关于英文版化学实验报告.doc
化学实验报告 英文版

化学实验报告英文版Chemical Experiment ReportAbstract:This report presents the findings and analysis of a chemical experiment conducted to investigate the effects of temperature on the rate of reaction between hydrochloric acid (HCl) and sodium thiosulfate (Na2S2O3). The experiment involved varying the temperature of the reactants and measuring the time taken for the reaction to occur. The results indicate a clear correlation between temperature and reaction rate, with higher temperatures leading to faster reactions.Introduction:Chemical reactions are influenced by various factors, including temperature, concentration, and catalysts. The purpose of this experiment was to examine the impact of temperature on the rate of a chemical reaction. The reaction between hydrochloric acid and sodium thiosulfate was chosen due to its well-documented reaction kinetics.Methodology:The experiment was conducted using a simple setup consisting of a conical flask, a stopwatch, and a thermometer. Initially, 50 mL of 1 M hydrochloric acid was poured into the flask, followed by the addition of 10 mL of 0.1 M sodium thiosulfate. The stopwatch was started as soon as the sodium thiosulfate was added, and the time was recorded when the solution turned opaque due to theformation of a yellow precipitate. The experiment was repeated at different temperatures by immersing the flask in water baths maintained at specific temperatures.Results and Discussion:The experiment was carried out at four different temperatures: 20°C, 30°C, 40°C, and 50°C. The average reaction times at each temperature were recorded and are presented in Table 1 below:Temperature (°C) Reaction Time (s)20 12030 9040 7050 50Table 1: Average reaction times at different temperaturesFrom the results, it is evident that as the temperature increased, the reaction time decreased. This indicates that higher temperatures accelerate the rate of the reaction between hydrochloric acid and sodium thiosulfate. The relationship between temperature and reaction rate can be explained by the collision theory. According to this theory, particles must collide with sufficient energy to overcome the activation energy barrier for a reaction to occur. As temperature increases, the average kinetic energy of the particles also increases, leading to more frequent and energetic collisions.Furthermore, the reaction between hydrochloric acid and sodium thiosulfate isexothermic, meaning it releases heat. As the reaction progresses, the released heat raises the temperature of the solution, further increasing the reaction rate. This positive feedback mechanism contributes to the observed trend of faster reactions at higher temperatures.Conclusion:In conclusion, this experiment demonstrates the significant influence of temperature on the rate of the reaction between hydrochloric acid and sodium thiosulfate. As temperature increases, the reaction time decreases due to more energetic collisions and the exothermic nature of the reaction. These findings have practical implications in various fields, such as industrial chemistry and environmental science, where controlling reaction rates is crucial.Further research could explore the effect of temperature on other chemical reactions and investigate the specific activation energy values for different reactants. Additionally, studying the impact of other factors, such as concentration and catalysts, on reaction rates would provide a comprehensive understanding of chemical kinetics.。
英文版化学实验报告

Preparation of n -bromobutane一、Purpose1、Study the principle and method of preparing n-butyl bromide from n-butyl alcohol by treatment with sodium bromide and concentrated sulfuric acid2、Learn the technique of reflux with a gas trap apparatus and washing.二、Principlen-Butyl bromide can be easily prepared by allowing n-butyl alcohto react with sodium bromide and concentrated sulfuric acid. Main reactions :NaBr + H 2SO4 → HBr + NaHSO424H SO 322232222CH CH CH CH OH HBr CH CH CH CH Br H O +−−−→+Secondary reactions :24H SO 32223222CH CH CH CH OH CH CH CH=CH H O−−−→+; ()24H SO 32223222222CH CH CH CH OH CH CH CH CH O H O−−−→+24222H SO HBr Br SO H O+−−→++三、Materials n-butyl alcohol :4mL Sodium bromide :5gConcentrated sulfuric acid :2.5mL/6mL Anhydrous calcium chloride:0.5g 10% aqueous sodium hydroxide:5mL四、Primary reagent And Product physical constants五、Apparatus六、Procedure(1)50mLboiling flask+50mLwater+6mLconcentrated sulfuric acid Cool down(2)Assembling equipment(3) Stop and simple distill (4)(5)七、Experimental records(1) Sulfuric acid soluble in water gives off a lot of heat(2) The solution of the distillation flask become yellow and the sodium bromide dissolve(3)Solution is divided into two layers and liquid of the distillation become clear(4) Liquid layer, upper as the water phase, the lower is positive bromobutane and liquid for the milky haze(5) Liquid at 99 ℃ and stable distillation, after rising to 103 ℃, 103 ℃after fractions and the former part of the don't mix.八、Data recordingOutput:1.3g theoretical yield:5.8g productivity:21.7% Character: colorless and transparent liquid Refractive index:1.4372九、Experiment Discussion1、Turbidity is because it contains a variety of organic phase to organicimpurities2、Plus the bottle stopper of calcium chloride anhydrous dry battery inorder to prevent the water vapor in the air into the conical flask, at the same time prevent product turbidity。
化学实验报告常见英文

Experiment Title: Synthesis of Ethanol from EthanolamineDate: [Date]Objective:The objective of this experiment was to synthesize ethanol from ethanolamine using the dehydration reaction. Ethanolamine is a compound with the molecular formula NH2CH2CH2OH, and it can be dehydrated to produce ethanol (CH3CH2OH) and ammonia (NH3).Materials:- Ethanolamine (NH2CH2CH2OH)- Sulfuric acid (H2SO4)- Concentrated sulfuric acid- Ethanol- Sodium chloride (NaCl)- Distilled water- Sodium hydroxide (NaOH)- Sodium sulfate (Na2SO4)- Potassium permanganate (KMnO4)- Barium chloride (BaCl2)- Distillation apparatus- Reaction vessel- Round-bottom flask- Condenser- Thermometer- Test tubes- Pipettes- Weighing scale- Stirring rod- Safety goggles- Gloves- Lab coatProcedure:1. Measure 5 g of ethanolamine using a weighing scale and transfer it toa round-bottom flask.2. Add 5 mL of concentrated sulfuric acid to the flask and stir the mixture thoroughly.3. Place the flask in a water bath and heat it to 60°C for 2 hours. This will facilitate the dehydration reaction.4. After 2 hours, remove the flask from the water bath and allow it to cool to room temperature.5. Transfer the reaction mixture to a distillation apparatus. The distillation apparatus consists of a round-bottom flask, a condenser, and a receiving flask.6. Heat the mixture to approximately 78°C, which is the boiling point of ethanol. Ethanol will vaporize and be collected in the receiving flask.7. Collect the distillate and transfer it to a test tube. Add 5 mL of water to the test tube and observe the appearance of the liquid.8. To identify the presence of ammonia, add a few drops of potassium permanganate to the test tube. If the solution turns brown, it indicates the presence of ammonia.9. To confirm the purity of the ethanol, add a few drops of barium chloride to the test tube. If a white precipitate forms, it indicates the presence of sodium chloride, which was used as a catalyst in the reaction.10. Dispose of the waste products and clean the equipment.Results:- The reaction mixture was heated to 60°C for 2 hours, and the distillation was performed at approximately 78°C.- Ethanol was collected in the receiving flask, and the distillate was observed to be a clear liquid.- A brown color was observed in the test tube when potassium permanganate was added, indicating the presence of ammonia.- A white precipitate formed when barium chloride was added, indicating the presence of sodium chloride.Discussion:The dehydration reaction of ethanolamine to produce ethanol was successfully achieved in this experiment. The reaction mixture was heated to 60°C for 2 hours to facilitate the dehydration process. Ethanol was collected in the receiving flask, and the distillate was observed to be a clear liquid, indicating the successful synthesis of ethanol.The presence of ammonia was confirmed by the brown color observed when potassium permanganate was added. This suggests that the dehydration reaction also produced ammonia as a byproduct.The formation of a white precipitate when barium chloride was added confirms the presence of sodium chloride, which was used as a catalyst in the reaction. The sodium chloride did not affect the purity of the ethanol product.Conclusion:The objective of synthesizing ethanol from ethanolamine using the dehydration reaction was successfully achieved in this experiment. Ethanol was produced, and the purity of the product was confirmed by observing the color changes and precipitate formation. This experiment provided a practical approach to understanding the dehydration reaction and its application in the synthesis of organic compounds.。
关于化学实验的英文作文

关于化学实验的英文作文英文:Chemistry experiments have always been a fascinating part of my academic journey. The hands-on experience and the thrill of seeing chemical reactions take place right in front of my eyes have always been a source of excitementfor me. One of the most memorable experiments I have conducted was the synthesis of aspirin in the organic chemistry lab.The experiment involved several steps, including the esterification of salicylic acid with acetic anhydride, followed by the hydrolysis of the ester and the isolation of the aspirin product. It was a complex process that required precision and careful attention to detail. I remember being nervous about handling the chemicals and making sure that I followed the procedure correctly.As I mixed the reagents and observed the changes in thereaction mixture, I couldn't help but feel a sense of anticipation. When the aspirin crystals began to form, it was a moment of triumph for me. Seeing the white, powdery crystals at the bottom of the flask was incredibly satisfying, knowing that I had successfully synthesized a common household medication.The experience taught me the importance of following instructions and understanding the principles behind the reactions. It also highlighted the significance of safety measures in the laboratory. I learned to wear protective gear, handle the chemicals with care, and clean up the workspace diligently after the experiment.Overall, the synthesis of aspirin was a valuable learning experience that not only deepened my understanding of organic chemistry but also instilled in me a sense of responsibility when conducting experiments. It was a reminder that chemistry is not just about mixing chemicals in a lab, but about applying knowledge and skills to achieve a desired outcome.中文:化学实验一直是我学术生涯中令人着迷的一部分。
化学性质实验报告

糖、氨基酸和蛋白质的鉴定糖类化合物:又称碳水化合物,是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称,一般由碳、氢与氧三种元素所组成。
实验目的:(1)进一步了解糖的化学性质;(2)掌握鉴定糖的方法及其原理。
(一)-萘酚试验(molish)糖类化合物一个比较普遍的定性反应是molish 反应。
即在浓硫酸存在下,糖与-萘酚(molish试剂)作用生成紫色环。
实验方法取3支试管,编号,分别加入 ml %的各待测糖水溶液,滴入2滴molish 试剂( -萘酚的乙醇溶液),摇匀。
把试管倾斜450,沿管壁慢慢加入约1ml 浓硫酸(切勿摇动),小心竖直后仔细观察两层液面交界处的颜色变化。
硫酸在下层,试液在上层样品:葡萄糖、蔗糖及淀粉解释:糖被浓硫酸脱水生成糠醛或糠醛衍生物,后者进一步与-萘酚缩合生成紫红色物质,在糖液和浓硫酸的液面间形成紫色环。
(二) fehling试验(1)实验原理fehling试剂:含有硫酸铜和酒石酸钾钠的氢氧化钠溶液。
硫酸铜与碱溶液混合加热,生成黑色的氧化铜沉淀。
若同时有还原糖存在,则产生黄色或砖红色的氧化亚铜沉淀。
为防止铜离子和碱反应生成氢氧化铜或碱性碳酸铜沉淀,fehling试剂中需加入酒石酸钾钠,它与cu2+形成的酒石酸钾钠络合铜离子是可溶性的络离子。
(2)操作方法取4支试管,编号,分别加入fehling试剂i和ii 各。
摇匀并置于水浴中微热后,分别加入5滴待测糖溶液,振荡后置于沸水浴中加热2 ~ 3min,取出冷却,观察颜色变化及有无沉淀析出。
fehling试剂 i:称取 g硫酸铜溶于100 ml蒸馏水中, 得淡蓝色的 fehling试剂 i。
fehling试剂 ii:将17g酒石酸钾钠溶于20ml热水中,然后加入20 ml 含5 g naoh的水溶液,稀释至100 ml得无色透明的fehling试剂 ii。
样品:葡萄糖、果糖、蔗糖及麦芽糖解释: 硫酸铜与碱溶液混合加热,生成黑色的氧化铜沉淀。
实验报告英文版

The determination of nitrogen content in the ammonium salt(Formaldehyde method)一、The experiment purpose1、To study the application of acid-base titration2、Master the formaldehyde method principle and the method for determination of nitrogen content in the ammonium salt3、The use of master the volumetric flask and pipet二、The experimental principleBecause NH4 acid is too weak to directly with NaOH standard solution titration, we usually using formaldehyde is transformed into titratable acid:4NH4++6HCOH=(CH2)6N4H++3H++6H2OProducts, hydrogen ions and (CH2)6N4H+ can be directly for accurate titration,titration product (CH2)6N4 is weak alkaline, so using phenolphthalein as indicator.According to the volume of the consumption of sodium hydroxide, may be calculated in proportion of nitrogen content in the ammonium salt:w(N)=C(NaOH)·V(NaOH)·M/m×100%三、Instruments and reagentsEquipment and materials:The alkali type buret(50ml),Conical flask(250ml),Volumetric flask(100ml),pipette(20ml),Measuring cylinder(10ml),A beaker(100ml),Analytical balance,Glass rodDrugs and reagents:Sodium hydroxide standard solution(0.1083mol/L),formaldehyde(40%),phenolphthalein(2g/L ethanol solution),Samples of ammonium sulfate(S).四、The experimental steps1、Accurately according to 0.60 ~ 0.85 g samples of ammonium sulfate in 50 ml beaker, add right amount water dissolves directly transferred to the 100 ml volumetric flask and constant volume, shake a backup.2、Assimilation in sodium hydroxide standard solution to Alkali type buret after wash and embellish it.3、Accurately move 20 ml of the solution into the clean conical flask, add 10 ml of neutral formaldehyde solution and 1 drop of phenolphthalein indicator,shake the solution and let stand for 1 minutes, to the solution with sodium hydroxide standard solution titration is not fade reddish and maintain half minutes,as it to the end.4、Observe and record the volume of consumption of sodium hydroxide5、Parallel determination of three times, calculate the nitrogen content in the sample and the relative average deviation dr(≤0.3%)W(N)=(20.99%+21.01%+21.01%)/3=21.00%d=(0.01%+0.01%+0.01%)/3=0.01%dr=d/w(N)=0.01%/21.00%×100%=0.05%.。
化学实验报告英文版

Title: Synthesis of Ethyl Acetate from Ethanol and Acetic AcidDate: [Date of Experiment]Student Name: [Your Name]Lab Section: [Your Lab Section Number]Objective: The objective of this experiment was to synthesize ethyl acetate, a volatile organic compound, by the esterification of ethanol and acetic acid. This reaction is a classic example of a nucleophilic acyl substitution reaction, where the alcohol attacks the carbonyl carbon of the acid to form the ester.Introduction:Esters are organic compounds derived from carboxylic acids by the replacement of the hydroxyl group with an alkyl or aryl group. Ethyl acetate is a widely used solvent in the pharmaceutical, food, and perfume industries due to its pleasant smell and volatility. The synthesis of ethyl acetate is typically achieved through the esterification reaction between acetic acid and ethanol in the presence of an acid catalyst.Materials:- Ethanol (CH3CH2OH)- Acetic acid (CH3COOH)- Concentrated sulfuric acid (H2SO4) - Catalyst- Sodium chloride (NaCl) - Dehydrating agent- Water - Solvent- Distillation apparatus- thermometer- glassware (beakers, flasks, etc.)- pH meterProcedure:1. Preparation of Reactants:- Measure 10 mL of ethanol and 10 mL of acetic acid into a round-bottom flask.- Add 1 mL of concentrated sulfuric acid as a catalyst.- Swirl the flask gently to mix the contents.2. Heating and Stirring:- Place the flask on a hot plate and heat the mixture to approximately 50-60°C. Maintain the temperature for about 30 minutes, ensuring the mixture is well-stirred.- The reaction is exothermic, so be cautious when heating.3. Adding Sodium Chloride:- After the reaction time, remove the flask from the heat.- Add a small amount of sodium chloride to the mixture. This helps to remove water from the reaction mixture, which can be a byproduct of the reaction.4. Observation:- The reaction mixture should now have a noticeable odor of ethyl acetate.- The mixture may also turn a light yellow due to the formation of the ester.5. Distillation:- Set up the distillation apparatus as per the instructor's instructions.- Heat the mixture to about 78°C, which is the boiling point ofethyl acetate.- Collect the distillate in a receiving flask. The distillate should have a fruity odor characteristic of ethyl acetate.6. Analysis:- Use a pH meter to check the pH of the distillate. Ethyl acetate is a neutral compound, so the pH should be close to 7.Results:- The reaction mixture turned a light yellow after the addition of sodium chloride.- The distillation process yielded approximately 5 mL of distillate with a fruity odor.- The pH of the distillate was measured to be 6.8.Discussion:The synthesis of ethyl acetate from ethanol and acetic acid was successful, as evidenced by the formation of a volatile distillate with the characteristic odor of ethyl acetate. The use of concentrated sulfuric acid as a catalyst facilitated the esterification reaction by protonating the carbonyl oxygen of acetic acid, making it more electrophilic and susceptible to nucleophilic attack by the alcohol. The addition of sodium chloride helped to remove water, which could potentially interfere with the reaction by acting as a nucleophile.The distillation process was crucial for isolating the ethyl acetate from the reaction mixture. By carefully controlling the temperature, we were able to collect the desired compound while leaving behind the unreacted starting materials and byproducts.Conclusion:In conclusion, the synthesis of ethyl acetate from ethanol and acetic acid was successfully achieved through the esterification reaction. The use of concentrated sulfuric acid as a catalyst and the distillation process allowed for the isolation of the desired compound. Thisexperiment provided a practical understanding of esterification reactions and the techniques involved in organic synthesis.Appendix:- Chemical Equation:\[ \text{CH}_3\text{CH}_2\text{OH} + \text{CH}_3\text{COOH}\xrightarrow{\text{H}_2\text{SO}_4} \text{CH}_3\text{COOCH}_2\text{CH}_3 + \text{H}_2\text{O} \]- Safety Precautions:- Wear safety goggles and gloves at all times.- Avoid contact with concentrated sulfuric acid and acetic acid.- Do not inhale the vapors of the distillate.。
英文版实验报告

英文版实验报告英文版实验报告Introduction:In this report, we present the findings and analysis from a recent experiment conducted to investigate the effects of caffeine on cognitive performance. Caffeine, a widely consumed psychoactive substance, is known to have stimulant effects on the central nervous system. The objective of this experiment was to examine whether caffeine could enhance cognitive abilities such as attention, memory, and reaction time.Methodology:Participants: A total of 50 healthy adult volunteers aged between 18 and 30 years were recruited for the study. They were randomly assigned to two groups: the experimental group (received caffeine) and the control group (received a placebo).Procedure: Participants arrived at the laboratory after an overnight fast and were instructed to abstain from consuming any caffeinated beverages or food for at least 12 hours prior to the experiment. They were then given either a capsule containing 200mg of caffeine or a placebo capsule. The experimenters, as well as the participants, were blinded to the group assignments.Cognitive tests: After a 30-minute absorption period, participants completed a battery of cognitive tests. These included a sustained attention task, a memory recall task, and a reaction time test. The tests were designed to measuredifferent aspects of cognitive function.Results:The results of the experiment revealed interesting insights into the effects of caffeine on cognitive performance. Participants in the experimental group, who received caffeine, demonstrated significantly better performance on the sustained attention task compared to those in the control group. They also exhibited improved memory recall and faster reaction times.Discussion:The findings of this experiment support the hypothesis that caffeine can enhance cognitive abilities. The stimulant properties of caffeine may have contributed to the improved attention and memory performance observed in the experimental group. The faster reaction times may be attributed to the increased alertness and arousal associated with caffeine consumption.These results are consistent with previous research on the effects of caffeine on cognitive function. Caffeine has been shown to increase alertness, improve attention, and enhance memory in various studies. However, it is important to note that individual responses to caffeine can vary, and some individuals may experience negative effects such as increased anxiety or disrupted sleep. Implications:The findings of this experiment have implications for various fields, including education, workplace productivity, and even sports performance. The use of caffeine as a cognitive enhancer may be beneficial in situations that requiresustained attention and mental alertness, such as during exams or high-pressure tasks.However, it is crucial to consider the potential risks and limitations associated with caffeine consumption. Excessive intake of caffeine can lead to adverse effects such as jitteriness, increased heart rate, and disrupted sleep patterns. Therefore, it is recommended to consume caffeine in moderation and be aware of individual tolerance levels.Conclusion:In conclusion, this experiment provides evidence that caffeine can enhance cognitive performance, particularly in the domains of attention, memory, and reaction time. The findings support the use of caffeine as a cognitive enhancer, but caution should be exercised regarding its potential side effects. Further research is needed to explore the long-term effects of caffeine on cognitive function and to identify optimal dosages for different populations.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于英文版化学实验报告篇一:英文版化学实验报告Title: Preparation of Fe scrap from waste(NH4) 2SO4.FeSO4.6H2OThe purpose of the experimentLearn the method used scrap iron preparation of ferrous ammonium sulfate.Familiar with the water bath, filtered, and evaporated under reduced pressure and crystallization basic working.The experimental principle, the iron and sulfuric acid to generate reactive ferrous sulfate, ferrous sulfate and ammonium sulfate in an aqueous solution of equal molar interaction, becomes less soluble blue generate ferrous ammonium sulfate.Fe+H2SO4=FeSO4+H2 (gas)FeSO4+ (NH4)2SO4+6H2O=(NH4)2SO4.FeSO4.6H2O Usually ferrous rocks are easily oxidized in air, but after the formation of relatively stable perfunctory, not to be oxidized.Experiment to use instruments, scales, constant temperature water bath, pumps, basins, cups, 10ml graduated cylinder, asbestos mesh, glass, tripod, alcohol lamp, funnel.Iron pieces to a solid pharmaceutical use, use of acid ammonium sulfate and 3mol / l of sulfuric acid, concentrated sulfuric acid.The experiment was divided into four steps.The first step Said iron powder 4g into a beaker and then 50ml 10ml, 3mol / L H2SO4 was added to the same beaker. The second step will be the beaker is heated to no more bubbles, and then filtered hot and the filtrate was then filled in 100ml beaker. The third step, called 4g (NH4)2SO4, and the resulting ammonium sulfate and 5.3ml of water to form a saturated solution, and then add it to the ferrous sulfate solution, adjusted with concentrated sulfuric acid to PH = 1. A fourth step, the third step the solution was heated in a water bath to the surface until the film is crystallized, it was slowly cooled andthen filtered under reduced pressure to stand finally dried, weighed and the yield was calculated. The results obtained 8.1g bluish powderycrystals. Have this result we can calculate yield, starting with the first step we tried to know the amount of iron, should this we can calculate the theoretical sulfate ferrous sulfate is 0.03mol, then ferrous sulfate obtained by the0.03molFeSO4 theoretical value of ammonium. FeSO4+(NH4)2SO4+6H2O=FeSO4.(NH4)2SO4.6H2O 0.03molX molX=0.03molm=XM=0.03molⅹ392g/mol=11.76gYield = the actual value of the formula is divided by the theoretical value by 100%.it will be calculated into the data obtained in a yield of 68.9%.篇二:英文版化学实验报告The preparation of alkali type copper carbonateThe first:the experiment purpose1.Master the methods of alkali type copper carbonate prepared and principle2.Through the design experiment to cultivate independent design ability and chemical research thinkingThe second:the experimental principleThe solubility of Cu(OH)2and CuCO3 are similar, With Cu2(OH)2CO3 solid precipitation in the solution.2CuSO4+2Na2CO3+H2O==Cu2(OH)2CO3↓+2Na2SO4+CO2↑The third:the experimental steps1.Solution preparationDisposes 0.5 mole of each litre acid sour coppers and sodium carbonate solution each 100 milliliters.2.The feeding order and raw material compare the explorationAccording to 2:1.6,2:2,2:2.4,2:2.8 allocated proportion, is accepted after passing an examination the surface disposition acid sour copper and the sodium carbonate solution, joins in separately 8 test tubes, joins rapidly the sulfuric acid copper solutions in the sodium carbonate solution, vibrates about other constant temperature ten minutes as for 75 degrees Celsius water baths in, the inversion feeding order recreates one time, the observation has the precipitation speed, quantity how many and the color,discovers the optimum condition.3.Temperature explorationAccording to the above optimum condition, takes the acid sour copper solutions and the sodium carbonate solution separately under 50, 75 and 100 degrees Celsius responded that, discovers the optimum temperature.4.According to 2, 3 step exploration optimum condition prepares the final product, and with the distilled water lavation, finally dries and calls heavily.(Enlarges ten times with conical flask to do)The fourth:the experimental itemsInstrument and material: The balance, the beaker, the glass rod, the Volumetric flask, the test tube, the filter flask,the Buchner funnel, the Erlenmeyer flaskChemicals: Copper carbonate, sodium sulfateThe fifth:the experimental result1.By the step 2, the observation phenomenon optimum condition is equal to for the cupric sulfate compared to the sodium carbonate 2:2.4, the feeding order for joins the sulfuric acid copper solutions to the sodium carbonate solution in.2.By the step 3, the observation phenomenon optimum temperature is 75 degrees Celsius3.According to the copper sulfate solution than sodium carbonatesolution is 2:2. 4, ten times magnification, alkali type copper carbonate was zero point five grams, according to the reaction equation calculation yield.2CuSO4+2Na2CO3+H2O==Cu2(OH)2CO3↓+2Na2SO4+CO2↑2 10.5*0.02 X2/(0.5*0.02)=1/XX=0.005M[Cu2(OH)2CO3]=0.005*222=1.11gProductive rate:0.5/1.11*100%=45%The sixth : Questions1. Which cupric salt suit the system to take the cupric basic carbonate? Answer:Cu(NO)3 or CuSO42. The reaction temperature has what influence to this experiment?.Answer:The temperature excessively is low, the response speed is slow; The hyperpyrexia, the Cu2(OH)2CO3 decomposition is CuO.3. Reaction is carried out at what temperature will appear Brown product? What is the brown substance?Answer: The temperature is equal to 100 degrees Celsius and this brown material is CuO.篇三:化学专业英语实验报告In the physiological saline the sodium chloride content determinationone, the experimental goal1、 the study silver nitrate standard solution configuration and the demarcation method2、 the grasping law raises Si Fa to determine the chloride ion the method principle two, the experimentalprincipleWith AgNO3 standard solution titration Cl - Ag + + Cl - = = AgCl,At ph 7.0 -10.5 available fluorescent yellow do indicator (HFIn)HFIn = = FIn (yellow) + H +Sp before: excessive, AgCl precipitation adsorption of Cl - AgCl Cl - + FIn - (yellow-green)After Sp: Ag +, excessive AgCl precipitation Ag + adsorption, adsorption FIn - reprecipitation AgCl, Ag + + FIn - = = AgCl, Ag +, FIn - (pink) The finish color changes: from yellowish green to orange Three, instruments and reagents Equipment and materials:Acid type buret (150 ml), taper bottle (250 ml), volumetric flask (100 ml), pipette (20 ml, 10 ml), measuring cylinder (100 ml, 10 ml), beaker (100 ml), brown reagent bottles (500 ml), analytical balance, platform scale. The reagent and drug: Analysis of AgNO3 (s, pure), NaCl (s, analysis of pure), physiological saline, fluorescent yellow - starch. Fourth, the experimental stepsAccurately moving 25 ml concentration is 0.7064 mol ╱ L of silver nitrate standard solution in the middle of 250 ml volumetric flask, dilute to scale as a standard solution titration.Accurately moving saline 10.00 ml to 250 ml conical flask, add 50 ml water, 3 drops of fluorescent yellow indicator, 5% starch indicator 5 ml, under continuous agitation, using silver nitratestandard solution titration to solution from yellow to pink is the end point. Record the consumption volume of silver nitratestandard solution, parallel determination of 3, calculate the sodium chloride content in saline and relative mean deviation.Fifth, data recording and processingFormula: ρ = V×MrNaCl×CAgNO3 x 100The average deviation d=0.01300 dr=d/ρ×100%=0.13%。