高纯度气体, 广泛应用于石油、化工、冶金

第六章气体膜分离ppt课件

第六章气体膜分离ppt课件
四步过程: 气体与膜的接触 气体向分离膜的表面溶解(溶解过程) 溶解的分子由于浓度梯度进行活性扩散(扩散过程) 分子在膜的另一侧逸出。
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
非多孔均质膜的溶解扩散机理
Knudsen扩散
❖ 气体的渗透速度q:
q43r2RM T1/2pL1R Tp2
气体透过膜孔的速度与其相对分子质量的平方根 成反比。
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
分子筛分
❖ 大分子截留、小分子通过孔道,从而实现分 离。
应用阶段 ❖ 1940s:铀235的浓缩(第一个大规模应用) ❖ 1950年:富氧空气浓缩 ❖ 1954年:气体浓缩膜材料的改进
普及阶段 ❖ 1979年:Prism气体分离膜装置的成功
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
气体分离膜材料及膜组件
(1)膜材料 有机膜:聚合物膜(便宜,常用) 无机膜:金属膜、陶瓷膜、分子筛膜
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
描述气体通过高分子膜的主要参数
① 渗透率:描述膜的气体透过性; ② 渗透系数:单位时间、单位膜面积、单位 推动力作用下所透过气体的量; ③ 分离系数:描述气体分离膜的选择性,一 般将其定义为两种气体i,j渗透系数之比。
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。

气体分离膜品类

气体分离膜品类

气体分离膜品类1. 介绍气体分离膜是一种用于分离混合气体中不同组分的薄膜材料。

它通过选择性渗透性能,将混合气体中的组分分离出来,实现纯化和浓缩的目的。

气体分离膜广泛应用于气体分离、气体纯化、气体回收等领域,具有高效、节能、环保等优点。

2. 气体分离膜的原理气体分离膜的分离原理基于气体分子的渗透和扩散。

气体分子在薄膜材料中通过渗透和扩散的方式,根据其分子大小、极性、溶解度等特性,以不同的速率通过膜层,从而实现气体的分离。

常见的气体分离膜包括聚合物膜、无机膜和复合膜等。

聚合物膜通常由聚合物材料制成,具有良好的选择性和渗透性能;无机膜由无机材料制成,具有较高的稳定性和耐腐蚀性能;复合膜则是将聚合物膜和无机膜等不同材料组合而成,综合了各自的优点。

3. 气体分离膜的应用领域气体分离膜广泛应用于各个领域,包括能源、化工、环保、医药等。

3.1 能源领域在能源领域,气体分离膜被用于天然气处理、氢气纯化、煤气脱硫等。

例如,在天然气处理中,气体分离膜可将天然气中的甲烷、乙烷等组分分离出来,提高天然气的纯度和质量。

3.2 化工领域在化工领域,气体分离膜可以用于气体分离、溶剂回收、废气处理等。

例如,在溶剂回收中,气体分离膜可以将有机溶剂与废气中的气体分离,实现溶剂的回收利用,减少环境污染。

3.3 环保领域在环保领域,气体分离膜可以用于废气处理、二氧化碳捕集等。

例如,在二氧化碳捕集中,气体分离膜可以将二氧化碳与其他气体分离,实现二氧化碳的回收和利用,减少温室气体的排放。

3.4 医药领域在医药领域,气体分离膜可以用于气体纯化、药品生产等。

例如,在氧气纯化中,气体分离膜可以将氧气与其他气体分离,提高氧气的纯度和质量,用于医疗设备和治疗。

4. 气体分离膜的发展趋势随着科技的不断进步和应用需求的增加,气体分离膜也在不断发展和创新。

以下是气体分离膜的发展趋势:4.1 提高分离性能气体分离膜的分离性能是衡量其性能优劣的重要指标。

未来的发展趋势是提高膜材料的选择性和渗透性能,实现更高效的气体分离和纯化。

第九章气体分离膜

第九章气体分离膜

第九章气体分离膜第一节概述气体膜分离进程是一种以压力差为驱动力的分离进程,在膜双侧混合气体各组分分压差的驱动下,不同气体分子透过膜的速度不同,渗透速度快的气体在渗透侧富集,而渗透速度慢的气体那么在原料侧富集。

气体膜分离正是利用分子的渗透速度差使不同气体在膜双侧富集实现分离的。

1831年,J.V.Mitchell系统地研究了天然橡胶的透气性,用高聚物膜进行了氢气和二氧化碳混合气的渗透实验,发觉了不同种类气体分子透过膜的速度不同的现象,第一提出了用膜实现气体分离的可能性。

1866年,T.Craham研究了橡胶膜对气体的渗透性能,并提出了此刻广为人知的溶解—扩散机理。

尽管在100连年前就发觉了利用膜实现气体分离的可能性,但由于那时的膜渗透速度很低,膜分离难以与传统的分离技术如深冷分离法、吸附分离法等竞争,未能引发产业界的足够重视。

从20世纪50年代起,科研工作者开始进行气体分离膜的应用研究。

1950年S.Weller和W.A.Steier用乙基纤维素平板膜进行空气分离,取得氧浓度为32%~36%的富氧空气。

1954年 D.W.Bubaker和K.Kammermeyer发觉硅橡胶膜对气体的渗透速度比乙基纤维素大500倍,具有优越的渗透性。

1965年S.A.Stern等为从天然气中分离出氦进行了含氟高分子膜的实验,并进行了工业规模的设计,采纳三级膜分离从天然气中浓缩氦气。

同年美国Du Pont公司初创了中空纤维膜及其分离装置并申请了从混合气体中分离氢气、氦气的专利。

气体膜分离技术的真正冲破是在70年代末,1979年美国的Monsanto公司研制出“Prism”气体膜分离裝置,“Prism”μm左右,远比均质膜薄,因此其渗透速度大大提高;硅橡胶涂层起到修补底膜皮层上的孔缺点的作用,以保证气体分离膜的高选择性。

“Prism”气体膜分离裝置自1980年商业应用以来,至今已有上百套装置在运行,用于合成氨弛放气中氢回收和石油炼厂气中氢回收。

分离膜的分类

分离膜的分类

气体分离膜的分类成员:陈永涛,忽浩然,苗玉淇,张岩磊,李龙飞⏹气体膜分离过程是一种以压力差为驱动力的分离过程,在膜两侧混合气体各组分分压差的驱动下,不同气体分子透过膜的速率不同,渗透速率快的气体在渗透侧富集,而渗透速率慢的气体则在原料侧富集。

⏹气体膜分离正是利用分子的渗透速率差使不同气体在膜两侧富集实现分离的。

分类⏹一:按照其化学组成⏹二:按膜组件分⏹三:按气体膜分离的机理分⏹四:按气体分离膜的应用分按照其化学组成,气体分离膜材料可分为高分子材料、无机材料和有机—无机杂化材料1.高分子材料在气体分离膜领域,早期使用的膜材料主要有聚砜、纤维素类聚合物、聚碳酸酯等。

上述材料的最大缺点是或具有高渗透性、低选择性或具有低渗透性、高选择性,使得以这些材料开发的气体分离器的应用受到了一定限制,特别是在制备高纯气体方面,受到变压吸附和深冷技术的有力挑战。

为了克服上述缺点,拓宽气体分离膜技术的应用范围,发挥其节能优势,研究人员一直在积极开发兼具高透气性和高选择性、耐高温、耐化学介质的新型气体分离膜材料,聚酰亚胺、含硅聚合物、聚苯胺等就是近年开发的新型高分子气体分离膜材料。

2.无机材料相对于有机高分子膜,无机材料由于其独特的物理和化学性能,具有耐高温、结构稳定、孔径均一、化学稳定性好、抗微生物腐蚀能力强等优点。

它在涉及高温和有腐蚀性的分离过程中的应用方面具有有机高分子膜所无法比拟的优势,具有良好的发展前景。

无机膜的不足之处在于:制造成本相对较高,大约是相同膜面积高分子膜的10倍;无机材料脆性大,弹性小,需要特殊的形状和支撑系统;膜的成型加工及膜组件的安装、密封(尤其是在高温下)比较困难。

⏹有机-无机集成材料⏹发展有机和无机集成材料膜,是取长补短,改进膜材料的一种好方法。

分子筛填充有机高分子膜是在高分子膜内引入细小的分子筛颗粒以改善膜的分离性能。

分子筛填充聚合物膜结构与一般聚合物复合膜结构相似,存在一个多孔支撑层,上面涂敷一层薄的高性能选择分离层,只是其选择分离层含有大于40%紧密填充的分子筛或沸石等无机材料的高性能聚合物薄层。

气体分离膜的发展历程

气体分离膜的发展历程

气体分离膜的发展历程
气体分离膜是一种应用广泛的薄膜技术,用于分离气体混合物中的不同气体成分。

其发展历程可以追溯到20世纪60年代。

早期的气体分离膜采用的是纯聚合物材料,如聚乙烯、聚丙烯等。

然而,这些材料的气体分离性能较差,限制了其应用范围。

随着技术的不断进步,新型气体分离膜材料不断涌现。

例如,聚醚酰亚胺(Polyetherimide,PEI)、聚甲基丙烯酸甲酯(Poly(methyl methacrylate),PMMA)、聚氨酯(Polyurethane,PU)等材料被广泛应用于气体分离领域,其气体分离性能得到了明显提高。

此外,随着纳米技术的发展,纳米孔材料也成为了气体分离膜的研究热点。

例如,石墨烯、金属有机框架材料等纳米孔材料,由于其高度可控的结构性能和出色的气体分离性能,成为了气体分离膜材料的重要发展方向之一。

总之,气体分离膜的发展经历了多个阶段,从早期的纯聚合物材料到现代的新型材料和纳米孔材料,其气体分离性能和应用范围得到了不断提高和扩展。

- 1 -。

气体分离膜的研究

气体分离膜的研究

气体分离膜的研究气体分离膜是一种利用膜过滤技术实现气体分离的新型分离技术。

它采用特定的材料制成薄膜,通过膜的微孔作用,实现对某种气体分子的选择性透过和排除,从而实现气体的分离纯化。

气体分离膜是一种高效、节能、环保的气体分离技术,被广泛应用于石油、化工、电子、食品等领域。

一、气体分离膜的原理气体分离膜是利用”筛分作用“实现气体分离的。

所谓筛分作用,就是通过膜材料的微孔和孔径选择性地让某种分子在膜内透过,而不让其他分子透过,从而达到分离的目的。

在具体应用中,单位面积膜材料的透气量即气体分离的效率。

二、气体分离膜的种类气体分离膜主要分为两大类:1.多孔性平膜分离气体。

多孔性平膜的优点在于孔径比较大,并且分布比较均匀,适合于分离小分子气体。

缺点是需要膜面面积比较大,单膜分离效率不高。

2.非孔径性流动膜分离气体。

非孔径性流动膜的优点在于通透性好,透气量较大。

这种膜适合于分离大分子气体,但分离效率较低。

三、气体分离膜的制备方法气体分离膜的制备方法有两种:1.浸渍法。

这种方法比较常用,常用材料是聚酰胺、聚亚麻醇酯等。

这些材料可以通过浸渍到膜载体上制成膜。

2.拉伸法。

这种方法利用弹性膜材料,在拉伸时原本的孔隙会拉长变小,这样可以让大分子气体被过滤掉,从而实现分离。

四、气体分离膜的应用领域气体分离膜的应用非常广泛,主要包括以下几个领域:1.石油化工:气态分离、C2裂解、重烃分离等领域2.食品饮料:浓缩果汁、果汁的澄清等领域3.电子:纯化氨气、光学膜、液晶显示器等领域4.环保:二氧化碳的除去、废气治理等领域五、气体分离膜的发展趋势目前,气体分离膜的应用已经越来越广泛,而且分离效率也在不断提高。

未来,气体分离膜将会向以下几个方面发展:1.新材料的应用。

目前,常用的气体分离膜材料已经满足不了某些特定的需求。

因此,未来需要开发新的气体分离膜材料,例如金属有机框架材料、纳米材料等。

2.提高进料气体的纯度。

随着气体资源的日益紧缺和气体的需求日益增长,未来气体分离膜将会更注重进料气体的纯化和分离效率的提高。

第十章-气体分离膜

第十章-气体分离膜
膜干燥管
17.07.2021
精选可编辑ppt
32
利用Prism膜组件从合成氨弛放气中回收氢工艺示图
Prism膜组件构造是将中空丝多孔质支撑体的外表面以硅橡胶包覆(或
涂敷)而得。
氢的回收率通常都在95%以上,一个日产1000t的合成氨厂采用膜分离
17.装07.2置021 后,每天可增产50t的氨。 精选可编辑ppt
10.2.2 无机材料 金属及其合金膜; 陶瓷膜; 分子筛膜。
10.2.3 有机-无机集成材料 分子筛填充有机高分子膜; 聚合物热裂解法。
17.07.2021
精选可编辑ppt
6
10.3 气体分离膜组件
10.3.1 平板式膜组件
10.3.2 螺旋卷式膜组件 10.3.3 中空纤维式膜组件
17.07.2021
渗透系数(P):表示气体通过膜的难易程度,是体现膜 性能的重要指标。它因气体的种类、膜材料的化学组成和 分子结构的不同而异。当同一种气体透过不同的气体分离 膜时,P主要取决于气体在膜中的扩散系数;而同一种膜 对不同气体进行透过时,P的大小主要取决于气体对膜的 溶解系数。
扩散系数(D):用渗透气体在单位时间内透过膜的气体 体积来表示。它随气体分子量的增大而减小。
17.07.2021
精选可编辑ppt
19
The relative size and condensability (boiling point) of the principal components of
natural gas. Glassy membranes generally separate by differences in size; rubbery
membranes separate by differences in condensability
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体分离膜材料1 膜的发展历史人类对于膜现象有了初步认识就是在1748 年,然而认识膜的功能到被挖掘,却经历了200 多年的漫长历程,才为人类服务。

人们在近几十年来,开始对膜进行科学研究。

其发展的历史大致为:30 年代微孔过滤;40 年代透析;50 年代电渗析;60 年代反渗透;70 年代超滤与液膜;80年代气体分离;90 年代渗透汽化。

同时以膜为基础的其它离过程,以及膜分离与其它分离过程结合的复合应用也日益得到重视与发展。

1979 年将气体分离推向工业化应用的基础,就是孟山都(Monsanto) 公司用于H₂/N₂分离的低温制氮系统(Prism)的建立。

陶氏(Dow) 化学公司在1985年向市场提供以富N₂为目的空气分离器,“Generon”气体分离用于天然气、石油、化工生产等领域,大大提高了气体生产过程的经济效益。

我国从1958年研究离子交换膜开始,80年代中期我国研究的气体分离膜取得长足进步,1985 年中国科学院大连化物所首次成功研制中空纤维N₂/H₂分离器,与国外同类产品主要的性能指标接近,现已投入批量生产。

2 气体分离膜材料2.1高分子膜材料高分子膜材料一般制备简单,性能稳定,耐溶剂性能较好,而广泛的应用于膜分离领域。

用于制备气体分离膜的高分子膜材料主要有以下几种。

1)乙基纤维素EC纤维素就是一种较为常见的天然高分子材料,乙基纤维素就是由碱纤维素与乙基卤化物反应得到,由于EC的热稳定性好、具有较强的抗生物性能,且气体气体的渗透系数与气体渗透选择性较高,常用作空气中的氧、氮分离富集。

2)双酚A型聚砜PSF双酚A型聚砜主链上含有砜基的一种线性杂链高分子膜材料,具有优异的热稳定性、力学性质与较强的刚性及较好的化学稳定性,耐蒸汽性能好,PSF的玻化温度(Tg)为190℃。

可用于制备复合膜的支撑层,合成氨尾气回收氢,目前已得到工业化生产。

3)聚芳醚砜PES聚芳醚砜分子中含有砜基,由于其共轭效应,具有良好的抗氧化性与热稳定性,同时具有良好加工性能的醚键,不含有对耐热性、抗氧稳定性有不利影响的异丙撑基,没有-C-C-链,不含有刚性极大的联苯结构,因而具有良好的耐溶剂性能。

PSF的玻化温度(Tg)为235℃,可在140℃高温下长时间使用,且具有较好的气体渗透选择性,常用作制备气体分离膜材料。

4)酚酞型聚醚酮PEK-C酚酞型聚醚酮为无定形高分子材料,玻化温度(Tg)为231℃,可以用于超滤、气体分离膜制备方面。

5)含氟聚酰亚胺聚酰亚胺就是一类耐热性能好、机械性能优异、化学性质稳定的高性能聚合物材料。

含氟聚酰亚胺在气体分离方面具有气体渗透速率快、选择性高的膜材料,常用于氧/氮、氢/氮、二氧化碳/氮或者二氧化碳/甲烷等气体的分离。

6)涤纶PET涤纶就是一种合成纤维,具有机械强度好、弹性高、耐热性能佳的材料,常用作气体分离、渗透汽化等平板膜组件与卷式膜组件的支撑材料。

7)聚碳酸酯PC聚碳酸酯就是一种分子链中含有碳酸酯基的线性高分子聚合物材料,由于两个苯撑基与中间的丙撑基限制了分子链的内旋,使得PC分子链具有较强的刚性,同时氧醚键的存在增加了基团的柔性,赋予PC材料较差的机械性能,但氧氮的渗透速率较高,所以可用于制备气体分离膜的高分子聚合物材料。

8)聚4-甲基戊烯-1 PMP聚4-甲基戊烯-1就是由丙烯二聚得到4-甲基戊烯-1,再经聚合得到PMP。

聚4-甲基戊烯-1具有优良的热稳定性与透气性,常用作制备气体分离膜的材料,其制备的气体分离膜材料氧氮的分离选择性已达到7~8。

9)聚丙烯腈PAN聚丙烯腈就是由丙烯腈单体经自由基聚合反应制得,PAN就是常用的微滤、超滤或渗透气化复合膜底膜材料。

10)聚乙烯醇PVA聚乙烯醇机械性能并不强,常用于制备渗透汽化膜材料,已投入实际生产。

11)聚偏氯乙烯PVDC聚偏氯乙烯气、液性能较低,热稳定较差,主要用作阻透气材料。

12)聚二甲基硅氧烷PDMS聚二甲基硅氧烷(硅橡胶)就是一种线性聚合物,机械性能较低,具有较高的气体渗透率,但气体选择性较低,常用于制备气体分离膜的底膜。

13)聚三甲硅基丙炔PTMSP聚三甲硅基丙炔就是一种玻璃态的无定形聚合物,气体透过速率均较高,但膜材料稳定性较差,在广泛应用上受到限制。

2、2无机膜材料无机膜就是通过加工无机材料制备得到的一种固态膜,分为陶瓷膜、沸石膜、玻璃膜、高分子金属络与物膜、金属膜、合金膜以及分子筛碳膜。

目前已用于制备无机膜的材料有陶瓷、玻璃、金属(如Pd、Pd合金、Ni、Ag、Pt)、金属氧化物(如Ti O₂、ZrO₂、Al₂O₃)、SiO₂及其硅酸盐、沸石等。

与高分子膜材料制备的有机膜相比,无机膜具有如下特点:1)热稳定性好,可在高温体系中应用,最高使用温度可达800℃,也可以高温消毒灭菌。

2)机械强度高,无机材料具有刚性且无机膜常用于载体膜,致使无机膜可承受较高的外压,而且可以进行反吹与反冲,具有较强的再生能力。

3)化学性能稳定,耐酸、碱、有机溶剂。

4)抗微生物能力好,不与微生物发生生化及化学反应,可用于生物医药领域。

5)无机膜的孔径较窄,气体透过选择性较高。

6)无机膜的使用寿命较长,可降低更换频率。

其不足在于制备无机膜成本较高,无机材料弹性小,比较脆,不易于膜的加工成型,同时陶瓷膜不耐酸、碱。

2、3有机-无机复合膜材料由于有机材料具有高柔性、可加工性、资源多及品种多,无机材料具有高强度、高韧性、高稳定性、高刚性等优点,于就是在20世纪80年代中期,许多研究者提出将无机材料添加到高分子聚合物膜材料中,而所选用的无机材料大部分为纳米级的粒子,制备兼具有机、无机气体分离膜优点的复合膜,无机纳米粒子负载在有机高分子聚合物中,也解决了纳米粒子在物理、化学方面的不稳定性,从而有利于从材料上改进复合膜的分离性能。

有机-无机纳米粒子复合膜除了兼具有机膜与无机膜的特点外,同时还具有以下特殊性能:a 无机纳米材料对有机高分子聚合物膜的改性,可以在保留无机材料的高强度的性质的同时,由于纳米粒子的小尺寸效应起到增加复合膜韧性的效果。

b 无机材料添加到高分子聚合物膜中,可以增强膜的强度与模量,而无机纳米材料可以在此基础上进一步提高复合膜的强度、模量。

c 纳米粒子的特殊性质,可以改变膜的性质,得到新的高性能的功能复合膜。

3 气体分离复合膜的制备及表征3、1 气体分离复合膜的制备无机纳米粒子粒径小、比表面积大,分散在聚合物基体中容易团聚,目前主要采用以下几种方法制备有机/无机气体分离复合膜。

1、共混法直接将经过处理的纳米粒子与高分子聚合物溶液或者单体混合,混合的形式可以就是溶液共混、乳液共混、熔融共混或者机械共混等。

此方法操作简单,容易控制组分浓度,适用于不同尺寸、形态的纳米粒子,不足之处就是纳米颗粒容易团聚,存在严重的相分离现象,不利于制备均匀的聚合物基纳米复合材料。

2、溶胶-凝胶法将高化学活性的硅氧烷或者金属盐等作为前躯体,溶于水或者有机溶剂,形成均质溶液,溶质发生水解、缩合反应,在溶液中生成纳米级粒子并形成稳定的溶胶体系,经过陈化,胶粒间缓慢聚合形成凝胶,再经干燥、烧结固化等方法制备成聚合物基纳米复合材料的方法。

溶胶-凝胶法可以在温与条件下进行,能够使纳米粒子在聚合物中分散均匀,但由于在凝胶干燥过程,可能会导致聚合物基纳米复合材料内部应力收缩,从而影响材料的力学与机械性能。

常见纳米颗粒对应前驱体见表2、1 所示。

2、1 常见无机纳米颗粒及其前驱体3、层间插入法具有层状结构的无机化合物如粘土、石墨、云母、层状硅酸盐、金属氧化物、磷酸盐等,经过有机化处理,利用其层间膨胀性、吸附性与离子交换功能,将聚合物(或单体)插入其中,制成聚合物基有机无机纳米复合材料,层状无机化合物粒子不易团聚,分散均匀,来源丰富。

层间插入法大致可以分为四种:溶液插层聚合、熔融插层聚合、聚合物熔融插层与聚合物溶液插层。

4、原位聚合法将经过处理的纳米粒子在聚合物单体中分散均匀,在一定条件下引发单体发生聚合,从而制得分散性好的聚合物基纳米复合材料。

原位聚合方式有原为本体聚合、乳液聚合、悬浮聚合与分散聚合等。

该法有效的改善无机纳米粒子易团聚的缺点,为制备高通量、高选择性、高模量、高强度的聚合物基纳米复合材料开辟了新道路,但原位聚合方法有很大的局限性,仅适用于含有金属、硫化物或者氢氧化物的胶体粒子。

5、辐射合成法将聚合物单体与金属盐在分子级别上均匀混合,制备成金属盐单体溶液,再利用钴源进行辐射,得到分散性均匀,粒径小的聚合物基无机纳米复合材料。

此法很适用于制备聚合物基金属纳米粒子复合材料。

6、静电纺丝法静电纺丝法就是将高分子聚合物、聚合物/纳米颗粒溶液置于高压静电场中,在高压静电的作用下产生正电荷,并在金属针头尖端形成泰勒锥形液滴,在电场作用下喷射出来,高分子聚合物、聚合物/纳米颗粒溶液中的溶剂迅速挥发,最终以纤维随机排列的无纺布状形式沉积在接收板上。

7、自组装法自组装法主要包括Langmuir-Buldgett(LB)膜法、Molecular-Deposition(MD)膜法与仿生合成等。

LB膜法就是利用具有疏水端与亲水端的两亲性分子在气-液(一般为水溶液)界面定向排列,制备聚合物/无机层交替的纳米复合材料。

MD 膜法就是采用与纳米粒子具有相反电荷的双离子或多聚离子化合物,利用阴阳离子静电相互作用,作为驱动力,制备出多层有机-无机纳米复合膜。

仿生合成就是使无机先驱物与有机自组装与溶液相界面发生化学反应,形成有机-无机复合材料。

3、2 气体分离复合膜的表征1、扫描电子显微镜(SEM)将一束高能入射电子轰击样品表面,得到样品中分布的纳米粒子的大小与形貌特征、纳米粒子在高分子聚合物集体中聚集状态。

2、透射电子显微镜(TEM)通过将电子束照射到样品室内的样品上,分析透过样品的电子束信息,获得样品内部结构信息,利用TEM可以观测到样品内部纳米粒子的形貌、分散情况及纳米粒子的粒径等信息,为研究提供了更有效的手段与依据。

3、原子力显微镜(AFM)在不需要对样品做任何特殊处理情况下,通过AFM 观测,可以得到样品的三维立体表面图。

4、傅立叶红外光谱(FT-IR)分析物质对不同波长的红外光的吸收情况,可以得到分子的键长、键角,从而推断分子的立体结构,按照光谱图中吸收峰的强弱推断组分含量。

5、X 射线衍射分析(XRD)利用晶体物质形成的X射线衍射,分析得到物质的晶粒度、晶体结构或层状硅酸盐的层间距。

XRD 可以在不损坏样品、无污染情况下,获得原子间的结合方式等大量信息。

6、紫外可见吸收光谱(UV-Vis)根据物质对紫外、可见光的吸收,对吸收峰的进行分析,可以推断物质的组成、含量与结构的变化。

7、正电子湮没(RAS)可用于检测材料的微观结构、存在的缺陷等信息。

相关文档
最新文档