DFT密度泛函理论简介
密度泛函理论

证明:设有另一个n’(r) ,粒子数与n(r) 相同为N. 则
E[n(r)] v(r)n(r)dr F[n(r)]
(,Vˆ) (, (Tˆ Uˆ )) (,Vˆ) (, (Tˆ Uˆ )) E[n(r)]
(4.14)
E[n(r)] E[n(r)]
要是相互作用电子体系的交换
关联能Exc[n]无法精确得到。为 了使DFT理论能够付诸实施, Kohn-Sham提出了局域密度近 似(Local Density Approximation, LDA)。
我们将在第五章详细介绍
LDA,本章只直接引用以便建
立Kohn-Sham方程。
Prof. L.J.Sham
1992
14
局域密度近似(LDA)
LDA: 对于缓变的n(r) 或/和高电子密度情况,可采用如下近似:
Exc[n] n(r) xc[n(r)]dr
(4.19)
xc[n(r)] 是交换关联能密度。它可以从均匀自由电子气的理 论结果得到。对于不同的r, 有不同的n(r) .相应的有
不同的 xc[n(r)]。
20
4.7 总能Etot表达式
2. 因此,DFT可以解决原子分子物理中的许多问 题,如
(1)电离势的计算, (2)振动谱研究, (3)化学反应问题, (4)生物分子的结构, (5)催化活性位置的特性等等。 3. 另一个重要优点是降低维数(Kohn的演讲) 5
W. Kohn-1
密度泛函理论- 物质电子结构的新理论
1。氢原子
1)Bohr: 电子=粒子 2)Schrodinger:
1 2
2
Veff
(r )
i (r) i i (r)
计算化学中的密度泛函理论

计算化学中的密度泛函理论计算化学是利用计算机模拟分子和反应过程的科学,它已经成为化学研究的重要手段。
其中密度泛函理论(DFT)作为一种重要的计算化学方法,在现代物理、化学、地球科学等领域中得到了广泛应用。
密度泛函理论起源于1964年,由P. Hohenberg与W. Kohn提出。
它通过波函数的精确形式表达计算繁琐的多电子系统中的相互作用能和电子密度分布,以一种简单有效的方式计算分子结构和反应性质。
DFT的中心思想是,一个系统的性质完全由其电子密度决定。
因此,在密度泛函理论中,系统的电子密度是基本变量。
DFT方法的基本思想是,将多电子体系中的每个电子采用一个局部函数来描述,将多个电子的局部函数合成为总的电子密度函数。
由此,可以得到一个只依赖于电子密度的交换-相关能泛函。
这个泛函通过对体系中的电子密度进行积分得到的结果,就是体系的总能量和电子密度分布。
因此,可以通过直接计算电子密度与其相关的总能量和反应性质。
DFT的另一个优点是可以用较小的计算代价解决大量问题。
DFT不需要精确计算电子波函数,在采用比较合适的基组(基本波函数集合)的情况下,可以避免多电子问题中的指数级增长。
此外,DFT还可以通过密度分析和分子轨道理论等方法,更加清楚直观地描述化学反应。
尽管DFT方法显示出许多优点,但仍然存在着一些问题,特别是对于过渡金属和配位化合物等需要包含精细关联关系的系统而言。
此外,构建准确的交换-相关泛函仍是DFT方法的一个重要挑战。
因此,未来的研究目标是发展新的交换-相关泛函,并将DFT与其他方法结合起来,以便更好地解决多电子体系的化学性质计算问题。
总之,DFT作为一种重要的计算化学方法,通过波函数的精确形式表达计算繁琐的多电子系统中的相互作用能和电子密度分布,以一种简单有效的方式计算分子结构和反应性质。
DFT的一些成果,如发现纳米材料,显示了它的极大推广价值。
随着计算化学、高性能计算技术、基础数学等领域的进一步发展,DFT的应用前景将会更加广阔。
密度泛函理论及其在材料科学中的应用

密度泛函理论及其在材料科学中的应用密度泛函理论(Density Functional Theory,DFT)是一种处理多体量子力学问题的计算方法,广泛应用于材料科学领域。
它基于电子密度的概念,将多体问题转化为单电子问题,从而计算材料的物理性质、结构和反应等。
密度泛函理论因其高效可靠的计算性质,在材料科学中得到了广泛的应用和发展。
密度泛函理论的基本原理是根据电子的运动方程来描述材料的行为。
该理论的核心是Kohn-Sham方程,它通过将复杂的多体问题转化为非相互作用电子的问题来解决。
该方程基于电子密度,即描述电子在空间中分布的函数,从而将原子核和电子之间的相互作用引入计算中。
通过求解Kohn-Sham方程,可以得到电子的波函数和能量,从而计算材料的性质。
密度泛函理论在材料科学中具有广泛的应用。
首先,它可以用于预测和解释材料的结构和稳定性。
通过计算材料的晶体结构、能带和原子间的相互作用,可以预测材料的晶体结构和相变,从而为合成新材料提供指导。
其次,密度泛函理论对于材料的电子性质的计算也十分重要。
通过计算材料的能带结构和态密度,可以得到材料的电导率、能级分布和载流子输运性质等信息,从而深入理解电子在材料中的行为,为材料的设计和优化提供依据。
此外,密度泛函理论还可以用于计算材料的光学性质。
通过计算材料的光学吸收和发射,可以得到材料的各向异性、折射率以及光电子耦合等信息,为设计新的光功能材料提供指导。
密度泛函理论还可以探索材料的力学性质和热力学性质。
通过计算材料的弹性模量、晶格常数以及材料的热膨胀系数等参数,可以了解材料的力学行为和稳定性。
此外,密度泛函理论还可以计算材料的热力学性质,如热容、热导率和相变温度等,为材料的应用和改进提供依据。
综上所述,密度泛函理论在材料科学中的应用十分广泛。
通过计算材料的结构、电子性质、光学性质以及力学性质等,可以深入理解材料的物理、化学和力学行为,为材料的设计、合成和应用提供指导。
密度泛函理论及其应用

密度泛函理论及其应用密度泛函理论是一种非常重要的理论,它为我们理解氢原子的电子结构、固体的起伏等提供了非常重要的指引。
密度泛函理论(DFT)最初是由劳伦斯·卡兹特·赫伯伯特(Laurence Kohn)和沃尔特·凯恩(Walter Kohn)提出的。
它是一种基于电子密度推导出体系的总能量、波函数和其他统计物理量的一般原理。
在这种理论中,电子密度起着中心作用,因为它能够完整地描述一个量子力学体系。
密度泛函理论是通用理论,适用于所有的材料。
因此,从高分子材料和生物大分子到催化剂和纳米晶体,密度泛函理论都可以用来描述它们的电子结构。
它已经成为机械计算和电子结构计算的重要方法,并且在分子、固体和表面的数学分析中发挥了重要作用。
密度泛函理论的应用1. 计算材料属性现代计算机结合密度泛函理论可以计算材料性质。
这些物理性质包括原子和分子几何结构、硬度、瑞利散射、比热容和电学性质。
最终,这些计算可以提供来自实验证明的实验设计的预测。
这是一个突破性的技术,因为它意味着合成新材料不再需要使用试错法,而是通过计算和优化得到。
比如,可以预测一些还没有合成的、但有前途的催化剂材料。
2. 模拟化学反应密度泛函理论可以用来模拟化学反应,已经成为有机和无机化学以及生物化学领域中的常用计算方法之一。
通过模拟化学反应,可以确定在给定条件下发生反应的机理和产物。
例如,可以模拟化学纯化过程来预测某种材料在特定条件下的分解,或侵蚀反应的机理。
3. 定量结构活性关系(QSAR)定量结构活性关系是计算机科学和化学之间的技术交叉,它可以将一个分子的特定结构与其生物活性或其他,比如环境毒性、生物崩解性和降解性,这样的性质联系起来。
密度泛函理论可用于定量结构活性关系(QSAR)的计算,因为它可以提供有关分子结构和性质之间的信息。
结束语随着计算能力的提高、软件算法的提高和新量子化学方法的精细化,密度泛函理论已经在多个领域得到了广泛的应用,与实验数据越来越联系紧密。
密度泛函理论

密度泛函理论, Density functional theory (DFT)是一种研究多电子体系电子结构的量子力学方法。
密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。
电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock方法,是基于复杂的多电子波函数的。
密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。
因为多电子波函数有 3N个变量(N为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。
最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。
正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。
密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。
在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。
这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。
处理交换相关作用是KS DFT 中的难点。
目前并没有精确求解交换相关能E XC的方法。
最简单的近似求解方法为局域密度近似(LDA)。
LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。
dft密度泛函理论

dft密度泛函理论
DFT密度泛函理论(DFT)是一种用于计算和预测物质结构和性质的重要理论。
它是建立在现代量子化学理论之上,以经典原子泛函理论(AFL)为基础,建立在密度泛函理论(DFT)之上。
DFT密度泛函理论提供了一种更准确,更有效的方法来计算和预测物质的结构和性质。
DFT密度泛函理论的核心思想是将原子泛函理论的“方法”通过计算原子的坐标和自旋属性,将其转化为由电子的密度来确定的泛函理论。
这种理论在计算中使用了少量的变量,从而显著降低了计算量和计算时间,并且可以给出更准确的结果。
DFT密度泛函理论也可以用来计算物质的力学和热力性质,以及电子结构,从而有助于研究物质的性质。
DFT密度泛函理论的应用非常广泛,可以用来解决各种材料的结构和性质的问题,特别是金属、半导体、纳米材料和生物材料。
它对材料的发展和设计有重要的指导作用。
DFT密度泛函理论也可以用来预测材料的电子结构和性质,从而帮助研究人员更好地理解材料的性质。
DFT密度泛函理论是一种强大的理论,它可以为科学家们提供更多的信息,从而更好地研究物质的结构和性质。
它的应用范围非常广泛,可以用来解决各种材料的结构和性质的问题,也可以用来预测
材料的电子结构和性质。
密度泛函理论及其在材料科学中的应用综述

密度泛函理论及其在材料科学中的应用综述密度泛函理论(Density Functional Theory,简称DFT)是一种基于量子力学原理的计算方法,被广泛应用于材料科学领域。
该理论通过计算材料体系中的电子密度分布,揭示了电子结构和物性之间的关联,对于理解和预测材料的化学、物理性质具有重要意义。
本文将对密度泛函理论的基本原理和在材料科学中的应用进行综述。
密度泛函理论的核心思想是将多体问题转化为单体问题,即将多电子体系的波函数描述转化为电子密度描述。
根据Hohenberg-Kohn定理,多体问题的基态能量和波函数可以完全由电子密度确定。
这一定理为密度泛函理论提供了坚实的理论基础。
具体而言,DFT通过解决Kohn-Sham方程来计算材料体系的基态能量和波函数,进而获得电子密度。
Kohn-Sham方程是一个单体Schrödinger方程,通过构建交换-相关能泛函来近似处理与电子之间的相互作用。
密度泛函理论在材料科学中的应用无处不在。
首先,DFT可以用于研究材料的构型优化和几何结构。
通过计算晶格参数、原子位置或分子构型,可以预测和优化材料在不同环境中的结构稳定性和相互作用。
其次,DFT可以揭示材料的电子结构和能带特性。
通过计算能带结构、态密度和电子态等,可以理解材料的导电性、磁性和光电特性。
此外,DFT还可以用于研究材料的光学、热学和力学性质。
通过计算折射率、吸收谱和力学响应等,可以预测和解释材料在光学和力学方面的性能。
近年来,随着计算机硬件和算法的快速发展,密度泛函理论在材料科学中的应用得到了进一步拓展。
高通量计算方法的出现使得可以高效地筛选大量材料的性质,加速新材料的发现过程。
此外,与实验数据的对比和验证也大大提高了DFT的可靠性和准确性。
通过与X射线衍射、核磁共振和光电子能谱等实验数据的对比,可以进一步验证DFT模拟结果的正确性。
然而,密度泛函理论也存在一些挑战和限制。
首先,密度泛函理论是基于近似方法的计算方法,所以其结果受到交换-相关能泛函的选择和适用性的影响。
理论化学中的密度泛函理论研究

理论化学中的密度泛函理论研究密度泛函理论(Density Functional Theory,简称DFT)是理论化学中重要的研究手段之一。
本文将从理论化学的角度,对密度泛函理论的研究进行探讨,并对其在不同领域中的应用进行概述。
一、密度泛函理论的基本原理密度泛函理论是基于量子力学和统计力学的理论,旨在描述物质的电子结构和性质。
其基本原理是以电子的密度来描述体系的构型,而非直接求解薛定谔方程。
根据泡利不相容原理和库伦排斥定律,系统中任意两个电子的运动是相互耦合的,因此要准确地描述电子结构以及相互作用,需要考虑所有电子的密度分布。
二、密度泛函理论的发展历程密度泛函理论的发展可以追溯到20世纪60年代,由卡恩-肖姆方程的提出为其开创了先河。
在接下来的几十年里,密度泛函理论经历了快速发展,尤其是引入了一系列密度泛函近似方法,如局域密度近似(LDA)、广义梯度近似(GGA)等。
这些近似方法在提高计算效率的同时,尽可能保持原始密度泛函理论的准确性。
三、密度泛函理论在化学反应研究中的应用密度泛函理论在化学反应研究中发挥着重要作用。
通过计算反应能垒、反应活化能以及反应速率常数等,可以预测和解释化学反应的机理和动力学。
例如,利用密度泛函理论可以研究催化剂表面上的活性位点以及催化反应中的中间体形成机理,进一步指导实验设计和催化性能的改进。
四、密度泛函理论在材料科学研究中的应用密度泛函理论在材料科学研究中也广泛应用。
通过计算材料的电子结构、能带结构以及物理性质,可以预测和解释材料的电子输运性质、光学性质、磁性等。
例如,密度泛函理论可以用来研究光催化材料的吸光性质以及光生载流子的分离和转移行为,为光催化材料的设计和合成提供理论指导。
五、密度泛函理论在生物化学研究中的应用随着计算机技术的快速发展,密度泛函理论在生物化学研究中的应用也越来越广泛。
通过计算生物大分子(如蛋白质、核酸等)的结构和性质,可以揭示其功能机制并设计相关的药物分子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密度泛函理论, Density functional theory (DFT)是一种研究多电子体系电子结构的量子力学方法。
密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。
理论概述
电子结构理论的经典方法,特别是Hartree-Fock方法和后Hartree-Fock方法,是基于复杂的多电子波函数的。
密度泛函理论的主要目标就是用电子密度取代波函数做为研究的基本量。
因为多电子波函数有个变量(为电子数,每个电子包含三个空间变量),而电子密度仅是三个变量的函数,无论在概念上还是实际上都更方便处理。
虽然密度泛函理论的概念起源于Thomas-Fermi模型,但直到Hohenberg-Kohn定理提出之后才有了坚实的理论依据。
Hohenberg-Kohn第一定理指出体系的基态能量仅仅是电子密度的泛函。
Hohenberg-Kohn第二定理证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。
最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。
正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。
密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。
在Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。
这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。
处理交换相关作用是KS DFT中的难点。
目前并没有精确求解交换相关能的方法。
最简单的近似求解方法为局域密度近似(LDA)。
LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。
自1970年以来,密度泛函理论在固体物理学的计算中得到广泛的应用。
在多数情况下,与其他解决量子力学多体问题的方法相比,采用局域密度近似的密度泛函理论给出了非常令人满意的结果,同时固态计算相比实验的费用要少。
尽管如此,人们普遍认为量子化学计算不能给出足够精确的结果,直到二十世纪九十年代,理论中所采用的近似被重新提炼成更好的交换相关作用模型。
密度泛函理论是目前多种领域中电子结构计算的领先方法。
尽管密度泛函理论得到了改进,但是用它来恰当的描述分子间相互作用,
特别是范德瓦尔斯力,或者计算半导体的能隙还是有一定困难的。
[编辑]早期模型: Thomas-Fermi 模型
密度泛函理论可以上溯到由Thomas和Fermi在1920年代发展的Thomas-Fermi模型。
他们将一个原子的动能表示成电子密度的泛函,并加上原子核-电子和电子-电子相互作用(两种作用都可以通过电子密度来表达)的经典表达来计算原子的能量。
Thomas-Fermi模型是很重要的第一步,但是由于没有考虑Hartree-Fock理论指出的原子交换能,Thomas-Fermi方程的精度受到限制。
1928年保罗·狄拉克在该模型基础上增加了一个交换能泛函项。
然而,在大多数应用中Thomas-Fermi-Dirac理论表现得非常不够准确。
其中最大的误差来自动能的表示,然后是交换能中的误差,以及对电子相关作用的完全忽略。
[编辑]导出过程和表达式
在通常的多体问题电子结构的计算中,原子核可以看作静止不动的(波恩-奥本海默近似),这样电子可看作在原子核产生的静电势中运动。
电子的定态可由满足多体薛定谔方程的波函数描述:
其中为电子数目,为电子间的相互作用势。
算符和称为普适算符,它们在所有系统中都相同,而算符则依赖于系统,为非普适的。
可以看出,单粒子问题和比较复杂的多粒子问题的区别在于交换作用项。
目前有很多成熟的方法来解多体薛定谔方程,例如:物理学里使用的图形微扰理论和量子化学里使用的基于斯莱特行列式中波函数系统展开的组态相互作用(CI)方法。
然而,这些方法的问题在于较大的计算量,很难用于大规模复杂系统的计算。
相比之下,密度函理论将含的多体问题转化为不含的单体问题上,成为解决此类问题的一个有效方法。
在密度泛函理论中,最关键的变量为粒子密度,它由下式给出
霍恩伯格和沃尔特·科恩在1964年提出 [1],上面的关系可以反过来,即给出基态电子密度,原则上可以计算出对应的基态波函数。
也就是说,是的唯一泛函,即
对应地,所有其它基态可观测量均为的泛函
进而可以得出,基态能量也是的泛函
,
其中外势场的贡献可以用密度表示成
泛函和称为普适泛函,而显然不是普适的,它取决于所考虑的系统。
对于确定的系统,即已知,需要将泛函
对于求极小值。
这里假定能够得出和的表达式。
对能量泛函求极值可以得到基态能量,进而求得所有基态可观测量。
对能量泛函求变分极值可以用不定算子的拉格朗日方法,这由科恩和沈吕九在1965年完成 [2]。
这里我们使用如下结论:上面方程中的泛函可以写成一个无相互作用的体系的密度泛函
其中为无相互作用的动能,为粒子运动感受到的外势场。
显然,,若取为
这样,可以解这个辅助的无相互作用体系的科恩-沈吕久方程
可以得到一系列的电子轨域,并由此求得原来的多体体
系的电子密度
等效的单粒子势可以表示成
其中第二项为描述电子间库仑斥力的哈特里项,最后一项叫做交换关联势,包含所有多粒子的相互作用。
由于哈特里项和交换关联项都依赖于 , 又依赖于 , 而又依赖于 , 科恩-沈吕九方程的求解需要用自洽方法。
通常首先假设一个初始的 , 然后计算对应的并求解科恩-沈吕九方程中的。
进而可以计算出新的密度分布,并开始新一轮计算。
此过程不断重复,直到计算结果收敛。