新七年级数学上册第1章有理数1-4有理数的加法和减法1-4-1第1课时有理数的加法教案2湘教版

合集下载

2024秋季新教材湘教版七年级上册数学1.4.2 有理数的减法课件

2024秋季新教材湘教版七年级上册数学1.4.2  有理数的减法课件

典例精析
例1 计算: (1)0 - (-3.18);
(2)5.3 - (-2.7);
(3)(-10) - (-6);
(4)
-3 7 10
-6
1 2
.
解:(1) 0 - (-3.18) = 0 + 3.18 = 3.18.
(2) 5.3 - (-2.7) = 5.3 + 2.7 = 8.
(3) (-10) - (-6) = (-10) + 6 = -4.
情境导入
某天北京市的最高气温是 -1℃,最低气温是 -9℃, 这天北京市的气温日较差 (最高气温 - 最低气温) 是 多少?
-9 ~ -1℃
探究新知
1 有理数的减法
探究一 借助温度计求出温差,思考有理数减法的计算
过程: .5 .5
10
10 10
10
(1) -1-(-9) = __8__
-01
00
第1组第2组第3组第4组第5组 100 150 -400 350 -100
(1) 第一名超出第二名多少分?350 -150 = 200 (分) (2) 第一名超出第五名多少分?350-(-400) = 750 (分)
(4)
3 7 10
6
1 2
( 3.7)( 6.5)
10.2.
练一练
1.计算:
(1) (-3) - (-5);
(2) 0 - 7;
(3) 7.2 - (-4.8); (4) -3 1 2
- 51 . 4
解:(1) (-3) - (-5)= (-3) + 5 = 2.
(2) 0 - 7 = 0 + (-7) = -7.
有理数的减法可以转化为加法来进行. 有理数的减法法则: 减去一个数,等于加上这个数的_相__反__数__.

漳州市实验中学七年级数学上册第1章有理数1.4有理数的加减1有理数的加法教案新版沪科版

漳州市实验中学七年级数学上册第1章有理数1.4有理数的加减1有理数的加法教案新版沪科版

1.4有理数的加减1. 有理数的加法【知识与技能】1.通过学生经历探索有理数加法法则的过程,理解有理数加法的意义.2.掌握有理数加法法则,并能正确运用法则进行有理数加法的运算.3.在探索有理数加法法则的过程中,向学生渗透分类讨论、归纳、转化等数学思想;在合作学习解决问题的过程中,体会合作交流的重要性.【过程与方法】从学生熟悉的生活实例得出“有理数加法”法则,并通过各种师生活动加深学生对有理数加法法则的理解;使学生在经历有理数加法法则的得出的过程中,体会数形结合的思想方法.【情感态度】通过有理数加法的学习,让学生在学习的过程中加强数感的培养,感受数的意义,学会与人交流,发展学生的思维,培养实事求是的科学态度,渗透数形结合的思想和讨论法、归纳法的运用.【教学重点】重点是有理数加法法则的理解,会根据有理数的加法法则进行有理数加法运算.【教学难点】难点是有理数加法中异号两数的加法运算.一、情境导入,初步认识【情境1】实物投影,并呈现问题:一家超市内的对话.甲:老兄,听说你开店记账时有一个习惯,究竟是什么习惯,能否给我说说?乙:当然可以,那就是盈利记作盈利,亏本也记作盈利.甲:那如何区分盈利与亏本呢?乙:这太简单了,我把盈利记为正,亏本记为负.甲:原来是利用相反意义的量的表示方法呀,举个例子说说吧.乙:比如今天上午亏本5元,我就在账本上记作:-5;下午盈利3元,我就记作:+3.甲:那你如何计算每天的亏盈呢?乙:把每天盈亏数据相加不就得了.下面是我两天的记录,你知道它表示的意思吗?(+5)+(+3)=+8(-5)+(-3)=-8【情境2】实物投影,并呈现问题:一只小熊在一条数轴上移动:(1)向东走5米,再向东走3米,两次一共向东走了多少米?(2)向西走5米,再向西走3米,两次一共向东走了多少米?(3)向东走5米,再向西走5米,两次一共向东走了多少米?(4)向东走5米,再向西走3米,两次一共向东走了多少米?(5)向东走3米,再向西走5米,两次一共向东走了多少米?(6)向西走5米,再向东走0米,两次一共向东走了多少米?思考“一共”的含义是什么?若设向东为正,向西为负,你能写出算式吗?【教学说明】学生独立思考后,小组讨论,教师注意引导学生正确理解加法运算的实际意义,利用数轴得出运算结果.同时对有理数的加法进行分类,并用语言表达出来,从而得有理数的加法法则.情境1中(+5)+(+3)=+8表示上、下午都盈利,盈利8元;(-5)+(-3)=-8表示上、下午都亏本,亏了8元.情境2中“一共”就是两个数相加.(1)(+5)+(+3)=+8;(2)(-5)+(-3)=-8;(3)(+5)+(-5)=0;(4)(+5)+(-3)=+2;(5)(+3)+(-5)=-2;(6)(-5)+(+0)=-5.【教学说明】通过现实情景再现,让学生体会数学知识与实际生活的联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.二、思考探究,获取新知有理数的加法法则问题1 有理数的加法法则的内容是什么?问题2 有理数的加法有几种情况?【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】有理数的加法法则:同号两数相加,取与加数相同的符号,并把绝对值相加.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.一个数与零相加,仍得这个数.三、运用新知,深化理解1.一天早晨的气温是-7℃,中午的气温比早晨上升了11℃,中午的气温是()A.11℃B.4℃C.18℃D.-11℃2.如果a+b=0,那么a,b两个数一定是()A.都等于0B.一正一负C.互为相反数D.不能确定,则a、b的关系是().3.若a+b=b aA.a、b异号B.a+b的和是非负数C.a、b同号或其中至少有一个为0D.a、b的绝对值相等4.用“>”或“<”号填空:(1)如果a>0,b>0,那么a+b______0;(2)如果a<0,b<0,那么a+b______0;(3)如果a>0,b<0,a>b,那么a+b______0;(4)如果a<0,b>0,a>b,那么a+b______0.5.若a>0,b<0,a+b<0,则a______b.(用“>”或“<”连接)6.判断:两个有理数相加,和一定大于每一个加数吗?【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好地巩固新知识.通过本环节的讲解与训练,让学生对有理数加法法则有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.【答案】1.B 2.C 3.C4.(1)> (2)< (3)> (4)<5.<6.两个有理数相加,和不一定大于每一个加数.四、师生互动,课堂小结1.有理数的加法法则的内容是什么?有理数加法的一般步骤是怎样的?2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第19页“练习”中选取.2.完成同步练习册中本课时的练习.在本节的教学中,通过实际生活的需要引出有理数的加法运算,让学生体验生活与数学的密切联系.教学过程中,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的过程中培养学生的思维能力.提出问题后,让学生去思考、去分析,最终要让学生明白:对于两个有理数,相加的和不一定大于加数,这是有理数的加法与算术运算的一个很大的区别.为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,设计的练习题遵循由浅入深、循序渐进的原则.数学活动——用坐标表示地理位置一、导学1.导入课题:前面我们学过用坐标表示地理位置,这节课我们通过一个实践活动,进一步体验用坐标表示地理位置的方法.2.学习目标:(1)体会坐标在解决实际问题中的作用,培养学生用数学的意识.(2)培养学生的动手能力、合作意识及探索兴趣.3.学习重、难点:重点:会用坐标表示平面内物体的位置.难点:学会选取参照物,用恰当的方法描述平面内物体的位置.4.自学指导:(1)自学内容:课本P82活动2.(2)自学时间:10分钟.(3)自学要求:先自主探究学习,然后相互合作、研讨,共同解决相关问题.(4)自学提纲:①回顾“”所学内容,思考表示平面内物体的位置有哪些方法.②a.用坐标表示地理位置,首先要建立平面直角坐标系,再根据具体问题确定单位长度,最后写出各点的坐标.b.根据张明同学所说“牡丹园的坐标是(300,300).”你能确定他是以中心广场为原点,以东、北方向为x轴、y轴正方向建立坐标系的吗?c.你能写出公园内其他景点的坐标吗?③李华说:“牡丹园在中心广场东北方向约420m处.”那么中心广场在牡丹园的什么位置?以中心广场为参照点,用李华描述物体位置的方法,你能描述公园内其他景点的位置吗?与同学们交流一下.二、自学同学们可结合自学提纲进行自学.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学情况,看能否熟练利用坐标或方位角和距离的方法准确地描述平面内物体的位置.(2)差异指导:对个别学有困难的学生进行点拨指导.2.生助生:小组内同学之间相互交流、订正、兵教兵.四、强化各小组展示学习成果,进一步强化平面内描述物体的位置的方法.五、评价1.学生的自我评价:交流总结参与活动的收获和不足.2.教师对学生的评价:(1)表现性评价:教师根据学生活动中态度是否积极、端正,小组交流是否积极以及学习效果给予评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):用坐标表示地理位置对解决生活运用有很大的帮助.教学时借助坐标可以清楚地表示出地理位置,有助于学生的解答.同时,教学过程中适时引导与学生的自主探究相结合,使学生真正成为了“学习的主人.”(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)以学校所在的位置为原点,分别以向东、向北方向为x轴、y轴的正方向.若出校门向东走150m,再向北走200m,记作(150,200),则小刚家的位置(-100,-150)的含义是向西走100m,再向南走150m;出校门向北走200m,再向西走50m是小红家,则小红家的位置可记为(-50,200).2.(10分)某学校的平面示意图如图所示,如果实验楼所在位置的坐标为(-2, -3),教学楼所在位置的坐标为(-1,3),那么图书馆所在位置的坐标为(-4,4).3.(20分)如图是一台雷达探测相关目标得到的结果,若记图中目标A的位置为(2,90°),则目标B、D的位置应分别记为(5,30°),(2,300°).4.(30分)如图,这是一所学校的平面示意图,建立适当的平面直角坐标系,并用坐标表示教学楼、图书馆、宿舍楼、校门、旗杆、运动场、实验楼的位置.解:建立如图所示的平面直角坐标系,且1格代表1个单位长度.教学楼(6,0),图书馆(5,4),宿舍楼(7,2),校门(0,0),旗杆(3,0),运动场(2,-3),实验楼(6,-3).二、综合运用(30分)5.某村过去是一个缺水的村庄,由于兴修水利,现在家家户户都用上了自来水,根据村委会主任徐伯伯讲,以前全村400多户人家只有五口水井:第一口在村委会的院子里,第二口在村委会北偏东30°方向200m处,第三口在村委会正西方向1500m处,第四口在村委会东南方向1000m处,第五口在村委会正南方向900m处,请你根据徐伯伯的话,画图表示这个村庄五口水井的位置.解:如图:O、A、B、C、D分别表示这五口水井的位置.三、拓展延伸(30分)6.如图是传说中的一幅藏宝图,藏宝人生前用平面直角坐标系的方法画了一幅图,现今的寻宝人没有原来的地图,但知道该图上有两块大石头A(2,1),B(8,-2),而藏宝地的坐标是(6,6),试设法在地图上找到藏宝地点.解:根据大石头A、B两点的坐标,可画出如图所示的平面直角坐标系,图上点P的位置即为藏宝地点.代数式的值(30分钟50分)一、选择题(每小题4分,共12分)1.如果a与1互为相反数,则|a+2|等于( )A.2B.-2C.1D.-1【解析】选C.如果a与1互为相反数,则a=-1,则|a+2|=|-1+2|=1.2.(2013·济南中考)已知x2-2x-8=0,则3x2-6x-18的值为( )A.54B.6C.-10D.-18 【解析】选B.因为x2-2x-8=0,即x2-2x=8,所以3x2-6x-18=3(x2-2x)-18=24-18=6.3.若a=-,b=2,c,d互为倒数,则代数式2(a+b)-3cd的值为( )A.2B.-1C.-3D.0【解析】选D.c,d互为倒数,所以cd=1.当a=-,b=2时,2(a+b)-3cd=2×-3×1=2×-3=3-3=0.【互动探究】如果本题中a,b的关系是互为相反数,c,d互为倒数,那么结果是多少?【解析】因为a,b互为相反数,c,d互为倒数,所以a+b=0,cd=1,所以2(a+b)-3cd=2×0-3×1=-3.二、填空题(每小题4分,共12分)4.x=-1时,下列代数式①1-x;②1-x2;③-2x;④1+x3中,值为0的是(填序号).【解析】因为1-x=1-(-1)=2;1-x2=1-(-1)2=0;-2x=-2×(-1)=2;1+x3=1+(-1)3=0,所以值为0的是②④.答案:②④5.(2013·泉州中考)有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是,依次继续下去……第2013次输出的结果是.【解题指南】解答本题的三个关键(1)确定每次应代入的代数式.(2)确定输出的结果的变化规律.(3)根据变化规律确定输出的结果.【解析】第1次,x=7,输出12;第2次,x=12,输出6;第3次,x=6,输出3;第4次,x=3,输出8;第5次,x=8,输出4;第6次,x=4,输出2;第7次,x=2,输出1;第8次,x=1,输出6;第9次,x=6,输出3;第10次,x=3,输出8;第11次,x=8,输出4;第12次,x=4,输出2;第13次,x=2,输出1……我们可以发现,从第2个数开始,输出的数是6,3,8,4,2,1进行了循环,2013÷6=335……3,所以第2013次输出的结果是3.答案:3 36.代数式3x2-4x-5的值为7,则x2-x-5的值为.【解析】因为3x2-4x-5=7,所以3x2-4x=12,所以x2-x=4,所以x2-x-5=4-5=-1.答案:-1【变式训练】当x=1时,代数式px3+qx+1的值为2014,则当x=-1时,代数式px3+qx+1的值为( ) A.-2 012 B.-2 013 C.-2 014 D.2 012 【解析】选A.将x=1代入px3+qx+1=2014,得p+q+1=2014,即p+q=2013,则当x=-1时,代数式px3+qx+1=-p-q+1=-(p+q)+1=-2013+1=-2012.三、解答题(共26分)7.(8分)若|2x-8|+|y+6|=0,求2x-y的值.【解题指南】解答本题的两个基本步骤(1)根据绝对值的非负性求出x和y的值.(2)把x和y的值代入代数式.【解析】因为|2x-8|+|y+6|=0,所以2x-8=0,y+6=0,解得x=4,y=-6,所以2x-y=2×4-(-6)=8+6=14.8.(8分)如图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第④、第⑤个“上”字分别需用和枚棋子.(2)第n○个“上”字需用枚棋子.(3)七(3)班有50名同学,把每一位同学当做一枚棋子,能否让这50枚“棋子”按照以上规律恰好站成一个“上”字?若能,请计算最下一“横”的学生数;若不能,请说明理由.【解析】(1)18 22(2)因为第①个图形中有4×1+2=6枚棋子;第②个图形中有4×2+2=10枚棋子;第③个图形中有4×3+2=14枚棋子;第④个图形中有4×4+2=18枚棋子;第⑤个图形中有4×5+2=22枚棋子.所以第n○个图形中有4n+2枚棋子.答案:4n+2(3)能.由题意得4n+2=50,解得n=12.所以最下一“横”的学生数为2n+1=25.【培优训练】9.(10分)2014年世界杯足球赛于7月13日在巴西圆满落幕,激起了人们参与体育运动的热情,我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220-a).(1)正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?【解析】(1)当a=14时,b=0.8(220-a)=0.8×(220-14)=0.8×206=164.8≈165(次).(2)因为10秒钟心跳次数为22次,所以1分钟心跳次数为22×6=132(次).当a=45时,b=0.8(220-a)=0.8×(220-45)=140>132,所以这个人没有危险.。

人教版七年级数学上册 第一至第四章全册知识点归纳

人教版七年级数学上册  第一至第四章全册知识点归纳

人教版初一数学上册知识点归纳七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

最新人教版初中七年级上册数学第一章《有理数的加减法》课时4精品课件

最新人教版初中七年级上册数学第一章《有理数的加减法》课时4精品课件
4
+ 4.4
= −18.25 + +18.25 + [−4.4 + 4.4]
= 0+0
=0.
(2)−
2 3
+

1 6


1 4

1 2
=−
2 3Leabharlann −1 6+
1 4

1 2
=−
8 12

2 12
+
3 12

6 12
=− 1132.
本题源于《教材帮》
课堂小结
有理数加减法混合运算 方法一:减法转化成加法 1.减法变加法:a+b-c=a+b+(-c); 2.运用加法交换律使同号两数分别相加; 3.按有理数加法法则计算. 方法二:省略括号法 1.省略括号; 2.同号放一起; 3.进行加减运算.
新知探究 知识点1
例 计算:(-20)+(+3)-(-5)-(+7)
分析:这个算式中有加法,也有减法.可以根据有理数减法法则,把它改写 为 (-20)+(+3)+(+5)+(-7).
解: (-20)+(+3)-(-5)-(+7) = (-20)+(+3)+(+5)+(-7) = [(-20)+(-7)]+[(+5)+(+3)] = (-27)+(+8) = -19.
后序
亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。希望我的文档能 够帮助到你,促进我们共同进步。
孔子曰,三人行必有我师焉,术业有专攻,尺有所长,寸有所短,希望你能 提出你的宝贵意见,促进我们共同成长,共同进步。每一个文档都花费了我大量 心血,其目的是在于给您提供一份参考,哪怕只对您有一点点的帮助,也是我最 大的欣慰。如果您觉得有改进之处,请您留言,后期一定会优化。

2024新人编版七年级数学上册《第一章1.2.有理数的概念》教学课件

2024新人编版七年级数学上册《第一章1.2.有理数的概念》教学课件

有理数 零
正分数
负整数 负有理数
负分数
探究新知
注意 :①分类的标准不同,结果也不同; ②分类的结果应无遗漏、无重复; ③零是整数,但零既不是正数,也不是负数.
探究新知
填一填
(1)既是分数又是负数的数是__负_分__数__; (2)非负数包括___正__数___和____0___; (3)非正数包括___负__数___和____0___;
-3, + 1 ,0, 4,,+2.12,-0.65,+300%,-0.6,22 .
2
7
正数集合:{
};
负数集合:{
};
分数集合:{
};
整数集合:{
};
探究新知
素养考点 2 把有理数按要求分类
例2 把下列各数填在相应的集合中:
易错提醒
-3,
+
1 ,0, 2
4,,+2.12,-0.65,+300%,1先-0.像.化6, +简3270成20.%整数这的种数可是以
探究新知
问题2:目前我们所学的小数有哪几类?
有限小数,无限循环小数,无限不循环小数.
问题3: 0.1, -0.5, 5.32, -15,0. 2,0.3ሶ 又是什么数?
小学:小数 初中:统归为分数
它们都可以化为分数:
0.1= 1 10
0.5= 1 2
150.25= 150 1 601
4
4
5.32=5 8 133 25 25
-15 +6 -2 -0.9
1
3 0 3 1 0.63 -4.95
5
4
(1)正整数集合:{ +6 , 1 }
(2)负整数集合:{ (3)正分数集合:{ (4)负分数集合:{

2.1 有理数的加法与减法(第1课时)(同步课件)七年级数学上册(青岛版2024)

2.1 有理数的加法与减法(第1课时)(同步课件)七年级数学上册(青岛版2024)
(3)计算和的绝对值,确定有理数的和.
算绝对值
方法总结
有理数加法法则顺口溜:
同号两数来相加,绝对值加不变号;
异号相加大减小,大数决定和符号;
互为相反数求和,结果是零须记牢.
新知巩固
1.填表:
运算式子
(+4)+(+7)
(-8)+(-3)
(-9)+(+5)
(-6)+(+6)
(-7)+0
8+(-1)
和的符号
的气温是( B )
A.−℃
B.℃
C.℃
D.−℃
2.如图,比数轴上的点A表示的数大1的数是( B )
A.−
B.0
C.1
D.2
课堂检测
能力提升
3.若两个数之和为负数,则这两个数( D )
A.一定都是正数
B.一定都是负数
C.一定是一个正数,一个负数
D.至少有一个是负数
4.已知 > 且 + = ,则下列判断正确的是( D )

思考与交流
(6) 你能举几个与算式①~⑦类似的例子吗?
(+5)+(+3) =+8

(-2)+(-6)=-8

(+5)+(-2) =+3

(+3)+(-6) =-3

(+6)+(-6) =0

(+8)+0=+8

(-8)+0=-8

概况与表达
有理数加法法则
同号两数相加,取相同的符号,并把绝对值相加.
过程正确的是( D )
A.+ +
B.+ −
C.− +
D.− −
课堂检测
基础过关
2.下列各式中,计算结果为正的是( C )

七年级数学1到4章知识点

七年级数学1到4章知识点七年级数学是初中数学的开端,第1章到第4章是比较基础的内容,这里将对这些章节的重点知识点进行梳理和总结,方便同学们复习和回顾。

一、第1章有理数1.有理数的概念有理数包括正数、负数和零,可以用分数或小数表示,而且有限小数和循环小数也都属于有理数。

2.有理数在数轴上的表示数轴上正方向是向右的,负方向是向左的,可将有理数用数轴上的点来表示。

正数在数轴右边,负数在数轴左边,零在原点上。

3.有理数的加减法有理数加减法规则与整数加减法规则相同,正数加正数还是正数,负数加负数还是负数,正数加负数要看它们的绝对值大小而定等等。

4.有理数的乘法和除法有理数的乘法规则比较简单,不过注意·正数乘负数为负数,负数乘负数为正数。

除法遵循“同号相除得正,异号相除得负”的规则。

二、第2章方程与不等式1.方程的基本概念方程是指用字母表示不知道的数,使字母构成的等式成立的问题,简单来说就是未知数与已知数之间的关系。

2.一次方程的解法一次方程表示未知数的指数最高次为1的方程式。

可以通过移项、化简、解方程等方式来求得一次方程的解。

3.不等式的基本概念不等式是表示未知数大小关系的式子。

如x>2,表示x大于2。

4.不等式的解法不等式的解法可以分为两种:图像法和代数法。

当不等式呈线性形式时,我们可以通过画图、观察来进行判断。

三、第3章平面图形1.平面图形的分类平面图形包括三角形、四边形、圆、梯形等,可以根据它们的特征和性质进行分类。

2.平面图形的性质不同的图形具有各自不同的特征和性质,如三角形有内角和定理、等边三角形的三个角都是60°等等。

3.平面图形的周长和面积周长是指一个图形的边界长度,而面积则是一个图形内部的平面大小。

可以运用各种公式计算不同形状图形的周长和面积。

四、第4章空间图形1.空间图形的分类空间图形包括立方体、圆柱、圆锥、球等。

不同的空间图形具有不同的特征和性质。

2.空间图形的表面积和体积空间图形的表面积是指它们的表面积总和,而体积则是指它们所占据空间的大小。

2024年秋新华师大版七年级上册数学教学课件 第1章 有理数 1.12 有理数的混合运算


3
+
50
22
-
1 5
-1
第一级运算
这个算式中,含有有理数的加、减、乘、除、 第二级运算 乘方等多种运算,它是有理数的混合运算.
第三级运算
回忆小学的运四算则混顺合序运如算的何顺?序:先乘除,后加减,
同级运算从左至右,有括号先算括号内,再算括号外.
括号计算顺序:先小括号,再中括号,最后大括号.
有理数的混合运算,应按以下顺序进行:
试一试
计算:2
1 4
6 7
1 2
2
.

③①
2
1 4
6 7
1 2
2
2
1 4
6 7
3 2
9 4
6 7
2 3
=962 473
=9 7
例2
计算:3
50
22
1 5
1.

3
50
22
1 5
1
3
50
4
1 5
1
3
50
1 4
1 5
1
3 50 1 1 1 45
3 5 1 2
运算顺序不同
(1)
2
1 2
2

2
1 2
2
有什么不同?
(2) 2 2 3与2 2 3 有什么不同?
②①
① ② 运算顺序不同
有括号先算括 号里的乘法
无括号同级从左 到右先算除法
例1
计算:
1 3

1 2
②÷1
1 4
1 10

.

1 3
1 2
÷1
1 4
1 10

冀教版七年级上册数学教学课件 第一章 有理数 有理数的加法 第1课时 有理数的加法法则


新知导入课程讲授随堂练习课堂小结
目录
有理数的加法法则 问题2 如果小车先向右运动 5 m ,再向右运动 3 m ,那么两次运动最后的结果是什么?可以用 怎样的算式表示?
0 1 2 3 4 5 678
两次运动后小车从起点向右运动了 8 m . 5+3=8
新知导入课程讲授随堂练习课堂小结
目录
有理数的加法法则
向左边移6动
_____格2,向右移
B
动B____格可以到
达 的位置.
新知导入课程讲授随堂练习课堂小结
目录
CONTENTS
2
新知导入课程讲授随堂练习课堂小结
目录
有理数的加法法则 问题1 小学学过的加法是正数与正数相加,正数与 0相加,引入负数后,加法有哪几种情况? 正数+正数 正数+ 0 正数+负数 负数+负数 负数+ 0
新知导入课程讲授随堂练习课堂小结
目录
3.有理数 a,b 在数轴上的对应点的位置如图
所示,A则 a + b的值是(
)
A. 大于 0 C.小于 a
B.小于 0 D.大于 b
新知导入课程讲授随堂练习课堂小结
目录
4.如果两个数的和是负数,那么C一定有(
)
A.这两个数都是负数
B.这两个数异号
C.这两个数至少有一个数是负数
目录
有理数的加法法则
问题5 如果小车先向右运动 3 m ,再向左运动 5 m ,那么两次运动最后的结果是什么?可以用 怎样的算式表示?
-3 -2 -1 0 1 2 3
两次运动后小车从起点向左运动了 23m+(. -5)= -2
新知导入课程讲授随堂练习课堂小结

沪科版七年级数学上第一章《有理数》第4节《有理数的加减》例题与讲解(课后辅导)

1.4 有理数的加减1.有理数的加法(1)有理数的加法法则①同号两数相加,取与加数相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时和为零;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数与零相加,仍得这个数.(2)两个有理数相加的步骤第一步:有理数的加法法则分三种情况,进行有理数加法时,要先区别是哪种情况;第二步:确定和的符号;第三步:求每个加数的绝对值;第四步:根据具体的法则计算两个数的绝对值的和或差;第五步:写出最后的计算结果.析规律有理数的加法运算规律(1)有理数的加法法则是进行有理数运算的依据,进行加法运算时要先确定用哪条法则.(2)小学学过的加法中,和一定大于每一个加数,在数的范围扩大到有理数以后,这个结论就不成立了,只有两个正数的和必定大于每一个加数,而两个负数的和要小于每一个加数,一个非零数与零相加,得到的和等于非零加数.(3)如果两个数的和为0,那么这两个数互为相反数.即:如果a+b=0,那么a=-b.例如:(-3)+a=0,则a=3.(4)进行有理数的加法运算要遵循“一定二求三和差”的步骤,即第一步先确定和的符号,第二步再求加数的绝对值,第三步要分析确定是绝对值相加还是相减.【例1】计算:(1)(+8)+(+5);(2)(+2.5)+(-2.5);(3)(-17)+(+9);(4)(-4)+0.分析:根据有理数的加法法则,两数相加,只要确定它适合有理数加法法则的哪一种情况,再根据法则确定和的符号,然后根据法则求出和的绝对值.解:(1)(+8)+(+5)(同号两数相加)=+(8+5)(取与加数相同的符号,并把绝对值相加)=13.(2)(+2.5)+(-2.5)(异号两数相加,绝对值相等)=0(和为0).(3)(-17)+(+9)(异号两数相加,绝对值不等)=-(17-9)(取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)=-8.(4)(-4)+0(一个数与零相加)=-4(仍得这个数).2.有理数的减法(1)有理数的减法法则减去一个数,等于加上这个数的相反数.用字母表示为a-b=a+(-b).(2)有理数减法运算的基本步骤①将减法转化为加法;②按有理数的加法法则运算.(3)法则理解①有理数的减法,不像小学里的那样直接减,而是把它转化为加法,借助于加法进行计算.其关键是正确地将减法转化为加法,再按有理数的加法法则计算.②学习有理数减法运算,关键在于处理好法则中两个“变”字,即注意两个符号的变化:一是运算符号——减号变为加号,二是性质符号——减数变成它的相反数.③其含义可以从以下两方面理解:(a)(b)④并不是所有的减法运算都要转化为加法运算.一般来说,当减数或被减数为负数,或两数“不够减”时才运用法则转化为加法运算. 解技巧 有理数的减法运算技巧(1)可用口诀记忆法则:“减正变加负,减负变加正.”(2)带分数减法运算,可把带分数拆成整数和分数和的形式后再进行计算.(3)特别注意减法没有交换律.【例2】 计算:(1)3-(-5);(2)(-3)-(-7);(3)⎝⎛⎭⎫-213-516; (4)5.2-(+3.6).分析:有理数减法运算,按照减法法则,将减法转化为加法,然后按有理数加法进行计算.在做减法转换为加法时,一定要注意符号的变换.解:(1)3-(-5)=3+(+5)=8;(2)(-3)-(-7)=(-3)+(+7)=4;(3)⎝⎛⎭⎫-213-516=⎝⎛⎭⎫-213+⎝⎛⎭⎫-516=-712; (4)5.2-(+3.6)=5.2+(-3.6)=1.6.3.有理数加法的运算律(1)加法交换律:两数相加,交换加数的位置,和不变.用字母表示为:a +b =b +a .(2)加法结合律:三数相加,先把前两个数相加或先把后两个数相加,和不变.用字母表示为:(a +b )+c =a +(b +c ).【例3】 计算:(1)(-8)+⎝⎛⎭⎫-212+2+⎝⎛⎭⎫-12+12; (2)⎝⎛⎭⎫-13+⎝⎛⎭⎫+12+⎝⎛⎭⎫-23+⎝⎛⎭⎫+45+⎝⎛⎭⎫-12. 分析:进行三个以上的有理数加法运算时,常常运用加法的交换律和结合律,把同号的数相结合,把互为相反数的两个数相结合,把同号的数中的同分母的分数相结合,以达到计算简便、迅速的目的. 解:(1)原式=(2+12)+⎣⎡⎦⎤(-8)+⎝⎛⎭⎫-212+⎝⎛⎭⎫-12=14+(-11)=3; (2)原式=⎣⎡⎦⎤⎝⎛⎭⎫-13+⎝⎛⎭⎫-23+⎣⎡⎦⎤⎝⎛⎭⎫+12+⎝⎛⎭⎫-12+45=-1+0+45=-15. 4.有理数的加、减混合运算(1)加减法统一成加法①有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5).②在和式里,通常把各个加数的括号省略不写,写成省略加号的和的形式.如:(-12)+(-8)+(-6)+(+5)=-12-8-6+5.③和式的读法:一是按这个式子表示的意义,读作“负12,负8,负6,正5的和”,即把各个数中间的符号作为后面的这个数的性质符号来读;二是按运算意义读作“负12减8减6加5”,即把各个数中间的符号作为运算符号来读.(2)有理数加、减混合运算的方法和步骤由于减法可以转化为加法,所以在进行有理数的加减混合运算时,首先要将混合运算的式子写成省略括号的和式的形式,然后按加法法则和运算律进行简便运算.第一步:用减法法则将减法转化为加法;第二步:运用加法法则、加法交换律、加法结合律进行简便运算.(3)进行有理数的加减混合运算的注意事项①交换加数的位置时,一定要连同加数前的符号一起移动;②如果需要添括号,一定要连同加数前的符号一起括进括号内,并将原来已省略的括号写出来; ③省略加号和括号的“和”与小学里的“和”是有区别的,小学里的“和”是一个具体的数,并且和一定不小于任何一个加数,而这里的“和”则是表示的是有理数的加法运算,也表示相加的结果.有理数的“和”可以大于任何一个加数,也可以小于任何一个加数,和可能是正数、负数或零.【例4-1】 把下列各式写成省略加号的和的形式:(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3.(2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.【例4-2】 计算:(1)0-327-6+1167-537; (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45; (3)(-5)-(-21)+(-12)+8-(-4)-18;(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5.分析:(1)本题是省略括号和加号后的和的形式,在五个加数中,考虑到-327,1167,-537三个加数分母都是7,便于运算,所以把这三个加数放在一起;(2)把加减混合运算统一成加法运算后结果为⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45,考虑到⎝⎛⎭⎫-12,⎝⎛⎭⎫-23,⎝⎛⎭⎫+16便于通分,把它们结合起来,可使计算较为简便;(3)统一成加法后,可采用同号结合法,即把正数与正数、负数与负数分别相加;(4)统一成加法后,可采用凑整结合法,即把相加得整数的加数先结合.解:(1)0-327-6+1167-537=(0-6)+⎝⎛⎭⎫-327+1167-537 =-6+⎝⎛⎭⎫+317=-267. (2)⎝⎛⎭⎫-12-⎝⎛⎭⎫-16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+16+⎝⎛⎭⎫-23+⎝⎛⎭⎫-45 =(-1)+⎝⎛⎭⎫-45=-145. (3)(-5)-(-21)+(-12)+8-(-4)-18=-5+21-12+8+4-18=(21+8+4)+(-5-12-18)=33-35=-2.(4)(+10.4)-7.5+12.7-(-3.6)+(-1.7)-2.5=10.4-7.5+12.7+3.6-1.7-2.5=(10.4+3.6)+(12.7-1.7)+(-7.5-2.5)=14+11-10=15.5.含有字母的有理数加法的运算我们可以用字母表示有理数加法的运算法则:①同号两数相加:若a >0,b >0,则a +b =+(|a |+|b |);若a <0,b <0,则a +b =-(|a |+|b |).②异号两数相加:若a >0,b <0,且|a |=|b |,则a +b =0;若a >0,b <0,且|a |>|b |,则a +b =+(|a |-|b |);若a >0,b <0,且|a |<|b |,则a +b =-(|b |-|a |).③一个数与0相加:a +0=a .【例5-1】 根据加法法则填空:(1)如果a >0,b >0,那么a +b __________0;(2)如果a <0,b <0,那么a +b __________0;(3)如果a >0,b <0,|a |>|b |,那么a +b ________0;(4)如果a <0,b >0,|a |>|b |,那么a +b ________0.答案:(1)> (2)< (3)> (4)<【例5-2】 已知有理数a ,b ,c 在数轴上的对应点如图所示,且|a |>|b |>|c |,则(1)|a +(-b )|=__________;(2)|a +b |=__________;(3)|a +c |=__________;(4)|b +(-c )|=__________;(5)|b +c |=__________.答案:(1)|a |+|b | (2)|a |-|b | (3)|a |+|c | (4)|b |+|c | (5)|b |-|c |6.有理数加减混合运算的注意事项(1)运用加法交换律,在交换各数的位置时要连同它们前面的符号一起交换,千万不要把符号漏掉.(2)应用加法结合律时,应充分考虑同号加数结合、同分母或便于通分的加数结合、凑整的加数结合、互为相反数的加数结合等情形,从而选择适当的方法,使运算简便.(3)若分数、小数混在一块运算时,可以把它们统一成分数或小数再运算.(4)如果有大括号和小括号应当先进行小括号里的运算,再进行大括号里的运算.反之,进行有理数的加减混合运算,有时候需要添加括号,此时一定要连同加数的符号一起括进括号内,并将原来已省略的加号写进来.辨误区 拆分负的带分数负的带分数拆分为整数与分数的和时,易将负整数与负分数的和错拆为负整数与正分数的和.【例6】 计算:(1)(-837)+(-7.5)+(-2147)+(+312);(2)⎪⎪⎪⎪5111-3417+4417-111. 分析:把分母不同的分数的加减混合运算统一成加法之后,应用运算律使同分母分数相加可以简化运算.解:(1)(-837)+(-7.5)+(-2147)+(+312) =-837-7.5-2147+312=-837-2147-7.5+312=(-837-2147)-(7.5-312) =-30-4=-34.(2)⎪⎪⎪⎪5111-3417+4417-111=5111-3417+4417-111=5111-111-3417+4417=(5111-111)-(3417-4417) =5+1=6.7.有理数加减法的运用学习有理数的加减法后,可以和前面学过的数轴、相反数、绝对值综合出题,把有理数的知识融合得更紧密,理解得更深刻.(1)有理数的加法与绝对值在有些计算中,含有绝对值符号,这就要用绝对值的概念,先去掉绝对值符号,再按有理数混合运算法则进行计算.几个非负数的和等于0,则每个加数必等于0.(2)有理数的加法与有理数的大小比较学习加法后,在比较大小的数中,出现了和的形式或差的形式(差可以化成和).特别是以字母表示的数.这就需要用加法法则来判断数的正负,或判断数对应的点在数轴上的位置关系,从而确定两个数的大小关系.(3)有理数加法在实际问题中的应用在实际问题中,要应用有理数的加法法则求解问题,注意运算技巧的使用.【例7-1】 若|x -3|与|y +3|互为相反数,求x +y 的值.解:根据题意得|x -3|+|y +3|=0.则x -3=0,y +3=0,所以x =3,y =-3.所以x +y =3+(-3)=0.【例7-2】 一小吃店一周中每天的盈亏情况如下(盈利为正):128.3元,-25.6元,-15元,-7元,36.5元,98元,27元,这一周总的盈亏情况如何?分析:正数表示盈利,负数表示亏损,这些数的代数和就是总的盈亏情况,如果代数和为正,则总的情况是盈利,否则是亏损.解:128.3+(-25.6)+(-15)+(-7)+36.5+98+27=(128.3+36.5+98+27)+(-25.6-15-7)=289.8-47.6=242.2.答:一周总的盈亏情况是盈利242.2元.【例7-3】 一农业银行某天上午9:00~12:00办理了7笔储蓄业务;取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出10.25万元,取出2万元.这天上午该银行的现金增减情况怎样?分析:可以设存入为正,取出为负,用正、负数分别表示这7笔业务,求它们的和即可判断现金的增减情况.若结果为正数,则表明现金增加了;若结果为负数,则表明现金减少了.解:(-9.5)+(+5)+(-8)+(+12)+(+25)+(-10.25)+(-2)=[(-9.5)+(-8)+(-10.25)+(-2)]+[5+(+12)+(+25)]=-29.75+42=12.25(万元).答:这天上午该银行的现金增加了12.25万元.8.有理数减法的应用(1)有理数减法的应用比较常见的题型有:计算高度,计算温差,计算销售利润,计算距离,计算时差等.有理数减法的应用题虽然比较简单,但却能让大家主动地从数学角度运用所学知识和方法寻求解决问题的策略,充分体现课程标准所要求的“数学应用意识”.因此,我们要有意识地加强数学知识与现实生活联系密切的问题的训练,提高自己的能力.(2)利用有理数减法求数轴上两点间的距离求数轴上两点间的距离是有理数减法最典型的应用之一,数轴上任意两点之间的距离,都可以用数轴上表示这两点的有理数的差的绝对值来表示.【例8-1】如图所示的数轴上,表示-2和5的两点之间的距离是______,数轴上表示2和-5的两点之间的距离是______,数轴上表示-1和-3的两点之间的距离是______.解析:数轴上表示-2和5两点之间的距离是|-2-5|或|5-(-2)|;数轴上表示2和-5两点之间的距离是|2-(-5)|或|-5-2|;数轴上表示-1和-3的两点之间的距离是|-1-(-3)|或|-3-(-1)|.答案:77 2【例8-2】以地面为基准,A处高为+2.5米,B处高为-17.8米,C处高为-32.4米,问:(1)A处比B处高多少米?(2)B处与C处哪个地方高?高多少米?解:(1)+2.5-(-17.8)=2.5+17.8=20.3(米),所以A处比B处高20.3米.(2)-17.8-(-32.4)=-17.8+32.4=14.6(米),所以B处比C处高,高了14.6米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新七年级数学上册第1章有理数1-4有理数的加法和减法1-4-1第1
课时有理数的加法教案2湘教版加法和减法
1.4.1 有理数的加法
第1课时 有理数的加法
教学目标
1、知识与技能: 理解有理数加法法则,能熟练地进行简单的有理数的加法运算。

2、过程与方法: 在现实背景中理解有理数加法的意义,能正确地进行有理数的加法运算。

重点、难点: 1、重点:和的符号的确定。

2、难点: 异号两数相加。

教学过程:
一、创设情景,导入新课
国家足球队在两场友谊比赛中,第一场净胜2球,第二场净负1球,请问两场比赛后,国家足球队合计胜几球? 你能否用一个算式来表示最终结果?如何表示?这个算式与小学时学过的加法有何不同?由此引出课题。

二、合作交流,解读探究
1、出示课本P19中的引例,请同学们阅读、讨论问题(1),用自己的语言叙述同号两
2、继续考虑引例中(2)、(
3)怎么用算式表示?
类比于同号两数相加法则,由学生讨论、归纳异号两数相加法则,教师可对确定符号和确定绝对值的值两部分作适当的提示,启发学生观察和的符号,绝对值和两个加数的符号与绝对值的关系。

教师归纳法则,并进一步提出问题:两个有理数相加,除了同号、异号两种情况外,还有什么情形?引导学生从数的正、零、负三类情形进行讨论。

教师完整地板书有理数的加法法则,并指出建立有理数加法的必要性和法则的合理性。

3、用引例的数据讲述有理数加法的数轴表示,更直观地反映有理数加法法则的合理性。

三、应用迁移,巩固提高
例1 计算下列各式:
(1) (一8)+(一12); (2) (一3.75)+(-0.25);
(3)(一5)+9;(4)(-10)+7
教师注意解答过程的示范,然后完成课本的P21“练习”,分别请三位同学上台板演,每人两小题。

例(补充)小慧原来在银行存有零用钱350元,上个月取出了120元,这个月计划再存人50元,请用有理数的加法计算:
(1)到上月底小慧在银行还有多少存款?
(2)到这个月底小慧将有多少存款?
四、总结反思
1.有理数的加法法则;
2.有理数加法的数轴表示;
3.有理数相加,先确定符号,再算绝对值;
4.有理数的加法运算,和不一定大于加数。

五、课后作业
课本P24习题1.4A组第1题。

相关文档
最新文档