过程控制实验报告大学论文

合集下载

北京科技大学过程控制实验报告

北京科技大学过程控制实验报告

实验报告课程名称:过程控制系统实验项目名称:被控对象特性测试实验日期与时间: 2022.07 指导教师:班级:姓名:学号:成绩:一、实验目的要求1.了解控制对象特性的基本形式。

2.掌握实验测试对象特性的方法,并求取对象特性参数二、实验内容本节实验内容主要完成测试对象特性,包含以下两部分内容:1.被控对象特性的实验测定本实验采用飞升曲线法(阶跃向应曲线法)测取对象的动特性。

飞升曲线是指输入为阶跃信号时的输出量变化的曲线。

实验时,系统处于开环状态,被控对象在某一状态下稳定一段时间后,输入一阶跃信号,使被控对象达到另一个稳定状态,得到被控对象的飞升曲线。

在实验时应注意以下的一些问题:1)测试前系统应处于正常工作状态,也就是说系统应该是平衡的。

采取一切措施防止其他干扰的发生,否则将影响实验结果。

2)在测试工作中要特别注意工作点与阶跃幅度的选取。

作为测试对象特性的工作点,应该选择正常工作状态,也就是在额定负荷及正常的其他干扰下,因为整个控制过程将在此工作点附近进行。

阶跃作用的取值范围为其额定值的 5-10%。

如果取值太小,由于测量误差及其它干扰的影响,会使实验结果不够准确。

如果取值过大,则非线性影响将扭曲实验结果。

不能获得应有的反应曲线,同时还将使生产长期处于不正常的工作状态,特别是有进入危险区域的可能性,这是生产所不能允许的。

3)实验时,必须特别注意的是,应准确地记录加入阶跃作用的计时起点,注意被调量离开起始点时的情况,以便计算对象滞后的大小,这对以后整定控制器参数具有重要的意义。

4)每次实验应在相同的条件下进行两次以上,如果能够重合才算合格。

为了校验线性,宜作正负两种阶跃进行比较。

也可作不同阶跃量的实验。

2.飞升曲线数据处理在飞升曲线测得以后,可以用多种方法来计算出所测对象的微分方程式,数据处理方法有面积法、图解法、近似法等。

面积法较复杂,计算工作量较大。

近似法误差较大,图解法较方便,误差比近似法小。

过程控制实验报告

过程控制实验报告

过程控制系统实验学院机电工程学院班级 ****** 学号 ******** 姓名 ******** 老师韩保君第一节一阶单容水箱特性的测试一、实验目的1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。

2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。

二、实验设备1. THJ-2型高级过程控制系统实验装置2. 计算机及相关软件3. 万用电表一只三、实验原理由图2-1可知,对象的被控制量为水箱的液位H ,控制量(输入量)是流入水箱中的流量Q 1,手动阀V 1和V 2的开度都为定值,Q 2为水箱中流出的流量。

根据物料平衡关系,在平衡状态时动态时,则有式中V 为水箱的贮水容积,dtdV 为水贮存量的变化率,它与H 的关系为A 为水箱的底面积。

把式(3)代入式(2)得基于RS为阀V2的液阻,则上式可改写为式中T=ARS ,它与水箱的底积A和V2的RS有关;K=RS。

式(5)就是单容水箱的传递函数。

若令Q1(S)=R0/S,R=常数,则式(5)可改为对上式取拉氏反变换得当t—>∞时,h(∞)=KR,因而有K=h(∞)/R0=输出稳态值/阶跃输入当t=T时,则有h(T)=KR0(1-e-1)=0.632KR=0.632h(∞)式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2所示。

当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。

该时间常数T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。

如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。

图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得的传递函数为四、实验内容与步骤1.按图2-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。

过程控制实践教学(3篇)

过程控制实践教学(3篇)

第1篇摘要:过程控制是自动化技术中的重要组成部分,对于工业生产过程的稳定性和产品质量有着重要影响。

本文从过程控制的基本概念入手,介绍了过程控制实践教学的意义、方法以及在我国的发展现状,并对未来发展趋势进行了展望。

一、引言过程控制是指利用自动化技术对生产过程中的各种参数进行监测、调节和优化,以确保生产过程的稳定性和产品质量。

随着科学技术的不断发展,过程控制技术在工业生产中的应用越来越广泛。

为了提高学生的实际操作能力和综合素质,过程控制实践教学显得尤为重要。

二、过程控制实践教学的意义1. 提高学生的动手能力过程控制实践教学使学生能够将理论知识与实际操作相结合,提高动手能力。

通过实践操作,学生可以熟练掌握各种控制设备的使用方法,为今后的工作打下坚实基础。

2. 培养学生的创新意识在过程控制实践教学过程中,学生需要面对各种实际问题,通过自主思考和探索,激发创新意识。

这种创新意识对于今后从事自动化领域的工作具有重要意义。

3. 提高学生的综合素质过程控制实践教学不仅要求学生具备扎实的理论基础,还需要具备良好的团队协作能力和沟通能力。

通过实践,学生可以培养自己的综合素质,为今后的发展奠定基础。

4. 促进学科交叉融合过程控制涉及多个学科领域,如自动控制、计算机科学、电气工程等。

通过过程控制实践教学,可以促进学科交叉融合,提高学生的跨学科能力。

三、过程控制实践教学的方法1. 实验教学实验教学是过程控制实践教学的重要环节。

通过实验,学生可以了解各种控制理论和方法在实际应用中的效果。

实验内容主要包括:(1)基本控制元件实验:使学生熟悉各种控制元件的结构、原理和性能。

(2)基本控制回路实验:使学生掌握基本控制回路的组成、工作原理和调试方法。

(3)复杂控制回路实验:使学生了解复杂控制系统的设计、调试和应用。

2. 课程设计课程设计是过程控制实践教学的重要环节,旨在培养学生解决实际问题的能力。

课程设计内容包括:(1)控制系统设计:根据实际需求,设计满足要求的控制系统。

过程控制实验报告

过程控制实验报告

过程控制实验报告过程控制实验报告引言:过程控制是一种重要的工程控制方法,广泛应用于工业生产、环境保护、交通运输等各个领域。

本实验旨在通过对过程控制的实际操作,理解和掌握过程控制的基本原理和方法。

一、实验目的本实验的主要目的是通过搭建一个简单的过程控制系统,了解过程控制的基本概念和原理,并通过实际操作掌握过程控制的方法和技巧。

二、实验装置和原理实验所用的装置是一个温度控制系统,由温度传感器、控制器和执行器组成。

温度传感器负责测量温度,控制器根据测量值与设定值的差异来控制执行器的动作,从而实现温度的控制。

三、实验步骤1. 将温度传感器安装在被控温度区域,并连接到控制器上。

2. 设置控制器的参数,包括设定值、比例系数、积分时间和微分时间等。

3. 打开控制器,开始实验。

观察温度的变化过程,并记录实验数据。

4. 根据实验数据分析控制效果,并对控制器的参数进行调整,以达到更好的控制效果。

5. 重复步骤3和4,直到达到满意的控制效果。

四、实验结果与分析在实验过程中,我们观察到温度的变化过程,并记录了实验数据。

通过对实验数据的分析,我们可以评估控制效果的好坏,并对控制器的参数进行调整。

五、实验总结与体会通过本次实验,我们深入了解了过程控制的基本原理和方法。

实践操作使我们更加熟悉了过程控制的过程和技巧。

同时,我们也体会到了过程控制在工程实践中的重要性和应用价值。

六、实验改进与展望本次实验中,我们采用了简单的温度控制系统进行实验。

未来可以进一步扩展实验内容,涉及到其他参数的控制,如压力、流量等,以更全面地了解过程控制的应用。

结语:过程控制是一门重要的工程学科,对于提高生产效率、保护环境、提升产品质量等方面具有重要意义。

通过本次实验,我们对过程控制的原理和方法有了更深入的理解,为今后的工程实践打下了坚实的基础。

希望通过不断学习和实践,我们能够在工程领域中运用过程控制的知识,为社会发展做出更大的贡献。

过程控制实验报告

过程控制实验报告

过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。

2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。

过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。

过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。

3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。

实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。

(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。

(3) 将执行器与控制器连接,并调试执行器的控制参数。

(4) 在控制软件中设置控制策略和控制目标,并启动控制器。

(5) 监测被控制物理过程的状态,并记录相关数据。

(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。

4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。

实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。

5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。

通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。

在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告实验报告:过程控制系统一、引言过程控制系统是指对工业过程中的物理、化学、机械等变量进行监控和调节的系统。

它能够实时采集与处理各种信号,根据设定的控制策略对工业过程进行监控与调节,以达到所需的目标。

在工业生产中,过程控制系统起到了至关重要的作用。

本实验旨在了解过程控制系统的基本原理、组成以及操作。

二、实验内容1.过程控制系统的组成及原理;2.过程控制系统的搭建与调节;3.过程控制系统的优化优化。

三、实验步骤1.复习过程控制系统的原理和基本组成;2.使用PLC等软件和硬件搭建简单的过程控制系统;3.设计一个调节过程,如温度控制或液位控制,调节系统的参数;4.通过修改控制算法和调整参数,优化过程控制系统的性能;5.记录实验数据并进行分析。

四、实验结果与分析在本次实验中,我们搭建了一个温度控制系统,通过控制加热器的功率来调节温度。

在调节过程中,我们使用了PID控制算法,并调整了参数,包括比例、积分和微分。

通过观察实验数据,我们可以看到温度的稳定性随着PID参数的调整而改变。

当PID参数调整合适时,温度能够在设定值附近波动较小,实现了较好的控制效果。

在优化过程中,我们尝试了不同的控制算法和参数,比较了它们的性能差异。

实验结果表明,在一些情况下,改变控制算法和参数可以显著提高过程控制系统的性能。

通过优化,我们实现了更快的响应时间和更小的稳定偏差,提高了系统的稳定性和控制精度。

五、结论与总结通过本次实验,我们了解了过程控制系统的基本原理、组成和操作方法。

我们掌握了搭建过程控制系统、调节参数以及优化性能的技巧。

实验结果表明,合理的控制算法和参数选择可以显著提高过程控制系统的性能,实现更好的控制效果。

然而,本次实验还存在一些不足之处。

首先,在系统搭建过程中,可能由于设备和软件的限制,无法完全模拟实际的工业过程。

其次,实验涉及到的控制算法和参数调节方法较为简单,在实际工程中可能需要更为复杂和精细的控制策略。

《过程控制系统》实验报告

《过程控制系统》实验报告一、实验目的过程控制系统实验旨在通过实际操作和观察,深入理解过程控制系统的组成、工作原理和性能特点,掌握常见的控制算法和参数整定方法,培养学生的工程实践能力和解决实际问题的能力。

二、实验设备1、过程控制实验装置包括水箱、水泵、调节阀、传感器(液位传感器、温度传感器等)、控制器(可编程控制器 PLC 或工业控制计算机)等。

2、计算机及相关软件用于编程、监控和数据采集分析。

三、实验原理过程控制系统是指对工业生产过程中的某个物理量(如温度、压力、液位、流量等)进行自动控制,使其保持在期望的设定值附近。

其基本原理是通过传感器检测被控量的实际值,将其与设定值进行比较,产生偏差信号,控制器根据偏差信号按照一定的控制算法计算出控制量,通过执行机构(如调节阀、电机等)作用于被控对象,从而实现对被控量的控制。

常见的控制算法包括比例(P)控制、积分(I)控制、微分(D)控制及其组合(如 PID 控制)。

四、实验内容及步骤1、单回路液位控制系统实验(1)系统组成及连接将液位传感器安装在水箱上,调节阀与水泵相连,控制器与传感器和调节阀连接,计算机与控制器通信。

(2)参数设置在控制器中设置液位设定值、控制算法(如 PID)的参数等。

(3)系统运行启动水泵,观察液位的变化,通过控制器的调节使液位稳定在设定值附近。

(4)数据采集与分析利用计算机采集液位的实际值和控制量的数据,绘制曲线,分析系统的稳定性、快速性和准确性。

2、温度控制系统实验(1)系统组成与连接类似液位控制系统,将温度传感器安装在加热装置上,调节阀控制加热功率。

设置温度设定值和控制算法参数。

(3)运行与数据采集分析启动加热装置,观察温度变化,采集数据并分析。

五、实验数据及结果分析1、单回路液位控制系统(1)实验数据记录不同时刻的液位实际值和控制量。

(2)结果分析稳定性分析:观察液位是否在设定值附近波动,波动范围是否在允许范围内。

快速性分析:计算液位达到设定值所需的时间。

过程控制实验报告

过程控制实验报告1. 背景过程控制是一种控制技术,用于监测和调整工业过程中的变量,以确保产品的质量和效率。

在工业生产中,过程控制对于提高产品质量、降低生产成本和提高生产效率起着至关重要的作用。

本实验旨在通过模拟一个简单的工业过程,了解过程控制的基本原理和方法。

通过对过程中的变量进行监测和调整,我们可以在不同条件下优化过程,并得出相应的结论和建议。

2. 实验设备和方法2.1 实验设备•控制器:使用PID控制器进行过程控制。

•传感器:使用温度传感器、压力传感器和流量传感器等监测过程中的变量。

•执行器:使用阀门、电机等对过程进行调整。

2.2 实验方法1.设定控制目标:根据实验要求,确定需要控制的变量和目标值。

2.连接传感器和执行器:将传感器和执行器与控制器连接,确保数据的传输和命令的执行。

3.数据采集和处理:通过传感器获取过程中的数据,并将其输入到控制器中进行处理。

4.控制策略选择:选择合适的控制策略,如比例控制、积分控制、微分控制等。

5.调整参数:根据实际情况,调整控制器的参数,以达到控制目标。

6.系统监测和优化:实时监测过程中的变量,并根据实验结果进行系统优化。

3. 实验结果经过实验,我们获得了以下结果:•利用PID控制器进行温度控制实验,成功将温度稳定在目标温度范围内,并保持稳定不变。

•利用PID控制器进行压力控制实验,成功将压力稳定在目标压力范围内,并保持稳定不变。

•利用PID控制器进行流量控制实验,成功将流量控制在目标流量范围内,并保持稳定不变。

通过数据分析和结果对比,我们得出以下结论:•PID控制器具有较好的控制性能,能够实现对温度、压力和流量等变量的精确控制。

•过程控制的关键在于选择合适的控制策略和参数调整,通过不断优化可以实现更好的控制效果。

•实时监测对于控制系统的稳定性和可靠性具有至关重要的作用,可以及时发现问题并进行修正。

4. 建议根据实验结果和分析,我们提出以下建议:1.在实际工业生产中,可以采用PID控制器对关键的工艺变量进行控制,以提高产品质量和生产效率。

过程控制 实验报告

过程控制实验报告过程控制实验报告引言:过程控制是一种通过监测和调节系统中的变量,以保持系统稳定运行的技术。

在工业生产中,过程控制对于提高生产效率、降低成本、确保产品质量至关重要。

本实验旨在通过对一个简单的过程控制系统进行实验,探索过程控制的基本原理和应用。

实验目的:1. 理解过程控制的基本原理和方法;2. 学习使用控制器进行过程调节;3. 掌握过程控制系统的参数调节方法。

实验器材和材料:1. 过程控制实验装置;2. 控制器;3. 传感器;4. 计算机。

实验步骤:1. 搭建过程控制实验装置:将传感器与被控对象连接,将控制器与传感器连接,将计算机与控制器连接。

2. 设置控制器参数:根据实验要求,设置控制器的比例、积分和微分参数。

3. 开始实验:启动实验装置,并记录被控对象的初始状态。

4. 监测和调节:通过传感器实时监测被控对象的状态,并将数据传输给控制器。

控制器根据设定的参数,计算出相应的控制信号,通过执行器对被控对象进行调节。

5. 数据记录和分析:记录实验过程中的数据,并分析控制效果。

6. 结束实验:实验结束后,关闭实验装置并整理实验数据。

实验结果:通过实验,我们观察到被控对象在开始时处于不稳定状态,随着控制器的调节,被控对象逐渐趋于稳定。

我们还发现,不同的控制器参数会对控制效果产生不同的影响。

比例参数的增大可加速系统的响应速度,但可能引起过冲;积分参数的增大可减小稳态误差,但可能引起系统的超调;微分参数的增大可提高系统的稳定性,但可能引起系统的震荡。

因此,在实际应用中,需要根据具体的要求和系统特性来选择合适的控制器参数。

实验总结:通过本次实验,我们深入了解了过程控制的基本原理和方法。

过程控制在工业生产中起着至关重要的作用,能够提高生产效率、降低成本,并确保产品质量。

在实际应用中,我们需要根据具体的系统要求和特性来选择合适的控制器和参数,以实现系统的稳定运行。

实验的局限性:本实验是基于一个简单的过程控制系统进行的,实际应用中的过程控制系统可能更加复杂。

过程控制实验报告

过程控制实验报告1 简介过程控制,在现代工业生产中占有重要的地位,其为保证生产过程质量和效率的关键因素。

基于这种情况,我们深入研究了自动控制系统和PID控制算法,通过实验来掌握它们的特点,从而能够更好地设计、调节和维护高质量的生产过程。

2 实验原理2.1 自动控制系统自动控制系统是应用控制理论和现代科技手段实现工艺或装置自动化的系统。

它由控制器和执行机构组成,通过传感器采集过程变量和设定值,以调节执行机构的动作来达到自动控制的目的。

自动控制系统有许多种类型,包括反馈控制、前馈控制以及模型预测控制。

2.2 PID控制算法PID控制算法是一种基于连续时间反馈机制的调节方法。

该方法通过对误差、误差积分和误差导数的加权求和,来生成控制器的输出。

PID控制器是最常用的控制器类型,其具备简单、稳定等优点。

3 实验步骤3.1 实验一:提高反馈控制器的稳定性此实验是为了提高反馈控制器的稳定性而设计的,我们首先将作为检测过程变量的传感器连接到实验装置上,接着我们调整了PI控制器的参数,通过改变比例增益和积分时间常数来调节PI控制器。

我们一开始设定了较高的比例增益,随后逐渐减小比例增益,直到控制器的稳定性和系统响应变得相对平缓。

之后,我们在一定范围内改变积分时间常数的值,通过观察控制器响应时间来确定最佳的比例增益和积分时间常数。

最终,我们将系统稳定性调整到了最佳状态并记录了参数值。

3.2 实验二:调整PID控制器在本次实验中,我们将了解如何通过调整PID控制器的参数来优化控制效果。

我们首先将系统的控制模式切换到PID控制,并设定一个范围内的目标值,以提高系统响应时间和减小误差。

我们通过改变比例、积分和导数参数的值,来寻找最佳控制参数。

我们发现,随着比例增益的变化,系统响应时间会逐渐减小,但是其过冲幅度则会变大。

我们试图通过调整其他两个参数的值来抵消这种趋势,最终找到了最佳的参数。

3.3 实验三:模型预测控制本实验旨在掌握模型预测控制的基本原理和操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过程控制系统Matlab/Simulink 仿真实验实验一过程控制系统建模 (1)实验二PID控制 (10)实验三串级控制 (27)实验四比值控制 (35)实验五解耦控制系统 (40)实验一过程控制系统建模作业题目一:常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。

答:常见的工业过程动态特性的类型有:无自平衡能力的单容对象特性、有自平衡能力的单容对象特性、有相互影响的多容对象的动态特性、无相互影响的多容对象的动态特性等。

通常的模型有一阶惯性模型,二阶模型等。

(1) 无自平衡能力的单容对象特性: 两个无自衡单容过程的模型分别为s s G 5.01)(=和se ss G 55.01)(-=,在Simulink 中建立模型如下单位阶跃响应曲线如下:(2) 有自平衡能力的单容对象特性: 两个自衡单容过程的模型分别为122)(+=s s G 和s e s s G 5122)(-+=,在Simulink 中建立模型如下:单位阶跃响应曲线如下:(3) 有相互影响的多容对象的动态特性: 有相互影响的多容过程的模型为121)(22++=Ts s T s G ξ,当参数1=T ,2.1 ,1 ,3.0 ,0=ξ时,在Simulink 中建立模型如下:单位阶跃响应曲线如下:(4) 无相互影响的多容对象的动态特性: 两个无相互影响的多容过程的模型为)1)(12(1)(++=s s s G (多容有自衡能力的对象)和)12(1)(+=s s s G (多容无自衡能力的对象),在Simulink 中建立模型如下单位阶跃响应曲线如下作业题目二:某二阶系统的模型为2() 222nG s s s n nϖζϖϖ=++,二阶系统的性能主要取决于ζ,n ϖ两个参数。

试利用Simulink 仿真两个参数的变化对二阶系统输出响应的影响,加深对二阶系统的理解,分别进行下列仿真:(1)2n ϖ=不变时,ζ分别为0.1, 0.8, 1.0, 2.0时的单位阶跃响应曲线; (2)0.8ζ=不变时,n ϖ分别为2, 5, 8, 10时的单位阶跃响应曲线。

(3)2n ϖ=,ζ为0.1时的单位阶跃响应曲线:n(2)0.8ζ=,n ϖ为2时的单位阶跃响应曲线:0.8ζ=,n ϖ为8时的单位阶跃响应曲线:0.8ζ=,n ϖ为10时的单位阶跃响应曲线:实验二PID控制作业题目:建立如下所示Simulink仿真系统图。

利用Simulink仿真软件进行如下实验:1.建立Simulink原理图如下2.双击原理图中的PID模块,出现参数设定对话框如下将PID控制器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例控制。

3. 进行仿真,调整比例增益,观察响应曲线的变化,分析系统性能的变化:P=0.5时的响应曲线如下:P=2时的响应曲线如下:P=5时的响应曲线如下:由以上三组响应曲线可以看出,纯比例控制对系统性能的影响为:比例调节的余差随着比例带的加大而加大,减小比例带就等于加大调节系统的开环增益,其后果是导致系统真激烈震荡甚至不稳定,比例带很大时,被调量可以没有超调,但余差很大,调节时间也很长,减小比例带就引起被调量的来回波动,但系统仍可能是稳定的,余差相应减少。

4. 将控制器的功能改为比例微分控制,调整参数,观测系统的响应曲线,分析比例微分的作用。

P=2,D=0.1时的相应曲线如下:P=2,D=0.5时的相应曲线如下:P=2,D=2时的相应曲线如下:P=2,D=5时的相应曲线如下:由以上四组响应曲线可以看出,比例微分控制对系统性能的影响为:可以提高系统的稳定性,引入适当的微分动作可以减小余差,并且减小了短期最大偏大,提高了振荡频率。

5. 将控制器的功能改为比例积分控制,调整参数,观测系统的响应曲线,分析比例积分的作用。

P=2,I=0.1时的响应曲线如下:P=2,I=0.5时的响应曲线如下:P=2,I=1.5时的响应曲线如下:由以上五组响应曲线可以看出,比例积分控制对系统性能的影响为:消除了系统余差,但降低了稳定性,PI调节在比例带不变的情况下,减小积分时间TI(增大积分增益I),将使控制系统稳定性降低、振荡加剧、调节过程加快、振荡频率升高。

6. 将控制器的功能改为比例积分微分控制,调整参数,观测系统的响应曲线,分析比例积分微分的作用。

P=2,I=0.5,D=0.2的响应曲线如下P=2,I=0.5,D=3的响应曲线如下P=2,I=0.1,D=0.5的响应曲线如下P=2,I=1,D=0.5的响应曲线如下P=2,I=3,D=0.5的响应曲线如下由以上几组响应曲线可以看出,比例积分微分控制对系统性能的影响为:提高系统稳定性,抑制动态偏差,减小余差,提高响应速度,当微分时间较小时,提高微分时间可以减小余差,提高响应速度并减小振荡,当微分时间较大时,提高微分时间,振荡会加剧。

7. 将PID控制器的积分微分增益改为0,对系统进行纯比例控制,修改比例增益,使系统输出的过度过程曲线的衰减比n=4,记下此时的比例增益值。

经过调整,当比例P=1时,终值r=0.5,第一个波峰值y1=0.72,第二个波峰值y2=0.55,衰减比约为4,如下图所示。

8. 修改比例增益,使系统输出的过度过程曲线的衰减比n=2,记下此时的比例增益值。

经过调整,当比例P=12时,终值r=0.93,第一个波峰值y1=1.6,第二个波峰值y2=1.25,衰减比约为2,如下图所示。

9. 修改比例增益,使系统输出呈现临界振荡波形,记下此时的比例增益。

经过调整,当比例P=2.7时,系统输出呈现临界振荡波形,如下图所示。

10. 将PID控制器的比例、积分增益进行修改,对系统进行比例积分控制。

不断修改比例、积分增益,使系统输出的过渡过程曲线的衰减比n=2,4,10,记下此时比例和积分增益。

经过调整,当比例P=2,I=0.6时,终值r=1,第一个波峰值y1=1.28,第二个波峰值y2=1.14,衰减比约为2,如下图所示。

经过调整,当比例P=5,I=0.3时,终值r=1,第一个波峰值y1=1.4,第二个波峰值y2=1.1,衰减比约为4,如下图所示。

经过调整,当比例P=4,I=0.15时,终值r=1,第一个波峰值y1=1.3,第二个波峰值y2=1.03,衰减比约为10,如下图所示。

11. 将PID控制器的比例、积分、微分增益进行修改,对系统进行比例积分控制。

不断修改比例、积分、微分增益,使系统输出的过度过程曲线的衰减比n=2,4,10,记下此时比例、积分、微分增益。

经过调整,当比例P=6,I=1,D=0.05时,终值r=1,第一个波峰值y1=1.5,第二个波峰值y2=1.25,衰减比约为2,如下图所示。

经过调整,当比例P=12,I=1,D=1时,终值r=1,第一个波峰值y1=1.4,第二个波峰值y2=1.1,衰减比约为4,如下图所示。

经过调整,当比例P=6,I=1,D=1时,终值r=1,第一个波峰值y1=1.3,第二个波峰值y2=1.03,衰减比约为10,如下图所示。

实验三 串级控制作业题目:串级控制系统仿真。

已知某串级控制系统的主副对象的传递函数G o1,G o2分别为:1211(),1001101o o G s G s s ==++,副回路干扰通道的传递函数为:221()201d G s s s =++。

(1) 画出串级控制系统的方框图及相同控制对象下的单回路控制系统方框图。

(2) 用Simulink 画出上述两个系统的仿真框图(3) 选用PID 调节器,整定主副控制器的参数,使该串级控制系统性能良好,并绘制相应的单位阶跃响应曲线。

(4) 比较单回路控制系统及串级控制系统在相同的副扰动下的单位阶跃响应曲线,并说明原因。

用simulink 画出上述两个系统的仿真框图如下: ○1单回路控制系统方框图如下○2串级控制系统方框图如下图○1为单回路控制系统的Simulink 图,其中,PID C1为单回路PID 控制器,d1为一次扰动,取阶跃信号;d2为二次扰动,取阶跃信号;G o2为副对象,G o1为主对象;r为系统输入,取阶跃信号,y为系统输出,它连接到示波器上,可以方便地观测输出。

经过不断的试验,当输入比例系数为260,积分系数为0,微分系数为140时,系统阶跃响应达到比较满意的效果,系统阶跃响应如下图:采用这套PID参数时,二次扰动作用下,置输入为0,系统框图如下系统的输出响应如下图:采用这套PID参数时,一次扰动作用下,置输入为0,系统框图如下系统的输出响应如下综合以上各图可以看出采用单回路控制,系统的阶跃响应达到要求时,系统对一次,二次扰动的抑制效果不是很好。

图○2是采用串级控制时的情况,q1为一次扰动,取阶跃信号;q2为二次扰动,取阶跃信号;PID C1为主控制器,采用PD控制,PID C2为副控制器,采用P控制;G o2为副对象,G o1为主对象;r为系统输入,取阶跃信号;y为系统输出,它连接到示波器上,可以方便地观测输出。

经过不断试验,当PID C1为主控制器输入比例系数为550,积分系数为0,微分系数为80时;当PID C2为主控制器输入比例系数为3,积分系数为0,微分系数为0时;系统阶跃响应达到比较满意的效果,系统阶跃响应如下图所示:采用这套PID参数时,二次扰动作用下,置输入为0,系统的框图如下系统的输出响应如下图采用这套PID参数时,一次扰动作用下,置输入为0,系统的框图如下系统的输出响应如下图综合以上各图可以看出,采用串级控制,系统的阶跃响应达到要求时,系统对一次扰动,二次扰动的抑制也能达到很好的效果。

综合单回路控制和串级控制的情况,系统的控制性能对比如下表所示。

系统采用单回路控制和串级控制的对比从表中可以看出系统的动态过程改善更为明显,可见对二次扰动的最大动态偏差可以减小约6倍,对一次扰动的最大动态偏差也可以减小约2.4倍,系统的调节时间提高了2.5倍。

单回路控制系统在副扰动下的单位阶跃响应曲线如下串级控制系统在副扰动作用下的节约响应曲线如下通过对比两曲线可以看出,串级控制系统中因为副回路的存在,当副扰动作用时,副控制器会立即动作,削弱干扰的影响,使被副回路抑制过的干扰再进入主回路,对主回路的影响大大降低,相应偏差也大大减小。

实验四 比值控制作业题目:在例一中如系统传递函数为43()151s G s e s -=+,其他参数不变,试对其进行单闭环比值控制系统仿真分析,并讨论43()151s G s e s -=+分母中“15”变化10%±时控制系统的鲁棒性。

(1)分析从动量无调节器的开环系统稳定性。

由控制理论知,开环稳定性分析是系统校正的前提。

系统稳定性的分析可利用Bode 图进行,编制MATLAB Bode 图绘制程序(M-dile )如下:clear allclose all T=15;K0=3;tao=4; num=[K0];den=[T,1];G=tf(num,den,'inputdelay',tao);margin(G)执行该程序得系统的Bode 图如图所示,可见系统是稳定的。

相关文档
最新文档