用牛顿迭代法求解非线性方程组
牛顿法及基于牛顿算法下的Steffensen加速法求解非线性方程组方法例题及答案

1. 非线性方程组求解1.分别用牛顿法,及基于牛顿算法下的Steffensen 加速法。
(1) 求ln(sin )x x +的根。
初值0x 分别取0.1,1,1.5,2,4进行计算。
(2) 求sin =0x 的根。
初值0x 分别取1,1.4,1.6,1.8,3进行计算。
分析其中遇到的现象与问题。
(1)牛顿法牛顿法实质上是一种线性化方法,其基本思想是将非线性方程()0f x =逐步归结为某种线性方程来求解。
将已知方程()0f x =在近似值k x 附近展开,有()()()()'0k k k f x f x f x f x x ≈+-=,构造迭代公式,则1k x +的计算公式为:()()1',0,1,,k k k k f x x x k f x +=-= (1-1)根据Taylor 级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解()0f x =的过程,第一次迭代()()'1000/x x f x f x =-,其中()()'00/f x f x 的几何意义很明显,就是0x 到1x 的线段长度(这可以从直角三角形的知识得到)。
第二次迭代()()'2111/x x f x f x =-,其中()()'11/f x f x 的几何意义很明显,就是1x 到2x 的线段长度。
同理可以进行第三次迭代第四次迭代,可以明显的看出x 的取值在不断逼近真实解*x 。
如图1-1所示:图1-1○1求ln(sin )=0x x +的根时,迭代公式为()1ln(sin )sin 1cos k k x x x x x x x+++=++,0示。
计算结果见附录1表F.1-1所示。
初值取1.5,2,4进行计算时结果不收敛。
表 1-1 牛顿法计算结果○2求sin =0x 的根时,迭代公式为1cos k k x x x+=+,初值0x 分别取1、1.4、1.6、1.8、3计算时结果收敛,误差小于510-时,近似解如表1-2所示。
牛顿迭代法求解方程组

牛顿迭代法求解方程组一、牛顿迭代法的基本原理牛顿迭代法是一种用于求解方程的迭代方法,其基本思想是通过不断逼近方程的根来求解方程。
具体而言,对于一个方程f(x) = 0,我们可以选择一个初始近似解x0,然后通过迭代的方式不断更新x 的值,直到满足一定的停止准则为止。
牛顿迭代法的更新公式如下:x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}其中,x_n表示第n次迭代得到的近似解,f(x_n)表示方程在x_n处的函数值,f'(x_n)表示方程在x_n处的导数值。
二、牛顿迭代法在求解方程组中的应用牛顿迭代法不仅可以用于求解单个方程,还可以推广到求解方程组的情况。
假设我们要求解一个由m个方程和n个未知数组成的方程组,即F(x) = 0其中,F(x) = (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn))为方程组的向量函数。
我们可以将该方程组转化为一个等价的非线性方程组:f(x) = 0其中,f(x) = (f1(x1, x2, ..., xn), f2(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn))。
牛顿迭代法在求解方程组时的更新公式如下:x_{n+1} = x_n - J^{-1}(x_n) f(x_n)其中,J(x_n)是方程组在x_n处的雅可比矩阵,其定义为:J(x_n) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_n) & \frac{\partial f_1}{\partial x_2}(x_n) & \cdots & \frac{\partial f_1}{\partial x_n}(x_n) \\ \frac{\partial f_2}{\partial x_1}(x_n) & \frac{\partial f_2}{\partial x_2}(x_n) & \cdots & \frac{\partial f_2}{\partial x_n}(x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x_n) & \frac{\partial f_m}{\partial x_2}(x_n) & \cdots & \frac{\partial f_m}{\partial x_n}(x_n) \end{pmatrix}三、牛顿迭代法的收敛性和收敛速度牛顿迭代法在求解方程组时具有较好的收敛性和收敛速度。
第7章非线性方程组的数值解法

f 1 y f 2 2 y
2 y ( 1,1 ) 2
( 1,1 )
( y 3) ( 1, 1 )
( 1, 1 )
( x 1) ( 1 , 1 ) 2
( 1,1 )
f 1 f 2 2 2[ 2 * ( 3) ( 2 ) * ( 2 )] 4 f1 f2 g10 x ( 1,1) x ( 1,1) x f 1 f 2 g 2 2[ 2 * ( 3) 2 * ( 2 )] 20 20 y y f 1 y f 2 ( 1, 1 ) ( 1, 1 )
完
f ( x0 h, y0 k ) f ( x0 , y0 ) ( h k ) f ( x0 , y0 ) x y 1 2 ( h k ) f ( x 0 , y0 ) 2! x y 1 n ( h k ) f ( x 0 , y0 ) n! x y 1 n 1 ( h k ) f ( x0 h, y0 k ) ( n 1)! x y
2
2
令
0
得 f 1 f 1 ( g10 x g 20 y ) f 1 ( g10 ( g f 1 g f 1 ) 2 ( g 10 20 10 x y f 2 g 20 x f 2 g 20 x f 2 ) f2 y f 2 2 ) ( x y
1
f 1 ( x 0 , y0 ) f ( x , y ) 2 0 0
从n到n+1的迭代格式为:
f 1 ( x n , y n ) xn 1 x n x y y f 2 ( xn , yn ) n 1 n x
牛顿迭代法的收敛性和稳定性

牛顿迭代法的收敛性和稳定性牛顿迭代法是一种高效的求解非线性方程组的方法。
它的基本思想是通过不断逼近目标函数的零点来求解方程,其中每次迭代通过求解目标函数的一阶导数和二阶导数来更新逼近值。
与其他求解非线性方程组的方法相比,牛顿迭代法具有更快的收敛速度和更高的精度。
然而,牛顿迭代法在实际应用中也存在一些问题,例如收敛性和稳定性。
本文将就牛顿迭代法的收敛性和稳定性进行探讨。
一、牛顿迭代法的收敛性牛顿迭代法的收敛性与初始迭代值的选择有关。
如果选择的初始迭代值与目标函数的零点较接近,则牛顿迭代法的收敛速度越快,精度越高。
反之,如果初始迭代值与目标函数的零点较远,则可能会导致收敛速度缓慢甚至无法收敛。
因此,通常使用牛顿迭代法进行求解时,需要通过试探法或其他方法寻找较接近目标函数零点的初始迭代值。
另外,牛顿迭代法的收敛性还与目标函数的性质有关。
具体来说,如果目标函数在初始迭代值处的二阶导数为正且在目标函数的零点处存在且连续,则牛顿迭代法一般会收敛到目标函数的零点。
而如果目标函数在某些点处的二阶导数为零或不存在,则可能会出现收敛速度缓慢或收敛不足的情况。
二、牛顿迭代法的稳定性牛顿迭代法的稳定性是指对于具有微小扰动的初始迭代值,迭代结果能否保持不变或只有微小的差异。
在实际应用中,由于存在数值误差或输入数据的不确定性,牛顿迭代法可能会受到微小扰动的影响而产生不稳定的结果。
因此,需要采取措施来提高牛顿迭代法的稳定性。
一种提高牛顿迭代法稳定性的方法是采用牛顿-拉夫逊迭代法。
牛顿-拉夫逊迭代法是在牛顿迭代法的基础上加入阻尼因子来实现的。
具体来说,牛顿-拉夫逊迭代法使用目标函数的一阶导数和二阶导数来更新逼近值,并在迭代过程中加入一个阻尼因子,使迭代结果在微小扰动下不会产生过大的变化。
此外,还可以采用增量式牛顿迭代法来提高牛顿迭代法的稳定性。
增量式牛顿迭代法是一种递推算法,它的基本思想是将目标函数的二阶导数逐步逼近到实际的值,并在每次迭代中只更新部分二阶导数,以减小更新过程中的数值误差。
求解非线性方程组的几种方法及程序实现

求解非线性方程组的几种方法及程序实现
求解非线性方程组一直是理论数学和应用数学研究的重点,并采用不同的方法得到准确的结果。
它们可以分为几种类型:
1. 用以绘图的方法解非线性方程组:该方法充分利用结合几何和数理的原理,给出非线性方程组的解,而不用对系数的解的表达式求解手段。
主要是利用可绘图的几何空间分析,它可以帮助理解问题本身,还可以很容易看出非线性方程组的解。
2. 用迭代法求解非线性方程组:这是一种常用的方法,它通过不断迭代收敛求解非线性方程组。
基本思想是通过构造一个迭代函数,其初始值和原始非线性方程组尽可能接近,然后不断迭代收敛求解非线性方程组。
3. 用强调法求解非线性方程系统:这是基于梯度的一种方法,它利用一个概念,即局部线性化,可以降低维数、转化为一个拐点,最后强化搜索全局解。
4. 用牛顿-拉夫逊方法求解非线性方程组:这是一种准确、快速的非线性方程组求解方法,主要利用牛顿迭代法搜索解的收敛性,加上一些拉夫逊的加速策略得到最终的结果。
5. 用幂法求解非线性方程组:幂法也称为指数序列,是一种重要的求解非线性方程组的方法,基本原理是利用指数的累加和误差的减少,从而最终得到非线性方程组的解。
6. 用逐步逼近法求解非线性方程组:逐步逼近法也称为分步变程法,是一种用于求解非线性方程组的简单方法,其基本思想是用不同的参数,在给定的范围内,逐步逼近目标解。
这些方法的程序实现略有不同,可以利用编程语言比如C、Fortran、Python等,编写程序完成求解。
可以采用函数求解、循环求解、行列式求解或者混合的算法等不同的方式实现,甚至可以用深度学习方法求解有些复杂的非线性方程组。
python高斯-牛顿迭代法 -回复

python高斯-牛顿迭代法-回复题目:Python高斯牛顿迭代法解析- 优化非线性问题摘要:高斯牛顿迭代法是一种用于求解非线性方程组的优化算法。
本文将介绍高斯牛顿迭代法的原理和使用Python实现的步骤。
我们将以一个简单的实例来说明算法的应用,并解释其背后的数学原理。
最后,我们将讨论高斯牛顿迭代法的优势和局限性。
引言:高斯牛顿迭代法是一种被广泛使用的数值优化算法,用于解决非线性问题。
不同于求解线性方程组的高斯消元法,高斯牛顿迭代法专门用于求解非线性问题。
它的应用领域涵盖了各个科学和工程领域,如计量经济学、计算机视觉和机器学习。
本文将详细介绍高斯牛顿迭代法的原理和实现步骤。
我们将以一个简单的实例来演示算法的工作原理,并对其数学背后的原理进行解析。
一、高斯牛顿迭代法原理高斯牛顿迭代法的目标是通过迭代的方式逼近方程组的根。
为了便于理解,我们以一个简单的二次曲线拟合问题为例。
假设我们有一组观测数据点(xi,yi),我们希望通过一个二次曲线y = a * x^2 + b * x + c来拟合这些数据。
我们的目标是找到最佳的参数a、b 和c,使得拟合曲线与观测数据点的差异最小。
为了达到这个目标,我们可以定义一个误差函数E(a,b,c)来衡量拟合曲线和观测数据点之间的差异。
常见的误差函数有平方和误差函数,即E(a,b,c) = Σ(yi - (a * xi^2 + b * xi + c))^2。
我们的目标是最小化误差函数,即找到使得E(a,b,c)最小的a、b和c。
高斯牛顿迭代法通过迭代的方式逼近最佳参数。
二、高斯牛顿迭代法步骤1. 初始化参数:初始化a、b和c的初始值。
2. 计算雅可比矩阵:雅可比矩阵是误差函数对参数的偏导数矩阵。
对于二次曲线拟合问题,雅可比矩阵J可以表示为:J = [∂E/∂a, ∂E/∂b, ∂E/∂c]3. 计算梯度向量:梯度向量是误差函数在当前参数值处的梯度,即导数。
梯度向量g可以表示为:g = [∂E/∂a, ∂E/∂b, ∂E/∂c]4. 计算海森矩阵:海森矩阵是误差函数对参数的二阶偏导数矩阵。
牛顿迭代法收敛条件

牛顿迭代法收敛条件牛顿迭代法是数值计算的一种重要的技术,是一种利用牛顿迭代法求解非线性方程组的有效方法。
牛顿迭代法的实现不仅要求计算出一个收敛的迭代结果,还要通过特定条件来证明这个收敛结果。
考虑到这项技术的重要性,它的收敛条件也受到了广泛的关注与研究。
一、牛顿迭代法收敛性的定义在计算机科学和应用中,牛顿迭代法是一种迭代方法,用于计算方程组的解,其中包括非线性方程组。
求解这类方程组的迭代计算不是在停止点处终止,而是要求迭代收敛的条件,这就是收敛性的定义。
收敛性是指在迭代计算过程中,特定的算法和条件下迭代序列必须向某个点收敛,而不是把它的值无限接近某一值,或者只在特定的时间段内能收敛,而不是收敛到特定点。
二、牛顿迭代法收敛性的判定牛顿迭代法收敛性的判定分为两种,一是函数收敛条件,二是牛顿迭代法本身的收敛条件。
1.函数收敛条件牛顿迭代法收敛的函数收敛条件要求函数在一定范围内的变化率不能无限逼近某个值,即认为一个函数在某一范围内的值收敛了,收敛的标准是函数在收敛范围内的变化率小于某一阈值。
2.牛顿迭代法本身的收敛条件牛顿迭代法本身的收敛条件就是给定一个序列,该序列必须在一定条件下收敛,这个条件是这些给定的序列必须严格满足强半正定矩阵上的平方和半正定矩阵性质,以及有足够多的解。
三、牛顿迭代法收敛性的应用1.牛顿迭代法在求解非线性方程的应用牛顿迭代法在计算机科学和应用中用于求解非线性方程组的解,其特点是快速收敛、算法简单、可以实现精确的解等。
当特定的非线性方程组的求解要求接近精确解时,利用牛顿迭代法可以获得满足收敛性要求的精确解。
2.牛顿迭代法在最优化问题中的应用牛顿迭代法也是用于解决最优化问题的一种有效方法,如求解最小化最大化目标函数,求解最优化问题的极小值或极大值等。
与传统最优化算法相比,牛顿迭代法具有计算快、收敛性强等优点,经常被用于解决最优化问题,从而获得较为精确的最优解。
3.牛顿迭代法在深度学习算法的应用牛顿迭代法在深度学习算法中也有重要的应用,例如误差反向传播算法(Error Back propagation, EBP)中就采用了牛顿迭代法。
5-非线性方程组的数值解法及最优化方法

1 4 0
非线性方程组的数值解法
x10=0; x20=0; k=0; while 1 k=k+1; x1k=(1+x20-0.1*exp(x10))/4; x2k=(x10-x10^2/8)/4; %雅克比迭代法 %x2k=(x1k-x1k^2/8)/4; %高斯-赛德尔迭代法 err1=abs(x1k-x10); err2=abs(x2k-x20); err=max(err1,err2); if err<=0.00000000005 break; end x10=x1k; x20=x2k; end
0.0000055305 0.0000001511 0.0000000041 0.0000000001
非线性方程组的数值解法
牛顿迭代法:根据求解非线性方程的牛顿迭代法,如果已经 k k T ,则 ,, xn 给出方程组 Fx 0 的一个近似根 xk x1k , x2 可把函数 Fx 的分量 fi x, i 1,2,, n 在 x k 处按多元函数泰 勒公式展开,取其线性部分做近似,得
(0.2325668498,0.0564514831) (0.2325670008,0.0564515487) (0.2325670050,0.0564515196) (0.2325670051,0.0564515197) (0.2325670051,0.0564515197)
0.0002023950
所以有
1 x φx 1 2 x1
0
T
取初值 x 代公式收敛。
T 0 x 0 , 0 附近 φx 1,所以迭 0,0 ,在
1 1 x 1 e 40 x2 2 1 1 x1 x2 4 16