2018年贵州省贵阳市第一中学2018届高三第一次适应性考试(文科数学)(含答案)

合集下载

贵州省贵阳市联考2018-2019学年高三上学期适应性数学(文科)试卷Word版含解析

贵州省贵阳市联考2018-2019学年高三上学期适应性数学(文科)试卷Word版含解析

贵州省贵阳市联考2018-2019学年高三上学期适应性数学(文科)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知P={y|y=cosθ,θ∈R},Q={x|x2+(1﹣)x﹣=0},则P∩Q=()A.∅B.{0} C.{﹣1} D.2.曲线y=3x﹣lnx在点(1,3)处的切线方程为()A.y=﹣2x﹣1 B.y=﹣2x+5 C.y=2x+1 D.y=2x﹣13.角α的终边过点(﹣2,4),则cosα=()A.B.C.D.4.设点O在△ABC的内部,且有+2+3=,则△AOB的面积与△ABC的面积之比为()A.B.C.D.5.已知一等差数列的前三项和为94,后三项和为116,各项和为280,则此数列的项数n为()A.5 B.6 C.7 D.86.已知l为平面α内的一条直线,α,β表示两个不同的平面,则“α⊥β”是“l⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.一个空间几何体的三视图如图所示,其体积为()A.16 B.32 C.48 D.968.已知圆C的圆心为y=x2的焦点,且与直线4x+3y+2=0相切,则圆C的方程为()A.B.C.(x﹣1)2+y2=1 D.x2+(y﹣1)2=19.某校新生分班,现有A,B,C三个不同的班,两名关系不错的甲和乙同学会被分到这三个班,每个同学分到各班的可能性相同,则这两名同学被分到同一个班的概率为()A.B.C.D.10.已知i为虚数单位,a为实数,复数=在复平面上对应的点在y轴上,则a为()A.﹣3 B. C.D.311.以双曲线﹣=1(a>0,b>0)中心O(坐标原点)为圆心,焦矩为直径的圆与双曲线交于M点(第一象限),F1、F2分别为双曲线的左、右焦点,过点M作x轴垂线,垂足恰为OF2的中点,则双曲线的离心率为()A.﹣1 B.C. +1 D.212.函数f(x)是自变量不为零的偶函数,且f(x)=log2x(x>0),g(x)=,若存在实数n使得f(m)=g(n),则实数m的取值范围是()A.[﹣2,2] B.∪C.∪ D.(﹣∞,﹣2]∪[2,+∞)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在机读卡上相应的位置.)13.等差数列{an }中,公差d≠0,且2a4﹣a72+2a10=0,数列{bn}是等比数列,且b7=a7,则b5b9= .14.函数y=的最小值是.15.设a,b,c分别表示△ABC的内角A,B,C的所对的边, =(a,﹣ b),=(sinB,cosA),若a=,b=2,且⊥,则△ABC的面积为.16.正方形ABCD边长为a,BC的中点为E,CD的中点为F,沿AE,EF,AF将△ABE,△EFC,△ADF折起,使D,B,C三点重合于点S,则三棱锥S﹣AEF的外接球的体积为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)设函数f (x )=2sin (+x )cosx ﹣(cosx ﹣sinx )2.(1)求函数f (x )的单调递减区间;(2)将f (x )的图象向右平移个单位,再将图象上所有点的横坐标缩短到原来的倍,得到函数y=g (x ),求g ()的值.18.(12分)某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域; (2)求小陈比小李至少晚5分钟到班的概率.19.(12分)如图,AC=2,BC=4,∠ACB=π,直角梯形BCDE 中,BC ∥DE ,∠BCD=,DE=2,且直线AE 与CD 所成角为,AB ⊥CD .(1)求证:平面ABC ⊥平面BCDE ; (2)求三棱锥C ﹣ABE 的体积.20.(12分)函数f (x )=x 2﹣mlnx ﹣nx .(1)当m=﹣1时,函数f (x )在定义域内是增函数,求实数n 的取值范围; (2)当m >0,n=0时,关于x 的方程f (x )=mx 有唯一解,求实数m 的取值范围.21.(12分)平面直角坐标系的原点为O ,椭圆+=1(a >b >0)的右焦点为F ,直线PQ过F 交椭圆于P ,Q 两点,且|PF|max •|QF|min =.(1)求椭圆的长轴与短轴之比;(2)如图,线段PQ 的垂直平分线与PQ 交于点M ,与x 轴,y 轴分别交于D ,E 两点,求的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-1:几何证明选讲]22.(10分)如图所示,A为圆O外一点,AO与圆交于B,C两点,AB=4,AD为圆O的切线,D为切点,AD=8,∠BDC的角平分线与BC和圆O分别交于E,F两点.(1)求证: =;(2)求DE•DF的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,圆P:(x﹣1)2+y2=4,圆Q:(x+1)2+y2=4.(1)以O为极点,x轴正半轴为极轴,建立极坐标系,求圆P和圆Q的极坐标方程,并求出这两圆的交点M,N的极坐标;(2)求这两圆的公共弦MN的参数方程.[选修4-5:不等式选讲]24.(1)证明柯西不等式:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,并指出此不等式里等号成立的条件:(2)用柯西不等式求函数y=2+4的最大值.贵州省贵阳市联考2018-2019学年高三上学期适应性数学(文科)试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知P={y|y=cosθ,θ∈R},Q={x|x2+(1﹣)x﹣=0},则P∩Q=()A.∅B.{0} C.{﹣1} D.【考点】交集及其运算.【分析】根据集合的基本运算即可得到结论.【解答】解:P={y|y=cosθ,θ∈R}=[﹣1,1],,∴P∩Q={﹣1},故选C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.曲线y=3x﹣lnx在点(1,3)处的切线方程为()A.y=﹣2x﹣1 B.y=﹣2x+5 C.y=2x+1 D.y=2x﹣1【考点】利用导数研究曲线上某点切线方程.【分析】求导数,确定切线的斜率,即可求出曲线y=3x﹣lnx在点(1,3)处的切线方程.【解答】解:由题意,,所以曲线过点(1,3)处的切线斜率为k=3﹣1=2,所以切线方程为y﹣3=2(x﹣1),即y=2x+1,故选C.【点评】本题考查曲线y=3x﹣lnx在点(1,3)处的切线方程,考查导数的几何意义,比较基础.3.角α的终边过点(﹣2,4),则cosα=()A.B.C.D.【考点】任意角的三角函数的定义.【分析】先求出角α的终边上的点(﹣2,4)到原点的距离为 r,再利用任意角的三角函数的定义求出结果.【解答】解:角α的终边过点(﹣2,4),,所以,故选:B .【点评】本题考查任意角的三角函数的定义,两点间的距离公式的应用.4.设点O 在△ABC 的内部,且有+2+3=,则△AOB 的面积与△ABC 的面积之比为( )A .B .C .D .【考点】平面向量的基本定理及其意义.【分析】取D ,E 分别为AC ,BC 中点,由已知得,即=﹣2,从而确定点O 的位置,进而求得△AOB 的面积与△ABC 的面积比.【解答】解:取D ,E 分别为AC ,BC 中点,由已知得,即=﹣2,即O ,D ,E 三点共线,且O 在中位线DE 上,所以S △AOB =,故选C .【点评】此题是个基础题.考查向量在几何中的应用,以及向量加法的平行四边形法则和向量共线定理等基础知识,同时考查学生灵活应用知识分析解决问题的能力和计算能力.5.已知一等差数列的前三项和为94,后三项和为116,各项和为280,则此数列的项数n 为( ) A .5B .6C .7D .8【考点】等差数列的通项公式.【分析】由等差数列的性质得a 1+a n =70,从而得到,由此能求出结果.【解答】解:因为 a 1+a n =a 2+a n ﹣1=a 3+a n ﹣2, 所以3(a 1+a n )=94+116=210, 所以a 1+a n =70,所以,所以n=8.故选:D.【点评】本题考查等差数列的项数的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.6.已知l为平面α内的一条直线,α,β表示两个不同的平面,则“α⊥β”是“l⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用面面垂直的判定定理可得α⊥β,而反之不成立.即可判断出.【解答】解:由平面与平面垂直的判定定理知,如果l为平面α内的一条直线且l⊥β,则α⊥β,反过来则不一定,所以“α⊥β”是“l⊥β”的必要不充分条件,故选B.【点评】本题考查了面面垂直的判定定理、充分必要条件,属于基础题.7.一个空间几何体的三视图如图所示,其体积为()A.16 B.32 C.48 D.96【考点】由三视图求面积、体积.【分析】根据三视图得到几何体的直观图,利用直观图即可求出对应的体积.【解答】解:由三视图可知该几何体的直观图是正视图为底的四棱锥,AB=2,CD=4,AD=4,棱锥的高为VD=4,则该四棱锥的体积V==16,故选:A【点评】本题主要考查三视图的应用,利用三视图还原成直观图是解决本题的关键.8.已知圆C的圆心为y=x2的焦点,且与直线4x+3y+2=0相切,则圆C的方程为()A.B.C.(x﹣1)2+y2=1 D.x2+(y﹣1)2=1【考点】圆的切线方程.【分析】求出圆心坐标,利用点到直线的距离公式,求出圆的半径,即可求出圆C的方程.【解答】解:的焦点为(0,1),所以圆C为,所以x2+(y﹣1)2=1,故选:D.【点评】本题考查圆C的方程,考查抛物线的性质,确定圆心坐标与半径是关键.9.某校新生分班,现有A,B,C三个不同的班,两名关系不错的甲和乙同学会被分到这三个班,每个同学分到各班的可能性相同,则这两名同学被分到同一个班的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】利用列举法求出甲乙两同学分班的所有情况和符合条件的各种情况,由此能求出这两名同学被分到同一个班的概率.【解答】解:甲乙两同学分班共有以下情况:(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),其中符合条件的有三种,所以这两名同学被分到同一个班的概率为p=.故选:A.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.10.已知i为虚数单位,a为实数,复数=在复平面上对应的点在y轴上,则a为()A.﹣3 B. C.D.3【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简复数z,由已知条件列出方程组,求解即可得答案.【解答】解:,又复数=在复平面上对应的点在y轴上,∴解得a=﹣3.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.11.以双曲线﹣=1(a>0,b>0)中心O(坐标原点)为圆心,焦矩为直径的圆与双曲线交于M点(第一象限),F1、F2分别为双曲线的左、右焦点,过点M作x轴垂线,垂足恰为OF2的中点,则双曲线的离心率为()A.﹣1 B.C. +1 D.2【考点】双曲线的简单性质.【分析】由题意M的坐标为M(),代入双曲线方程可得e的方程,即可求出双曲线的离心率.【解答】解:由题意M的坐标为M(),代入双曲线方程可得∴e4﹣8e2+4=0,∴e2=4+2∴e=+1.故选:C.【点评】本题考查双曲线与圆的性质,考查学生的计算能力,比较基础.x(x>0),g(x)=,12.函数f(x)是自变量不为零的偶函数,且f(x)=log2若存在实数n使得f(m)=g(n),则实数m的取值范围是()A.[﹣2,2] B.∪C.∪ D.(﹣∞,﹣2]∪[2,+∞)【考点】根的存在性及根的个数判断;函数的零点与方程根的关系.【分析】求出g(x)的范围,利用存在实数n使得f(m)=g(n),列出不等式,然后求解即可.【解答】解:∵g(x)=,g(x)∈[﹣1,1],存在n使得f(m)=g(n),可得﹣1≤f(|m|)≤1,|m|≤1,即﹣1≤log2,∴,故选:B.【点评】本题考查函数的值域以及对数函数的性质,分段函数的应用,考查计算能力.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在机读卡上相应的位置.) 13.等差数列{a n }中,公差d ≠0,且2a 4﹣a 72+2a 10=0,数列{b n }是等比数列,且b 7=a 7,则b 5b 9= 16 .【考点】等比数列的通项公式;等差数列的通项公式.【分析】利用等差数列的性质可把原式化简可得4a 7﹣a 72=0,从而可求a 7,再由等比数列的性质可得b 5•b 9=b 72,从而可求的答案. 【解答】解:∵{a n }是等差数列, ∴a 4+a 10=2a 7,∴2a 4﹣a 72+2a 10=4a 7﹣2a 72=0, ∴a 7=0或a 7=4. ∵{b n }为等比数列,∴.故答案是:16.【点评】本题主要考查了等差数列(若m+n=p+q ,则再等差数列中有a m +a n =a p +a q ;在等比数列中有a m •a n =a p •a q )与等比数列的性质的综合应用,利用性质可以简化基本运算.14.函数y=的最小值是.【考点】基本不等式在最值问题中的应用;函数的最值及其几何意义.【分析】将函数化为y=(+)+,注意运用基本不等式和二次函数的最值,同时注意最小值取得时,x 的取值要一致,即可得到所求最小值.【解答】解:函数y===+=(+)+≥2+=.当且仅当=,即有x=0,取得等号.则函数的最小值为.故答案为:.【点评】本题考查基本不等式的运用:求最值,注意求最值的条件:一正二定三等,属于中档题和易错题.15.设a,b,c分别表示△ABC的内角A,B,C的所对的边, =(a,﹣ b),=(sinB,cosA),若a=,b=2,且⊥,则△ABC的面积为.【考点】正弦定理.【分析】利用平面向量共线的性质及正弦定理可得sinAsinB﹣sinBcosA=0,结合sinB≠0可求tanA,利用特殊角的三角函数值可求A,利用正弦定理可求sinB,根据同角三角函数基本关系式可求cosB,进而利用两角和的正弦函数公式可求sinC,利用三角形面积公式即可计算得解.【解答】解:∵, =(a,﹣ b),=(sinB,cosA),∴asinB﹣bcosA=0,∴sinAsinB﹣sinBcosA=0.又∵sinB≠0,∴.∵0<A<π,∴A=,∴.∵a>b,∴A>B,∴,∴,∴△ABC的面积为.故答案为:.【点评】本题主要考查了平面向量共线的性质,正弦定理,特殊角的三角函数值,同角三角函数基本关系式,两角和的正弦函数公式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.16.正方形ABCD边长为a,BC的中点为E,CD的中点为F,沿AE,EF,AF将△ABE,△EFC,△ADF折起,使D,B,C三点重合于点S,则三棱锥S﹣AEF的外接球的体积为.【考点】球内接多面体;球的体积和表面积.【分析】要求三棱锥的体积先找出可以应用的底面和对应的高,这里选择三角形SEF做底面,得到结果.【解答】解:由题意图形折叠为三棱锥,且由S出发的三条棱两两垂直,补体为长方体,,,∴=.故答案为.【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2016秋•贵州月考)设函数f(x)=2sin(+x)cosx﹣(cosx﹣sinx)2.(1)求函数f(x)的单调递减区间;(2)将f(x)的图象向右平移个单位,再将图象上所有点的横坐标缩短到原来的倍,得到函数y=g(x),求g()的值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的化简求值.【分析】(1)利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性,得出结论.(2)根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:(1)===.由,求得,故函数f(x)的单调递减区间为[kπ+,kπ+],k∈Z.(2)将f(x)的图象向右平移个单位,可得y=2sin[2(x﹣)+]+1﹣=2sin2x+1﹣的图象;再将图象上所有点的横坐标缩短到原来的倍,得到函数y=g(x)=2sin4x+1﹣的,∴g()=0+1﹣=1﹣.【点评】本题主要考查三角恒等变换,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.18.(12分)(2016秋•贵州月考)某班早晨7:30开始上早读课,该班学生小陈和小李在早上7:10至7:30之间到班,且两人在此时间段的任何时刻到班是等可能的.(1)在平面直角坐标系中画出两人到班的所有可能结果表示的区域;(2)求小陈比小李至少晚5分钟到班的概率.【考点】几何概型.【分析】(Ⅰ)用x,y分别表示小陈、小李到班的时间,则x∈[10,30],y∈[10,30],作出正方形区域得答案;(Ⅱ)小陈比小李至少晚到5分钟,即x﹣y≥5,由线性规划知识求出可行域,利用面积比得答案.【解答】解:(Ⅰ)用x,y分别表示小陈、小李到班的时间,则x∈[10,30],y∈[10,30],所有可能结果对应坐标平面内一个正方形区域ABCD,如图所示.(Ⅱ)小陈比小李至少晚到5分钟,即x﹣y≥5,对应区域为△BEF,所求概率.【点评】本题考查几何概型,体现了数学转化思想方法,关键是由题意作出图形,是中档题.19.(12分)(2016秋•贵州月考)如图,AC=2,BC=4,∠ACB=π,直角梯形BCDE中,BC∥DE,∠BCD=,DE=2,且直线AE与CD所成角为,AB⊥CD.(1)求证:平面ABC⊥平面BCDE;(2)求三棱锥C﹣ABE的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(Ⅰ)由题意知BC⊥CD,又AB⊥CD,利用线面垂直的判定得CD⊥平面ABC,再由面面垂直的判定得平面ABC⊥平面BCDE;(Ⅱ)过E作EF⊥BC,连接AF,由(Ⅰ)可得,EF⊥平面ABC,且EF∥CD,CF=DE=2,进一步得到∠AEF为直线AE与CD所成角,然后求解直角三角形得AF=.进一步得EF=2,然后利用等积法求得三棱锥C﹣ABE的体积.【解答】(Ⅰ)证明:由题意知BC⊥CD,又AB⊥CD,且AB∩BC=B,∴CD⊥平面ABC,又CD ⊂平面BCDE , ∴平面ABC ⊥平面BCDE ;(Ⅱ)解:如图,过E 作EF ⊥BC ,连接AF , 由(Ⅰ)得,EF ⊥平面ABC , 且EF ∥CD ,CF=DE=2, ∴.在△ACF 中, =12,∴AF=.…(9分)在Rt △AEF 中,可得EF=2,∴.【点评】本题考查平面与平面垂直的性质和判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.20.(12分)(2016秋•贵州月考)函数f (x )=x 2﹣mlnx ﹣nx .(1)当m=﹣1时,函数f (x )在定义域内是增函数,求实数n 的取值范围; (2)当m >0,n=0时,关于x 的方程f (x )=mx 有唯一解,求实数m 的取值范围. 【考点】利用导数研究函数的单调性.【分析】(1)将f (x )在定义域内是增函数转化为f'(x )=恒成立,再参数变量分离,根据对勾函数的性质求的最小值(2)构造新的函数g (x )=x 2﹣mlnx ﹣mx ,利用导数求出单调区间和最小值,方程有唯一解即函数g (x )只有一个零点,故g (x )min =0.由,消去m ,得到关于x 2的方程,再次构造函数,利用单调性解出x 2,从而得到m 的值【解答】解:(1)当m=﹣1时,f (x )=x 2+lnx ﹣nx ,依题意有对x ∈(0,+∞)恒成立,只需.因为,当且仅当时取等,所以.(2)设g (x )=f (x )﹣mx=x 2﹣mlnx ﹣mx ,依题意,g (x )=0有唯一解.,由x >0,m >0,解得(舍),.当x ∈(0,x 2)时,g'(x )<0,g (x )在(0,x 2)上单调递减; 当x ∈(x 2,+∞)时,g'(x )>0,g (x )在(x 2,+∞)上单调递增. 所以g (x )min =g (x 2).因为g (x )=0有唯一解,所以g (x 2)=0,则有即两式相减并化简得2lnx 2+x 2﹣1=0.设h (x )=2lnx+x ﹣1,易知h (x )在(0,+∞)上是增函数,且h (1)=0, 则h (x )=0恰有一解,即x 2=1, 代入g (x 2)=0得m=1.【点评】本题主要考察导数的综合应用.第1问是基础题,第2问构造函数是解题的关键,综合性很强,难度较大21.(12分)(2016秋•贵州月考)平面直角坐标系的原点为O ,椭圆+=1(a >b >0)的右焦点为F ,直线PQ 过F 交椭圆于P ,Q 两点,且|PF|max •|QF|min =.(1)求椭圆的长轴与短轴之比;(2)如图,线段PQ 的垂直平分线与PQ 交于点M ,与x 轴,y 轴分别交于D ,E 两点,求的取值范围.【考点】椭圆的简单性质.【分析】(1)由椭圆的性质可知|PF|max =a+c ,|QF|min =a ﹣c ,可知,求得a 2=4b 2,长轴与短轴之比为2a :2b=2;(2)设直线PQ 的方程为y=k (x ﹣c ),代入椭圆方程,由韦达定理及中点坐标公式求得M 点坐标,由MD ⊥PQ ,可知:,求得D 点坐标,根据三角形相似,可知:=,代入即可求得的取值范围.【解答】解:(1)设F (c ,0),则|PF|max =a+c ,|QF|min =a ﹣c ,…(2分) 则有,由b 2=a 2﹣c 2, ∴a 2=4b 2,…(3分)∴长轴与短轴之比为2a :2b=2.…(4分)(Ⅱ)由a :b=2,可设椭圆方程为.依题意,直线PQ 存在且斜率不为0,设直线PQ 的方程为y=k (x ﹣c ),P (x 1,y 1),Q (x 2,y 2),…联立得(4k 2+1)x 2﹣8k 2cx+4k 2c 2﹣4b 2=0,得.…(6分)∴,…(7分)∴.…(8分),0),∵MD⊥PQ,设D(x3∴,解得.…(9分)∵△DMF∽△DOE,∴,的取值范围(,+∞).…(12分)【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线垂直的充要条件,韦达定理及三角形相似综合应用,考查计算能力,属于中档题.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号. [选修4-4:坐标系与参数方程]22.(2016秋•贵州月考)在平面直角坐标系xOy中,圆P:(x﹣1)2+y2=4,圆Q:(x+1)2+y2=4.(1)以O为极点,x轴正半轴为极轴,建立极坐标系,求圆P和圆Q的极坐标方程,并求出这两圆的交点M,N的极坐标;(2)求这两圆的公共弦MN的参数方程.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)利用直角坐标与极坐标的互化,可得圆P和圆Q的极坐标方程,联立求出这两圆的交点M,N的极坐标;(2)求出M,N的直角坐标,可得这两圆的公共弦MN的参数方程.【解答】解:(1)圆P的极坐标方程为ρ2﹣2ρcosθ=3,…(1分)圆Q的极坐标方程为ρ2+2ρcosθ=3.…(2分)联立解得,cosθ=0,…(3分)所以M,N的极坐标分别为,.…注:极坐标系下的点,表示方法不唯一.(2)M,N的直角坐标分别为,,…(7分)所以公共弦MN的参数方程为.…(10分)【点评】本题以圆的方程为载体,考查极坐标方程,比较基础.[选修4-5:不等式选讲]23.(2016秋•贵州月考)(1)证明柯西不等式:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,并指出此不等式里等号成立的条件:(2)用柯西不等式求函数y=2+4的最大值.【考点】二维形式的柯西不等式.【分析】(1)利用作差法,即可证明不等式;(2)利用柯西不等式,可得,即可得出结论.【解答】(1)证明:(a2+b2)(c2+d2)﹣(ac+bd)2=a2d2+b2c2﹣2adbc…(2分)=(ad﹣bc)2≥0,…(4分)当且仅当ad﹣bc=0时,等号成立.…(2)解:函数的定义域为[3,5],且y>0,…(6分)则…(8分)=,…(9分)当且仅当时,等号成立,即时函数取最大值.…(10分)【点评】本题考查不等式的证明,考查柯西不等式的运用,属于中档题.。

贵州省贵阳市第一中学2018届高三上学期适应性月考(一)数学(理)试题 Word版含答案

贵州省贵阳市第一中学2018届高三上学期适应性月考(一)数学(理)试题 Word版含答案

贵州省贵阳市第一中学2018届高三上学期适应性月考(一)理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{A x y ==,2{0}2x B xx +=≤-,则A B = ( ) A .[2,1]-- B .[1,2]- C .[1,1]- D .[1,2)2.复数32(1)(1)i i +-在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知()f x 在其定义域[1,)-+∞上是减函数,若(2)()f x f x ->,则( ) A .1x > B .11x -≤< C .13x <≤ D .13x -≤≤4.双曲线方程为2221x y -=,则它的右焦点坐标为( )A .(2 B . C. D . 5.某市国际马拉松邀请赛设置了全程马拉松、半程马拉松和迷你马拉松三个比赛项目,4位长跑爱好者各自任选一个项目参加比赛,则这4人中三个项目都有人参加的概率为( ) A .89 B .49 C. 29 D .8276.若方程2(1)10x k x --+=有大于2的根,则实数k 的取值范围是( ) A .7(,)2-∞ B .7(,]2-∞ C. 7(,)2+∞ D .7[,)2+∞ 7.已知,αβ都是锐角,且sin cos cos (1sin )αβαβ=+,则( ) A .32παβ-=B .22παβ-=C. 32παβ+=D .22παβ+=8.如图,由曲线21y x =-,直线0,2x x ==和x 轴围成的封闭图形的面积是( )A .220(1)x dx -⎰B .220(1)x dx -⎰C. 2201x dx -⎰ D .122211(1)(1)x dx x dx --+-⎰⎰9.设直线2a x =与椭圆22221(0)x y a b a b+=>>交于,A B 两点,若OAB ∆是直角三角形,则椭圆的离心率为( )A B .1210.已知数列{}n a 满足:11a =,121n n a a -=+(2n ≥),为求使不等式123n a a a a k ++++< 的最大正整数n ,某人编写了如图所示的程序框图,在框图的判断框中的条件和输出的表达式分别为( )A .,S k i <B .,1S k i <- C. ,S k i ≥ D .,1S k i ≥-11.为得到函数22()2sin cos cos )f x x x x x =-的图象,可以把函数()2cos(2)3g x x π=-的图象( ) A . 向左平移4π个单位 B .向左平移2π个单位 C. 向右平移4π个单位 D .向右平移2π个单位 12.如图是某几何体的三视图,则该几何体的各个棱长中,最长的棱的长度为( )A..第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 61(12)()x x x-+展开式的常数项是 .(用数字作答)14.已知变量,x y 满足条件23029x y x y x y ≥⎧⎪+-≥⎨⎪≤-⎩,则23x y -的最小值等于 .15.如图,在ABC ∆中,D 是AB 上一点,2AD DB =,若CD C A ⊥,2CD =,则C D C B ∙= .16. 已知,,a b c 分别为锐角ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆周长的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列{}n a 满足:11a =,1121n n n a a a --=+(2n ≥).(1)求数列{}n a 的通项公式;(2)设数列{}1n n a a +的前n 项和为n T ,求证:12n T <. 18. 为了解学生完成数学作业所需时间,某学校统计了高三年级学生每天完成数学作业的平均时间介于30分钟到90分钟之间,图5是统计结果的频率分布直方图.(1)数学教研组计划对作业完成较慢的20%的学生进行集中辅导,试求每天完成数学作业的平均时间为多少分钟以上的学生需要参加辅导?(2)现从高三年级学生中任选4人,记4人中每天完成数学作业的平均时间不超过50分钟的人数为X ,求X 的分布列和期望.19. 如图,在三棱锥K ABC -中,,,D E F 分别是,,KA KB KC 的中点,平面KBC ⊥平面ABC ,AC BC ⊥,KBC ∆是边长为2的正三角形,3AC =.(1)求证:BF ⊥平面KAC ; (2)求二面角F BD E --的余弦值.20. 已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,12,F F 是椭圆的左、右焦点,P 是椭圆上一点,12PF PF ∙的最小值为2.(1)求椭圆C 的方程;(2)过点2F 且与x 轴不重合的直线l 交椭圆C 于,M N 两点,圆E 是以1F 为圆心椭圆C 的长轴长为半径的圆,过2F 且与l 垂直的直线与圆E 交于,P Q 两点,求四边形MPNQ 面积的取值范围. 21. 设2()(ln 1)(2)f x x x a x x =-+-,a R ∈. (1)令'()()g x f x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知极坐标的极点在平面直角坐标系的原点O 处,极轴与x 轴的非负半轴重合,且长度单位相同,直线l 的极坐标方程为:2sin()33πρθ+=,曲线C 的参数方程为:3cos 23sin x y αα⎧=⎪⎨=+⎪⎩,(α为参数),其中[0,2)απ∈.(1)写出直线l 的直角坐标方程及曲线C 的普通方程; (2)若,A B 为曲线C 与直线l 的两交点,求AB . 23.选修4-5:不等式选讲 设()231f x x x =-++.(1)求不等式()4f x x <+的解集;(2)若函数()()g x f x ax =+有两个不同的零点,求实数a 的取值范围.贵阳第一中学2018届高考适应性月考卷(一)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)1.函数y =(1][3+)A =-∞-∞ ,,,不等式202x x +-≤的解集为[22)B =-,,所以[21]A B =-- ,,故选A.2.复数32(1i)(1i)+-1i =--,对应点为(11)--,,位于第三象限,故选C.3.由单调性及定义域得12x x --<≤,解得13x <≤,故选C.4.双曲线焦点在x 轴上,22213122a b c ==⇒=,,右焦点为0⎫⎪⎪⎝⎭,故选C. 5.23434C A 3643819P ===,故选B.6.问题等价于方程11x k x +=-在(2)+∞,有解,而函数1y x x =+在(2)+∞,上递增,值域为52⎛⎫+∞ ⎪⎝⎭,,所以k 的取值范围是72⎛⎫∞ ⎪⎝⎭,+,故选C.7.πsin cos cos (1sin )sin()cos sin 2αβαβαβαα⎛⎫=+⇒-==- ⎪⎝⎭,即2αβπ-=2,故选B.8.阴影部分面积为12221[(1)]d (1)d x x x x ⎰--+⎰-,而222101|1|112x x x x x ⎧--=⎨-<⎩,,,,≤≤≤ 故选C.9.2a x =代入椭圆方程得y =2223()2a c a c a a =⇒-=⇒=,故选C.10.判断的条件为S k <;输出的结果为1i -,故选B. 11.ππ()2sin 22sin 236f x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,π()2sin 26g x x ⎛⎫=+ ⎪⎝⎭π2sin 212x ⎛⎫=+ ⎪⎝⎭,故选C .12.几何体ABCD 为图1中粗线所表示的图形,最长棱是AC ,AC C .二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.61x x ⎛⎫+ ⎪⎝⎭展开式的通项为6216C r rr T x -+=,6203621r r r -=⇒=-=-;无解,所以展开式的常数项为36C 20=.15.由已知3122CB CD CA =- ,0CD CA =,231622CD CB CD CD CA =-= .16.由已知()()()a b a b c b c +-=-,即2221cos 2b c a bc A +-=⇒=得60A =︒,由正弦定理,三角形的周长π24sin 26B C B ⎛⎫++=++ ⎪⎝⎭,ππ62B ⎛⎫∈ ⎪⎝⎭,,πsin 16B ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦⎝,周长的取值范围为(26]+.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分) (Ⅰ)解:111112111(2)2(2)21n n n n n n n a a a n n a a a a -----+=⇒==++≥≥,所以1n a ⎧⎫⎪⎨⎬⎪⎭⎩是以2为公差的等差数列,11111a a =⇒=, 所以121nn a =-, 所以数列{}n a 的通项公式为121n a n =-.(Ⅱ)证明:由(Ⅰ)得111111212122121n n a a n n n n +⎛⎫=⋅=- ⎪-+-+⎝⎭,11112212n T n ⎛⎫=-< ⎪+⎝⎭.18.(本小题满分12分)解:(Ⅰ)设每天完成作业所需时间为x 分钟以上的同学需要参加辅导,则 (70)0.02(9070)0.0050.2x -⨯+-⨯=,得65x =(分钟),所以,每天完成数学作业的平均时间为65分钟以上的同学需要参加辅导.(Ⅱ)把统计的频率作为概率,则选出的每个学生完成作业的时间不超过50分钟的概率为0.2~(40.2)X B ,, 44()C 0.20.8(01234)k k k P X k k -=== ,,,,, 0.8EX =.19.(本小题满分12分)(Ⅰ)证明:如图,建立空间直角坐标系,则(10K ,302BF CK ⎛=-= ⎝⎭,,(10(030)CA =- ,,,, 0BF CK = ,BF CK ⊥得BF CK ⊥,0BF CA = ,BF CA ⊥得BF CA ⊥, CA ,CK 是平面KAC 内的两条相交直线, 所以BF ⊥平面KAC.(Ⅱ)解:平面BDF的一个法向量(10m =,, 平面BDE (即平面ABK)的一个法向量为(32n =-,,3cos 4m n 〈〉= ,,所以二面角F BD E --的余弦值为34.20.(本小题满分12分)解:(Ⅰ)已知12c a =,12PF PF的最小值为222b c -=,又222a b c =+,解得2243a b ==,,所以椭圆方程为22143x y +=. (Ⅱ)当l 与x 轴不垂直时,设l 的方程为1122(1)(0)()()y k x k M x y N x y =-≠,,,,. 由22(1)143y k x x y=-⎧⎪⎨+=⎪⎩,得2222(43)84120k x k x k +-+-=.则221212228412+4343k k x x x x k k -==++,.所以212212(1)|||43k MN x x k +=-=+. 过点2(1)F ,0且与l 垂直的直线1(1)m y x k =--:,1F 到m所以||PQ = 故四边形MPNQ的面积1||||2S MN PQ == 可得当l 与x 轴不垂直时,四边形MPNQ面积的取值范围为(12,.当l 与x 轴垂直时,其方程为1||3||8x MN PQ ===,,,四边形MPNQ 的面积为12. 综上,四边形MPNQ面积的取值范围为[12. 21.(本小题满分12分)解:(Ⅰ)由()ln 22f x x ax a '=-+,可得()ln 22(0)g x x ax a x =-+∈+∞,,, 则112()2axg x a x x-'=-=, 当0a ≤时,(0)x ∈+∞,时,()0g x '>,函数()g x 单调递增,当0a >时,102x a ⎛⎫∈ ⎪⎝⎭,时,()0g x '>,函数()g x 单调递增,12x a ⎛⎫∈+∞ ⎪⎝⎭,时,()0g x '<,函数()g x 单调递减.所以当0a ≤时,函数()g x 的单调递增区间为(0)+∞,,当0a >时,函数()g x 的单调递增区间为102a ⎛⎫ ⎪⎝⎭,,单调递减区间为12a ⎛⎫+∞⎪⎝⎭,. (Ⅱ)由(Ⅰ)知,(1)0f '=. ①当a ≤0时,()f x '单调递增,所以当(01)x ∈,时,()0()f x f x '<,单调递减, 当(1+)x ∈∞,时,()0()f x f x '>,单调递增, 所以()f x 在1x =处取得极小值,不合题意. ②当102a <<时,112a >,由(Ⅰ)知()f x '在102a ⎛⎫ ⎪⎝⎭,内单调递增,可得当(01)x ∈,时,()0f x '<,112x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '>, 所以()f x 在(0,1)内单调递减,在112a ⎛⎫ ⎪⎝⎭,内单调递增,所以()f x 在1x =处取得极小值,不合题意. ③当12a =时,即112a =,()f x '在(0,1)内单调递增,在(1)+∞,内单调递减, 所以当(0)x ∈+∞,时,()0f x '≤,()f x 单调递减,不合题意. ④当12a >时,即1012a <<, 当112x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,()f x 单调递增, 当(1)x ∈+∞,时,()0f x '<,()f x 单调递减, 所以()f x 在1x =处取得极大值,合题意. 综上可知,实数a 的取值范围为12a >.22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)∵π2sin 33ρθ⎛⎫+= ⎪⎝⎭,∴sin cos 3ρθθ=,直线l 30y +-=.曲线C :3cos 23sin x y αα⎧=⎪⎨=+⎪⎩(α为参数), 消去参数可得曲线C 的普通方程为:22(()29x y -+=.(Ⅱ)由(Ⅰ)可知,22(()29x y +-+=的圆心为D (2),半径为3. 设AB 中点为M ,连接DM ,DA , 圆心到直线l 的距离|323|22d -+-==,所以2D M =,又因为3DA =,所以MA =||AB = 23.(本小题满分10分)【选修4−5:不等式选讲】 解:(Ⅰ)分段讨论得不等式解集为(0,3).(Ⅱ)利用图象可得533a -<<-.。

贵阳市第一中学2018届高考适应性月考卷(一)文科综合(含答案)

贵阳市第一中学2018届高考适应性月考卷(一)文科综合(含答案)
第 18 页 共 23 页
25.中外朝的产生和内阁的形成都是为了加强皇权。故选 A。 26.儒家典籍认为私报父祖之仇是孝义之举。汉朝“罢黜百家、独尊儒术” ,出现了董仲舒“春秋决狱” ,即审理具 体案件时直接引证儒家经义。三国时期的魏律认为,如果杀害父兄的罪犯在逃,正式定其有罪后,子弟可以依 照“古义”,自行追杀,这体现出汉魏法律对儒家孝义思想的汲取。故选 B。 27.王羲之是魏晋时期书法家,符合材料“长期战乱” , A 项正确;阎立本是唐朝画家,不符合材料中“长期战乱” , B 项错误;欧阳修是北宋时期书法家,当时社会相对稳定;郑板桥是清代书画家,不符合材料“长期战乱” ; 排除 C、D 两项。故选 A。 28.从材料“士无如仕之阶,或习刀笔以为吏胥,或执仆役以事官僚,或做技巧败鬻以为工匠商贾”“一官、二吏、 三僧、四道、五医、六工、七猎、八民、九儒、十丐”可以得出文人地位低下,C 项正确;B 项与材料无关; 从材料“贡举法废,士无如仕之阶”可知 D 项不符合题意;A 项只体现了第二则材料的意思。故选 C。 29.根据题干表格提供的信息和所学史实可知,明清时期江南已经是南方经济重心,排除 A 项;从明清各地集市数 量变化反映不出 B 项和 D 项;而从嘉靖至道光年间集市数量变化可以反映出商品经济在农村得到广泛发展。 故选 C。 30.从材料可以看出英国大员与清朝大臣往来用照会;英属员与清大臣来往用申陈;清大臣批复用札行;两国属员 往来用平行照会。 不同级别和层次官员之间的文书来往用语是不同的, 这是外交用语规范化的表现。 “照会” “申 陈”等都是近代外交用语, “平行照会”使清王朝被迫放下“天朝上国”的架子,这些外交礼仪及用语的变化, 冲击着中国传统夷夏思想观念。故选 B。 31.由材料中关键词“投资” “金融”可知,西方列强对中国的经济侵略以资本输出为主。故选 C。 32.根据材料“于驱除鞑虏、恢复中华之外,国体民生,尚当变更” ,这体现了三民主义的民族革命、社会革命, “故 前代为英雄革命,今日为国民革命”体现了政治革命,A 项正确;B 项只包含了民族革命,C 项中三民主义的 核心应是民权主义“创立民国” ,D 项材料、教材皆无定义;均排除。故选 A。 33.从图片中可以看出“一战”期间和国民政府统治的前 10 年是中国近代民族资本主义工业发展的两次顶峰,结 合所学内容可知这两次民族资本主义工业快速发展都与政府的大力支持紧密相关,辛亥革命后中华民国成立颁 布的一系列举措推动了民族企业发展进入黄金时期,国民政府推行了国民经济建设运动是另一时期民族企业发 展的重要动力。故选 B。 34.国民革命时期,中国共产党犯了“右”倾错误,放弃了革命领导权。土地革命时期中共吸取国民革命失败的教 训,认识到必须掌握革命的领导权。故选 D。 35.此文件实为中国共产党 1937 年 9 月 22 日发表的《国共合作宣言》 ,因此应是抗日战争期间民族矛盾成为主要 矛盾。故选 D。 二、非选择题(共 160 分) (一)必考题(共 6 小题,共 135 分)

贵州省贵阳市第一中学高三上学期适应性月考(一)(图片)——数学文(数学文)

贵州省贵阳市第一中学高三上学期适应性月考(一)(图片)——数学文(数学文)

贵州省贵阳市第一中学2018届高三上学期适应性月考(一)(图片)贵阳第一中学2018届高考适应性月考卷(一)文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.由题意得{|}{|}{61333|}6M N x x x x x x x =<<<-><---=<或,故选B . 2.由,得,∴,故选C .3.因为,所以,即.又因为,∴,,故选C .4. tan tan () []ααββ=-+=117341111134+==-,,故选A . 5.第一次循环:1412p a b n ====,,,;第二次循环:6263p a b n ====,,,;第三次循环:7712433p a b n ====,,,,终止循环,则输出,故选C . 6.在正方形ABCD 中,当点P 为CD 中点时,三角形APB 为等腰三角形,故∠ABP 为最大角的概率为,故选A .7.由题可知正方体的棱长为3,其体对角线即为球的直径,所以球的表面积为,故选D . 8.依题意,得直线l 过点(1,3),斜率为,所以直线l 的方程为,即,故选A . 9.由21()ln(1)1||f x x x =-++,知f (x )为R 上的偶函数,当时, f (x )在(0,+∞)上为减函数,则,解得,故选D .10.满足条件3372x y x y y -⎧⎪+⎨⎪-⎩,,≥≤≥ 的可行域为如图1所示三角形ABC (包括边界).是可行域上动点(x ,y )到点P (0,3)距离的平方,因为过P 垂直于AC 的直线与AC 的交点在线段AC 上,取最小值,为点P 到线段AC 的距离的平方为18,故选B .11.因为,所以,所以82282828289191191()1044a a a a a a a a a a ⎛⎫⎛⎫+=⨯+⨯+=⨯++ ⎪ ⎪⎝⎭⎝⎭ ,故选A .12.令,则2()()1()()()xf x f x f x g x f x x x x '-⎡⎤''==-⎢⎥⎣⎦,因为,, 所以,则在为增函数,所以,即,故选A .二、填空题(本大题共4小题,每小题5分,共20分)【解析】 13.8816853515111+=-=⨯=÷=; ; ; ;所以第二个数是16351.用此规律可得出1676333515515+=-=⨯=÷=; ; ; ;所以第三个数是73155.14.(1)“过直线外一点有且只有一个平面与已知直线垂直”是真命题;(2)“如果两条直线和一个平面所成的角相等,则这两条直线一定平行”是假命题;(3)“两两相交且不过同一点的三条直线不一定共面”是假命题;(4)“垂直于同一平面的两平面平行” 是假命题.15.画出2310()240x x f x x x x ⎧->⎪=⎨--⎪⎩,,,≤的图象,如图2,由函数有3个不等实根,结合图象得:,即. 16.设M 坐标为(x ,y ),则222212()()3F M F M x c y x c y x c y c =+-=-+=,,①,将代入①式解得222222222(4)(5)c b a c a a x c c --==,又x 2∈[0,a 2],∴,∴. 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)解:(Ⅰ)因为, 且∶,所以.在△PBC 中,4||120BP PC PBC ==∠=︒,. 又因为222||||||2||||cos PC PB BC PB BC PBC =+∠-,即212816||||242BC BC ⎛⎫=+⨯⨯⨯- ⎪⎝⎭-, 解得或 (舍),所以222||||||cos2||||BP PC BC BPC BP PC +-∠===⨯⨯ ……………………(6分) (Ⅱ)由(Ⅰ)知,所以,所以sin sin πs in ()()APD BPC CPD BPC CPD ∠=-∠-∠+∠=∠12==, 所以,所以. …………………………………………………………(12分)18.(本小题满分12分)解:(Ⅰ)平均数为350.1450.1550.5650.2750.05850.0556.5⨯+⨯+⨯+⨯+⨯+⨯=;众数为55;因为完成时间在[30,50)分钟内的频率为0.2,在[50,60)分钟内的频率为0.5,所以中位数为. ………………………………………………(4分)(Ⅱ)因为A ,B ,C 的频率比为2︰7︰1,共抽10人,所以B 中抽7人. ……(8分)(Ⅲ)抽出的成绩为B 等学生中完成任务时间[50,60)分钟的学生有5人,设为a ,b ,c ,d ,e ;在[60,70)分钟的学生人数为2人,设为x ,y ,则7人中任选两人共有:(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,x ),(a ,y ),(b ,c ),(b ,d ),(b ,e ),(b ,x ),(b ,y ),(c ,d ),(c ,e ),(c ,x ),(c ,y ),(d ,e ),(d ,x ),(d ,y ),(e ,x ),(e ,y ),(x ,y )共21种.两人中至少有一人完成任务时间在[60,70)分钟内的有:(a ,x ),(a ,y ),(b ,x ),(b ,y ),(c ,x ),(c ,y ),(d ,x ),(d ,y ),(e ,x ),(e ,y ),(x ,y )共11种.所以两人中至少有一人完成任务时间在[60,70)分钟的概率为. ……………(12分) 19.(本小题满分12分)(Ⅰ)证明:因为平面KBC ⊥平面ABC ,且AC ⊥BC ,所以AC ⊥平面KBC ,又因为BF 在平面KBC 上,所以BF ⊥AC .又因为△KBC 是正三角形,且F 为CK 的中点,所以BF ⊥KC .所以BF ⊥平面KAC . …………………………………………………………(6分) (Ⅱ)解:因为,又因为AC ⊥平面KBC ,DF//AC ,所以DF ⊥平面KBC .又因为,所以113||332F BDE D EFB EFB V V S DF --==⨯==△ ………………………(12分) 20.(本小题满分12分)解:(Ⅰ)因为,又因为12122PF F c S b bc ===△ 两式联立解得,所以P 点坐标(2,). …………………………………………………………(6分) (Ⅱ)由(Ⅰ)知,椭圆的方程为,设Q (x 0,y 0),则,直线QA 方程为,令得M 点坐标为, 同理,直线QB 方程为,得N 点坐标为,∴11022000220(2)(2)22(4)11(1)(4)MF NF m y m y x x m y k k m m m x +-+--==+++-, 又Q (x 0,y 0)在椭圆上,∴22200020314344x y y x +=⇒=--, ∴1122431(1)4MF NF m k k m -⎛⎫=-=- ⎪+⎝⎭, 解得,所以存在实数,使得MF 1⊥NF 1. ……………………………(12分)21.(本小题满分12分)(Ⅰ)解:函数的定义域为{x |x >0}. 因为32ln 3()(0)x f x x x --'=>. 令,解得.当0<x<时,,当时,,所以为f (x )的极大值,也是最大值,. ………………………(6分)(Ⅱ)证明:令,得,因为14(2ln 2)4(1)22f f ⎛⎫=⨯->= ⎪⎝⎭,, 且由(Ⅰ)得,f (x )在内是减函数,所以存在唯一的x 0∈,使得.所以曲线在上存在以(x 0,g (x 0))为切点,斜率为4的切线.由得,所以000000231()44g x x x x x x =--=--.因为x0∈,所以.………………………………………………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)∵,∴,直线l的直角坐标方程:.曲线C:(α为参数),消去参数可得曲线C的普通方程为:.…………………(5分)(Ⅱ)由(Ⅰ)可知,的圆心为D(,2),半径为3.设AB中点为M,连接DM,DA,圆心到直线l的距离,所以,又因为,所以,所以.…………………………………(10分)23.(本小题满分10分)【选修4−5:不等式选讲】解:(Ⅰ)分段讨论得不等式解集为(0,3).…………………………………(5分)(Ⅱ)利用图象可得.…………………………………………………(10分)。

贵阳第一中学2018届高考适应性月考卷(七)(4月)文科数学(含答案)

贵阳第一中学2018届高考适应性月考卷(七)(4月)文科数学(含答案)

11.作出可行域如图 1,∵平面区域内存在点 M ( x0,y0 ) ,满
x0 2 y0 6 , ∴ 直 线 x 2 y 6 与 可 行 域 有 交 点 , x 2 y 6, 3 得 P 3, ,∴点 P 在直线 x 2 y a 上或 3 x 2 y 6, 2 3 线 x 2 y a 的下方,即 3 2 ≥ a, 解得 a≤0 ,故 2 1] 时 , 12 . 由 g ( x ) 是 周 期 为 2 的 奇 函 数 , 又 x [0, g ( x) log 3 ( x 2 x 1) ,可得函数 g ( x ) 在 R 上的图象
1 2} ,故选 B. A B {0,,
2.根据复数 z
ai 1 (ai 1)(3 i) 3 a 3a 1 3 a 0, i 是纯虚数,得 解得 a 3, 故选 A. 3i (3 i)(3 i) 10 10 3a 1 0,
30 29 16 d 390 ,解得 d ,∴ a14 a15 a16 2 29 16 52 ,故选 B. 29
a17 a1 13d a1 14d a1 15d a1 16d 4a1 58d 4 5 58
1 9 . 将 函 数 f ( x) 2sin 2 x 的 图 象 上 所 有 点 的 横 坐 标 缩 短 到 原 来 的 倍 , 可 得 f ( x) 6 2 π 2sin 4 x ,再 向 左 平 移 个 单 位 长 度 , 可 得 函 数 y 2sin 4 x 6 24 24 6 2 2sin 4 x 的图象.故 g ( x ) 的周期为 ,排除 A,B;令 x ,求得 g ( x) 0 ,可 得 g ( x ) 3 4 2 12 的 一 个 对 称 中 心 点 为 ,0 ,故 C 满足条件;在区间 , 上, 4 x 3 12 6 3 5 , 3 ,函数 g ( x ) 没有单调性,排除 D,故选 2 y 2 1(a b ) 的两焦点为 F1 (c ,0) ,F2 (c,0) ,P 为椭圆 C 上的一点, 且 PF2 x 轴, a 2 b2 b c2 b2 , 即 有 | PF2 | ,由椭圆的定义可得, 2 a a a

贵州省2018年普高等学校招生适应性考试数学(文)试题及答案解析

贵州省2018年普高等学校招生适应性考试数学(文)试题及答案解析

贵州省2018年普通高等学校招生适应性考试文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|25}A x x =-<<,{1}B x y x ==-,则A B =( )A .(2,1)-B .(0,1]C .[1,5)D .(1,5) 2.在复平面内,复数1iz i=+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.阅读如下框图,运行相应的程序,若输入n 的值为8,则输出n 的值为( )A .0B .1C .2D .34.在矩形ABCD 中,1AB =,2AD =,点E 满足2BC BE =,则AE AB ⋅的值为( ) A .1 B .3 C 10.925.已知函数(),0()21,0g x x f x x x >⎧=⎨+≤⎩是R 上的偶函数,则(3)g =( )A .5B .-5C .7D .-76.30x y -=与抛物线212y x =的一个交点为A (不与原点重合),则直线到抛物线焦点的距离为( )A .6B .7C .9D .127.为了提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为123a a a ,传输信息为11232h a a a h ,其中112h a a =⊕,213h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如:原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息出错的是( ) A .01100 B .11010 C .10110 D .11000 8.设n S 是等差数列{}n a 的前n 项和,且111313a S ==,则9a =( )A .6B .7C .8D .9 9.函数()sin 22f x x x =图象的一个对称中心是( ) A .7(,0)12π B .(,0)2π C .(,0)3π D .(,0)12π10.在正方体1111ABCD A B C D -中,过对角线1AC 的一个平面交1BB 于E ,交1DD 于F 得四边形1AEC F ,则下列结论正确的是( ) A .四边形1AEC F 一定为菱形B .四边形1AEC F 在底面ABCD 内的投影不一定是正方形 C .四边形1AEC F 所在平面不可能垂直于平面11ACC A D .四边形1AEC F 不可能为梯形11.已知点F 为双曲线C :22221(0)x y a b a b-=>>的右焦点,点P 是双曲线右支上的一点,O为坐标原点,若2FP OF =,120OFP ∠=,则双曲线C 的离心率为( )A1 BCD1 12.设函数()(12)xf x e x ax =-+,其中1a <,若存在唯一负整数0x ,使得0()f x a >,则实数a 的取值范围是( ) A .253(,)32e e B .3(,1)2e C .3[,1)2e D .253[,)32e e二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件001x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则21z x y =-+的最大值为 .14.将一枚质地均匀的骰子(各面分别标有数字1,2,3,4,5,6的正方体)连续抛掷两次,记面朝上的数字依次为a 和b ,则2b a >的概率为 .15.如图,网格纸上正方形小格的边长为1,图中粗线画出的是一个几何体的三视图,则这个几何体外接球的表面积为 .16.已知数列{}n a 对任意*n N ∈,总有1221n a a a n ⋅⋅⋅=+成立,记124(1)(21)n nn n a b n +⋅=-+,则数列{}n b 前2n 项和2n T = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知cos (2)cos a C b c A =-. (1)求角A 的大小;(2)若2a =,D 为BC 的中点,2AD =,求ABC ∆的面积.18.共享单车是指企业在校园、地铁站点、公共站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,是共享经济的一种新形态.某共享单车企业在A 城市就“一天中一辆单车的平均成本与租用单车数量之间的关系”进行了调查,并将相关数据统计如下表:租用单车数量x (千辆) 2 3 4 5 8 每天一辆车平均成本y(元)3.22.421.91.5根据以上数据,研究人员设计了两种不同的回归分析模型,得到两个拟合函数: 模型甲:()1 4.80.8yx =+,模型乙:()226.41.6y x=+. (1)为了评价两种模型的拟合效果,完成以下任务:①完成下表(计算结果精确到0.1元)(备注:i i i e y y =-,i e 称为相应于点(,)i i x y 的残差); 租用单车数量x (千辆) 2 3 4 5 8 每天一辆车平均成本y(元)3.22.421.91.5模型甲估计值()1i y 2.4 2 1.8 1.4 残差()1i e0.10.1模型乙估计值()2i y2.3 2 1.9残差()2ie0.1 0 0②分别计算模型甲与模型乙的残差平方和1Q 及2Q ,并通过比较1Q ,2Q 的大小,判断哪个模型拟合效果更好.(2)这家企业在A 城市投放共享单车后,受到广大市民的热烈欢迎并供不应求,于是该企业决定增加单车投放量.根据市场调查,市场投放量达到1万辆时,平均每辆单车一天能收入7.2元;市场投放量达到1.2万辆时,平均每辆单车一天能收入6.8元.若按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,问该企业投放量选择1万辆还是1.2万辆能获得更多利润?请说明理由.(利润=收入-成本)19.在三棱锥S ABC -中,60SAB SAC ∠=∠=,SB AB ⊥,SC AC ⊥.(1)求证:BC SA ⊥; (2)如果2SA =,2BC =S ABC -的体积.20.已知椭圆C :22221(0)x y a b a b+=>>过点(0,2)P -2.(1)求椭圆C 的方程;(2)1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交圆228x y +=于A ,B 两点,2l 交椭圆C 于另一个点D ,求ABD ∆面积取得最大值时直线1l 的方程.21.已知函数()ln 1f x x ax =-+. (1)求函数()f x 的单调区间;(2)若(0,1)a ∈,求证:()xf x e ax a <--(e 为自然对数的底数).(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线1C的参数方程为1cos 2sin x y αα⎧=+⎪⎪⎨⎪=+⎪⎩(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C的方程为)3πρθ=+.(1)求1C 与2C 交点的直角坐标;(2)过原点O 作直线l ,使l 与1C ,2C 分别相交于点A ,B (A ,B 与点O 均不重合),求AB 的最大值.23.[选修4-5:不等式选讲] 已知函数1()f x x x a a=++-. (1)若2a =,求不等式9()2f x ≥的解集; (2)若对任意的x R ∈,任意的(0,)a ∈+∞恒有()f x m >,求实数m 的取值范围.贵州省2018年普通高等学校招生适应性考试文科数学参考答案一、选择题1-5: CACAB 6-10: BDBCD 11、12:BD 二、填空题 13. 2 14. 16 15. 254π 16. 441nn + 三、解答题17.解:(1)∵cos (2)cos a C b c A =-, ∴sin cos 2sin cos sin cos A C B A C A =-, ∴sin cos sin cos 2sin cos A C C A B A +=, ∴sin()2sin cos A C B A +=, 又A B C π++=,∴sin 2sin cos B B A =,sin 0B >, ∴1cos 2A =,()0,A π∈, ∴3A π=.(2)∵ADB ADC π∠+∠=,∴cos cos 0ADC ADB ∠+∠=,∴221414044b c +-+-+=,∴2210b c +=, 又2222cos b c bc A a +-=,224b c bc +-=, ∴6bc =,∴11sin 62222S bc A ==⨯⨯=. 18.解:(1)①经计算,可得下表:残差()1i e 0 0 0 0.1 0.1模型乙估计值()2i y3.2 2.3 2 1.9 1.7残差()2ie0 0.1 0 0 -0.2②2210.10.10.02Q =+=,2220.1(0.2)0.05Q =+-=,因为12Q Q <,故模型甲的拟合效果更好.(2)若投放量为1万辆,由(1)模型甲可知,每辆车的成本为4.80.8 1.2810+=(元), 这样一天获得的总利润为(7.2 1.28)1000059200-⨯=(元), 若投放量为1.2万辆,由(1)模型甲可知,每辆车的成本为4.80.8 1.212+=(元), 这样一天获得的总利润为(6.8 1.2)1200067200-⨯=(元), 因为6720059200>,所以选择投放1.2万辆能获得更多利润.19.解:(1)取线段BC 的中点M ,连接AM ,SM .由平面几何知识可知SAB SAC ∆≅∆, 于是AB AC =,SB SC =,从而BC AM ⊥,BC SM ⊥, 即有BC ⊥平面SAM ,故BC SA ⊥.(2)在直角SAB ∆中,2SA =,60SAB ∠=, 有1AB =,3SB =同理1AC =,3SC =而2BC =222BC AB AC =+,所以AB AC ⊥,在SAM ∆中,2SA =,2AM =10SM =,于是,222cos 2SA AM SM SAM SA AM+-∠=⋅2=,45SAM ∠=, 所以,1sin 452SAM S SA AM ∆=⋅⋅1122222=⨯⨯=, 由(1)可知BC ⊥平面SAM , 三棱锥S ABC -的体积1113326SAM V S BC ∆=⋅⋅=⨯=. 20.解:(1)由题意得22222b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩,解得22a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22184x y +=. (2)由题知直线1l 的斜率存在,不妨设为k ,则1l :2y kx =-.若0k =时,直线1l 的方程为2y =-,2l 的方程为0x =,易求得4AB =,4DP =,此时182ABD S AB DP ∆=⋅=. 若0k ≠时,则直线2l :12y x k=--.圆心(0,0)到直线1l的距离为d =直线1l 被圆228x y +=截得的弦长为AB ==由2212184y x k x y ⎧=--⎪⎪⎨⎪+=⎪⎩22(2)80k x kx ⇒++=, 得282D P kx x k +=-+,故DP ==所以1122ABDS AB DP ∆=⋅=2222k k ⋅=++2232213k ==+++323=3≤=1k =⇒=±时上式等号成立.因为83<, 所以ABD ∆面积取得最大值时直线1l 的方程应该是2y x =±-. 21.解:(1)11'()(0)axf x a x x x-=-=>, 当0a ≤时,'()0f x >,函数()ln 1f x x ax =-+在()0,+∞单调递增, 当0a >时,1(0,)x a∈时'()0f x >,1(,)x a∈+∞时'()0f x <,()ln 1f x x ax =-+在1(0,)a 单调递增,在1(,)a+∞单调递减.综上所述,当0a ≤时,()f x 只有增区间为()0,+∞. 当0a >时,()f x 的增区间为1(0,)a ,减区间为1(,)a+∞.(2)()xf x e ax a <--等价于ln 10xe x a --->.令()ln 1xg x e x a =---,而1'()xg x e x=-在()0,+∞单调递增,且'(1)10g e =->,121'()202g e =-<.令'()0g t =,即1(01)te t t=<<,ln t t =-,则()0,x t ∈时'()'()0g x g t <=,(),x t ∈+∞时'()'()0g x g t >=, 故()g x 在()0,t 单调递减,在(),t +∞单调递增,所以()()ln 1tg x g t e t a ≥=---112110t a a a t=+--≥--=->. 即()xf x e ax a <--.22.解:(1)曲线1C的直角坐标方程为220x y x +-+=, 曲线2C的直角坐标方程为2230x y x +-=.联立2222030x y x x y x ⎧+-+=⎪⎨+-=⎪⎩,解得00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩所以1C 与2C 交点的直角坐标为(0,0)和3(,2. (2)曲线1C 的极坐标方程为2cos()3πρθ=+.设直线l 的极坐标方程为(0,)R θααπρ=≤<∈. 则点A 的极坐标为(2cos(),)3παα+,点B的极坐标为),)3παα+.所以)2cos()33AB ππαα=+-+ 4sin()6πα=+.当3πα=时,AB 取得最大值,最大值是4.此时,A ,B 与点O 均不重合.23.解:(1)2a =,9()2f x ≥即19222x x ++-≥,则2319()(2)22x x x x ≥⎧⎪⇒≥⎨++-≥⎪⎩,或12219()(2)22x x x x φ⎧-≤<⎪⎪⇒∈⎨⎪+--≥⎪⎩, 或132192()(2)22x x x x ⎧<-⎪⎪⇒≤-⎨⎪-+--≥⎪⎩,- 11 - 所以9()2f x ≥的解集为[)33,,2⎛⎤+∞⋃-∞- ⎥⎝⎦. (2)11()f x x x a a a a =++-≥+, 又0a >,∴112a a a a +=+≥=. 当且仅当1a =时等号成立,所以2m <.。

2018年贵州省贵阳市高考一模数学试卷(文科)【解析版】

2018年贵州省贵阳市高考一模数学试卷(文科)【解析版】
2018 年贵州省贵阳市高考数学一模试卷(文科)
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只 有一项是符合题目要求的.
1.(5 分)复数 z 满足 z= ,则|z|=( )
A.2
B.2
C.Βιβλιοθήκη D.2.(5 分)设 A={x|2x> },B={﹣3,﹣2,﹣1},则 A∩B=( )
(Ⅲ)试判断是否有 95%的把握认为喜欢“学习数学”与性别有关?
附:K2=
,其中 n=a+b+c+d.
P(K2≥k0) 0.15
0.10
0.05
0.025
0.010
k0
2.072
2.706
3.841
5.024
6.635
19.(12 分)如图,在四棱锥 P﹣ABCD 中,底面 ABCD 为直角梯形,AD∥BC,
B. 钱
C. 钱
D.1 钱
7.(5 分)已知函数 f(x)在 R 上是减函数,且 a=f(log310),b=f(log39.1), c=f(20.8),则 a,b,c 的大小关系为( )
A.a<b<c
B.c<b<a
C.b<a<c
D.c<a<b
8.(5 分)把函数 y=2sin(x+ )图象上各点的横坐标缩短为原来的 倍(纵
则实数 k 的值范围是( )
第 2 页(共 20 页)
A.(﹣e,0) B.(﹣ e﹣2,0) C.(﹣e2,0) D.(﹣2e2,0)
二、填空题:本大题共 4 小题,每小题 5 分.
13.(5 分)若向量 =(x,1)与向量 =(1,﹣2)垂直,则| + |=

14.(5 分)已知三角形的三边长分别为 1,1, ,若将一个质点随机投入该三

贵阳第一中学2018届高考适应性月考卷(五)文数-试卷

贵阳第一中学2018届高考适应性月考卷(五)文数-试卷


( )( ) , b^ = i=1
xi -x

yi -y
参考公式: ( ) i=1
xi -x


= i = 1xi yi -n x y n i = 1x2i -n x2
a^ = y-b^ x.
参考数据: ( )( ) , 8
i=1
xi -x
yi -y = 10 95
( ) 8
i=1
xi -x
2 = 29 41.
C. 99%
D. 99 9%
A. ①②③④ C. ②③
B. ②③④ D. ②④
已知 ,则 ( ) 4.
sinα+cosα =
1 5
cos
3π 2
-2α

24 A.
25
B. -24 25

7 C.
25
, 2x+3y≥6
5. 设x,y 满足约束条件x-y≤3, 则z= 2x-y 的取值范围为
, y≤2
A. [-2,6]
B. [-2,8]
[ , ) C. -2 +∞
设数列{ }满足 … ,则 6.
an
a1 +2a2 + +nan = n2
a10 =
A. 19
19 B.
10
C. 17
D. - 7 25
D. [6,8]
17 D.

11.
如图,双曲线x2 y2

- 4 b2
= (1 0<b<2)的左、右焦点分别为F1,F2,过F1

14. 某中学高三年级有12 个班,要从中选2 个班代表学校参加某项活动,由于某种原因,一班必须参加,另 外再从二至十二班中选1 个班,有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班. 在这 种方法下,七班被选中的概率为 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档