密度泛函理论

合集下载

密度泛函理论

密度泛函理论
对应最优基态解,平均能量 E 对 i (q) 变分为零。为了保证 i (q) 的正交归一化, 需要引入拉格朗日乘子 ij
E ij i | j ij 0 i, j
由此得到
(2.5)
h
j j
ij * ij
(q1 , { k }) j (q1 ) ij j (q1 )
1. Born-Oppenheimer 绝热近似
固体系统的总哈密顿量(无外场)为
H H e H N H e N
其中
(1.1)
2 2 1 e2 H e (r ) Te (r ) Ve (r ) ri 2 i j | ri r j | i 2m 2 1 H N ( R ) TN ( R ) V N ( R ) 2 V N ( Ri R j ) Rj 2 i j j 2M j H e N (r , R ) Ve N (ri R j )

HF
(2.16)
求和只对被电子占据的态进行。 ( r ) 是总电荷密度 (包括正在讨论的电子) , i
(r , r ) 与
自相互作用和泡利不相容原理引起的效应有关。后者与所考虑电子的位置 r 有关。显然

dr (r ) 1
如果 i 有被电子占据,则


(2.17)
忽略高阶小量 C nn ,原子核的运动方程为
(1.9)


(1.10)
T
总波函数为
N
T ( R ) E n ( R) C n ( R) n ( R) E n n ( R ) n (r , R) n ( R) n (r , R)

密度泛函理论在环境科学中的应用研究

密度泛函理论在环境科学中的应用研究

密度泛函理论在环境科学中的应用研究一、密度泛函理论概述密度泛函理论(DFT)是一种量子化学方法,用于计算原子、分子和固体的基态性质和反应。

其核心思想是将系统中每个粒子的电荷密度作为变量,并通过泛函方法来求得能量。

DFT的优点在于能够处理更大的系统,减少计算成本,以及可以处理非常复杂的化学反应过程。

二、DFT在环境科学中的应用1.分子环境中的吸附和催化DFT可以用于解释吸附和催化反应的机制,特别是在涉及到催化反应的半导体表面上。

它可以计算分子的吸附能、催化反应活性和选择性等性质,因此对于开发新型催化剂和优化催化反应具有重要意义。

2.环境污染物的检测和修复DFT可以计算污染物之间的相互作用和各种化学反应,预测其环境行为和生物降解路径。

这些预测可以为污染物检测和修复提供重要信息,并有助于了解人类和环境的潜在风险。

3.大气和水体中的污染物DFT可以预测大气中的污染物和水体中的污染物对环境的影响。

通过计算反应性和分子结构等参数,DFT可以用于预测翻译氧化和氮氧化物在大气中的光化学反应,以及水中的污染物和水体中生物群落的影响。

4. 电子捕获材料DFT可以用于预测电子捕获材料(如汞、铬等)的性质。

电子捕获材料是一类用于捕获和储存电子的材料,在环境监控和分析中具有广泛的应用。

5. 环境友好型催化剂的设计DFT还可以用于设计环境友好型催化剂。

在环境保护和可持续发展方面,催化剂的设计和开发非常重要。

通过计算机模拟,可以预测新型催化剂的催化性质,并提高环境友好型催化剂的选择性和活性。

三、总结随着环境污染问题的日益严重,DFT在环境科学中的应用越来越受到关注。

DFT可以用于预测环境污染物的行为、设计环境友好型催化剂、预测电子捕获材料等等。

它具有精度高、稳定性好、计算成本低的优点,因此在今后的环境科学中将继续发挥重要作用。

DFT(密度泛函理论)

DFT(密度泛函理论)

PW c
91
H0 t, rS , H1 t, rS ,
H0
t, rS
,
b1
f
3
ln
1
t2 a 1 At2
At 4 A2t 4
H1
t,
rS
,
16
3 2
1/3 C c
f
t e 3 2 dx2 / f 2
t
192
2
1/ 6
2
f
7/6
a
exp
bc rS , / f 3
➢ Glue Model
只适用于单一金属。较好地平衡了表面和内部的结构和能量。
Vi
rij
U
rij
ji
j
3. 化学和生物体系的力场
➢ 成键作用(Bonded Interactions):Bonds,Valence Angles,Dihedral Angles (Torsional Angles), Improper Dihedral Angles ➢ 非成键作用(Nonbonded Interactions):范德华力和静电力
➢ DFT 的最大问题在于没有统一的理论方法系统地提高计算精度,即更复杂的泛函 形式不一定计算精度越高,而是与被研究体系密切相关。
➢ 运用 DFT 计算的软件包之一:VASP (Vienna Ab-initio Simulation Package)
http://cms.mpi.univie.ac.at/vasp/ 应用周期性边界条件以计算较大的体系。
关联项
Lee, Yang, and Parr (LYP)
LYP c
a
1 d 1/3
ab 9
ec1/ 3 1 d 1/3

密度泛函理论及其应用

密度泛函理论及其应用

密度泛函理论及其应用密度泛函理论是一种非常重要的理论,它为我们理解氢原子的电子结构、固体的起伏等提供了非常重要的指引。

密度泛函理论(DFT)最初是由劳伦斯·卡兹特·赫伯伯特(Laurence Kohn)和沃尔特·凯恩(Walter Kohn)提出的。

它是一种基于电子密度推导出体系的总能量、波函数和其他统计物理量的一般原理。

在这种理论中,电子密度起着中心作用,因为它能够完整地描述一个量子力学体系。

密度泛函理论是通用理论,适用于所有的材料。

因此,从高分子材料和生物大分子到催化剂和纳米晶体,密度泛函理论都可以用来描述它们的电子结构。

它已经成为机械计算和电子结构计算的重要方法,并且在分子、固体和表面的数学分析中发挥了重要作用。

密度泛函理论的应用1. 计算材料属性现代计算机结合密度泛函理论可以计算材料性质。

这些物理性质包括原子和分子几何结构、硬度、瑞利散射、比热容和电学性质。

最终,这些计算可以提供来自实验证明的实验设计的预测。

这是一个突破性的技术,因为它意味着合成新材料不再需要使用试错法,而是通过计算和优化得到。

比如,可以预测一些还没有合成的、但有前途的催化剂材料。

2. 模拟化学反应密度泛函理论可以用来模拟化学反应,已经成为有机和无机化学以及生物化学领域中的常用计算方法之一。

通过模拟化学反应,可以确定在给定条件下发生反应的机理和产物。

例如,可以模拟化学纯化过程来预测某种材料在特定条件下的分解,或侵蚀反应的机理。

3. 定量结构活性关系(QSAR)定量结构活性关系是计算机科学和化学之间的技术交叉,它可以将一个分子的特定结构与其生物活性或其他,比如环境毒性、生物崩解性和降解性,这样的性质联系起来。

密度泛函理论可用于定量结构活性关系(QSAR)的计算,因为它可以提供有关分子结构和性质之间的信息。

结束语随着计算能力的提高、软件算法的提高和新量子化学方法的精细化,密度泛函理论已经在多个领域得到了广泛的应用,与实验数据越来越联系紧密。

密度泛函理论

密度泛函理论

ˆ ˆ (r) ˆ n(r ) (r ) 电子密度算符 (4.5) ˆ ( r ) 的期待值: 电子密度分布n(r)是n ˆ(r ) ) (4.6) ˆ(r )) (即 n n(r ) (, n
9
Hohenberg-Kohn定理的证明
• HK定理的证明:外部势v(r)是n(r)的唯一泛函。即由n(r)唯一决 定。换句话说,如果有另一个v’(r),则不可能产生同样的n(r). 反证法:设有另一个v’(r) ,其基态Ψ ’也会产生相同的n(r). ∵ v(r)≠v’(r) ,∴ Ψ ≠Ψ ’(除非v’(r)-v (r)=const). ∵ Ψ 与 Ψ ’满足不同的Schrödinger 方程: (4.7) ˆ ˆ ˆ ˆ H T V U H Ψ = E Ψ (4.8) ˆT ˆ V ˆ U ˆ H V V H H’Ψ ’ = E’Ψ ’ • 利用基态能量最小原理,有
H T V U T
1 2

1 r r

( r ) ( r )dr
V v(r ) ( r ) ( r )dr U
1 2
Hartree单位 外部势
( r ) ( r ) ( r ) ( r )drdr
(4.1) (4.2) (4.3) (4.4)
即 E E [v ( r ) v( r )]n( r )dr
同时,把带撇的与不带撇的交换得
E E [v( r ) v ( r )]n( r )dr
(4.10)
或者
E E [v ( r ) v( r )]n( r )dr
(4.11)
可见(4.10)与(4.11)相互矛盾。表明v’(r) 不可能产生同样的n(r) . 所以v(r) 是n(r) 的唯一泛函。由于v(r) 决定整个H, 即系统的基态 能量是n(r) 的唯一泛函。 同理,T和U也是n(r) 的唯一泛函。可定义: F [n(r )] (, (T U )) (4.12) 式(4.12)是一个普适函数,适于任何粒子系和任何外部势。于是 整个系统的基态能量泛函可写为:

dft密度泛函理论

dft密度泛函理论

dft密度泛函理论
DFT密度泛函理论(DFT)是一种用于计算和预测物质结构和性质的重要理论。

它是建立在现代量子化学理论之上,以经典原子泛函理论(AFL)为基础,建立在密度泛函理论(DFT)之上。

DFT密度泛函理论提供了一种更准确,更有效的方法来计算和预测物质的结构和性质。

DFT密度泛函理论的核心思想是将原子泛函理论的“方法”通过计算原子的坐标和自旋属性,将其转化为由电子的密度来确定的泛函理论。

这种理论在计算中使用了少量的变量,从而显著降低了计算量和计算时间,并且可以给出更准确的结果。

DFT密度泛函理论也可以用来计算物质的力学和热力性质,以及电子结构,从而有助于研究物质的性质。

DFT密度泛函理论的应用非常广泛,可以用来解决各种材料的结构和性质的问题,特别是金属、半导体、纳米材料和生物材料。

它对材料的发展和设计有重要的指导作用。

DFT密度泛函理论也可以用来预测材料的电子结构和性质,从而帮助研究人员更好地理解材料的性质。

DFT密度泛函理论是一种强大的理论,它可以为科学家们提供更多的信息,从而更好地研究物质的结构和性质。

它的应用范围非常广泛,可以用来解决各种材料的结构和性质的问题,也可以用来预测
材料的电子结构和性质。

密度泛函理论课件

密度泛函理论课件
ONE
KEEP VIEW
密度泛函理论课件
目 录
• 密度泛函理论概述 • 密度泛函理论基础 • 密度泛函计算方法及实现 • 材料性质预测与模拟实例分析 • 误差来源及改进方案讨论 • 总结与展望
PART 01
密度泛函理论概述
密度泛函理论历史与发展
早期研究
从Thomas-Fermi模型到Hohenberg-Kohn定 理的提出。
了解了密度泛函理论在材料科学、 化学、物理等领域的应用案例。
分享前沿研究成果和趋势分析
高精度计算方法发展
介绍了高精度密度泛函计算方法的研究进展,如高精度交换关联泛 函、多体相互作用处理方法等。
机器学习与密度泛函理论结合
探讨了机器学习方法在密度泛函理论中的应用,如神经网络势函数、 基于数据的密度泛函理论等。
密度泛函理论应用领域
01
02
03
材料科学
预测材料的电子结构、光 学、磁学等性质,指导新 材料设计。
化学
研究化学反应机理、分子 结构、化学键等,推动药 物研发和催化剂设计。
凝聚态物理
研究固体、液体等物质的 电子结构、相变等物理现 象,揭示微观机制。
PART 02
密度泛函理论基础
薛定谔方程与波函数
并行计算技术在DFT中应用
并行计算技术
利用计算机集群或多核处理器进行并行计算,以加速DFT计算的来自行速度。DFT并行化策略
采用区域分解、任务并行和数据并行等策略,实现DFT计算的高效并行化。
PART 04
材料性质预测与模拟实例 分析
金属、半导体、绝缘体等电子结构特性研究
1 2 3
电子态密度与能带结构 分析金属、半导体和绝缘体的电子态密度和能带 结构特点。

DFT密度泛函理论简介

DFT密度泛函理论简介

密度泛函理论, Density functional theory (DFT)是一种研究多电子体系电子结构的量子力学方法。

密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。

理论概述电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock方法,是基于复杂的多电子波函数的。

密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。

因为多电子波函数有个变量(为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。

虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。

Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。

Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。

最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。

最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。

正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。

密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。

在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。

这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。

处理交换相关作用是KS DFT中的难点。

目前并没有精确求解交换相关能的方法。

最简单的近似求解方法为局域密度近似(LDA)。

LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

密度泛函理论, Density functional theory (DFT)是一种研究多电子体系电子结构的量子力学方法。

密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。

电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock方法,是基于复杂的多电子波函数的。

密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。

因为多电子波函数有 3N个变量(N为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。

虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。

Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。

Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。

最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。

最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。

正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。

密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。

在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。

这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。

处理交换相关作用是KS DFT 中的难点。

目前并没有精确求解交换相关能E XC的方法。

最简单的近似求解方法为局域密度近似(LDA)。

LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。

自1970年以来,密度泛函理论在固体物理学的计算中得到广泛的应用。

在多数情况下,与其他解决量子力学多体问题的方法相比,采用局域密度近似的密度泛函理论给出了非常令人满意的结果,同时固态计算相比实验的费用要少。

尽管如此,人们普遍认为量子化学计算不能给出足够精确的结果,直到二十世纪九十年代,理论中所采用的近似被重新提炼成更好的交换相关作用模型。

密度泛函理论是目前多种领域中电子结构计算的领先方法。

尽管密度泛函理论得到了改进,但是用它来恰当的描述分子间相互作用,特别是范德瓦尔斯力,或者计算半导体的能隙还是有一定困难的。

[编辑]早期模型: Thomas-Fermi 模型
密度泛函理论可以上溯到由Thomas和Fermi在1920年代发展的Thomas-Fermi模型。

他们将一个原子的动能表示成电子密度的泛函,并加上原子核-电子和电子-电子相互作用(两种作用都可以通过电子密度来表达)的经典表达来计算原子的能量。

Thomas-Fermi模型是很重要的第一步,但是由于没有考虑Hartree-Fock理论指出的原子交换能,Thomas-Fermi方程的精度受到限制。

1928年保罗·狄拉克在该模型基础上增加了一个交换能泛函项。

然而,在大多数应用中Thomas-Fermi-Dirac理论表现得非常不够准确。

其中最大的误差来自动能的表示,然后是交换能中的误差,以及对电子相关作用的完全忽略。

[编辑]导出过程和表达式
在通常的多体问题电子结构的计算中,原子核可以看作静止不动的(波恩-奥本海默近似),这样电子可看作在原子核产生的静电势中运动。

电子的定态可由满足多体薛定谔方程的波函数描述:
其中为电子数目,为电子间的相互作用势。

算符和称为普适算符,它们在所有系统中都相同,而算符则依赖于系统,为非普适的。

可以看出,单粒子问题和比较复杂的多粒子问题的区别在于交换作用项。

目前有很多成熟的方法来解多体薛定谔方程,例如:物理学里使用的图形微扰理论和量子化学里使用的基于斯莱特行列式中波函数系统展
开的组态相互作用(CI)方法。

然而,这些方法的问题在于较大的计算量,很难用于大规模复杂系统的计算。

相比之下,密度函理论将含的多体问题转化为不含的单体问题上,成为解决此类问题的一个有效方法。

在密度泛函理论中,最关键的变量为粒子密度,它由下式给出
霍恩伯格和沃尔特·科恩在1964年提出 [1],上面的关系可以反过来,即给出基态电子密度,原则上可以计算出对应的基态波函数。

也就是说,是的唯一泛函,即
对应地,所有其它基态可观测量均为的泛函
进而可以得出,基态能量也是的泛函
,
其中外势场的贡献可以用密度表示成
泛函和称为普适泛函,而显然不是普适的,它取决于所考虑的系统。

对于确定的系统,即已知,需要将泛函
对于求极小值。

这里假定能够得出和的表达式。

对能量泛函求极值可以得到基态能量,进而求得所有基态可观测量。

对能量泛函求变分极值可以用不定算子的拉格朗日方法,这由科恩和沈吕九在1965年完成 [2]。

这里我们使用如下结论:上面方程中的泛函可以写成一个无相互作用的体系的密度泛函
其中为无相互作用的动能,为粒子运动感受到的外势场。

显然,,若取为
这样,可以解这个辅助的无相互作用体系的科恩-沈吕久方程
可以得到一系列的电子轨域,并由此求得原来的多体体系的电子密度
等效的单粒子势可以表示成
其中第二项为描述电子间库仑斥力的哈特里项,最后一项叫做交换关联势,包含所有多粒子的相互作用。

由于哈特里项和交换关联项都依赖于 , 又依赖于 , 而又依赖于 , 科恩-沈吕九方程的求解需要用自洽方法。

通常首先假设一个初始的 , 然后计算对应的并求解科恩-沈吕九方程中的。

进而可以计算出新的密度分布,并开始新一轮计算。

此过程不断重复,直到计算结果收敛。

相关文档
最新文档