第2课时旋转作图预习

合集下载

八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件

八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件

后作这两部分关于GH的轴
对称图形,这样就可以得
到整个图形。
G
F
旋转图案设计欣赏
课后任务:
1、旋转作图的步骤 : (1)明确题目要求:弄清旋转中心、方向和角度; (2)分析所作图形:找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出
各关键点的对应点; (4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
2、“旋转”作图的条件 : (1)图形原来的位置; (2)旋转中心; (3)旋转方向; (4)旋转角度.
1.将△AOB绕点O旋转180°得到△DOC,则下列作图正确的是( )
2.如图,在正方形网格中有△ABC,△ABC绕点O按逆时针方向旋转90°后的 图案应该是( )
各关键点的对应点;
(4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
目标检测1:
目标检测1:
3、如图,在方格纸上,△DEF是由△ABC绕定 点P顺时针旋转得到的,如果用(2,1)表示方格 纸上A点的位置,(1,2)表示B点的位置,那么 点P的位置为( A ) A.(5,2) B.(2,5) C.(2,1) D.(1,2)
第三章 图形的平移与旋转
3.2 图形的旋转(第二课时)
3.2.2 旋转作图
课前学习——知识回顾
1、“旋转”的定义: 在平面内,将一个图形绕着_一__个_定_点__沿_某_个_方__向_转动
_一_个__角_度__,这样的图形运动称为__旋_转__(变_换__) ___. 2、“旋转”的基本性质: (1)经过旋转,图形的___形_状__和_大_小_____不变; (2)经过旋转,图形上的每一点都绕_旋__转_中_心_沿相同 的方向转动了相同的__角__度__; (3)任意一对_对__应_点__与_旋_转__中_心__的连线所成的角都是 ___旋_转_角___,对应点到__旋_转__中_心___的距离相等.

23.1 第2课时 旋转作图 人教版数学九年级上册教案

23.1 第2课时 旋转作图 人教版数学九年级上册教案

23.1 图形的旋转第2课时旋转作图教学目标:1.掌握旋转及旋转作图的概念及基本性质.2.能够根据旋转的基本性质解决实际问题和进行简单作图.教学重点:掌握旋转及旋转作图的概念及基本性质.教学难点:能够根据旋转的基本性质解决实际问题和进行简单作图.教学导入一、知识链接1.把一个平面图形绕着平面内一固定点转动一个角度,就叫做图形的旋转.这一点叫做,转动的角叫做,对应点到旋转中心的距离,对应点与旋转中心所连线段的夹角,且等于角,旋转不改变图形的和.2.如图,△ABD是△ACE绕点A顺时针旋转60°得到的.则点C的对应点是点,线段CE的对应线段是线段,∠E的对应角是,旋转中心是点,旋转的角度是.教学过程二、要点探究探究点1:简单的旋转作图画一画如图①,画出线段AB绕点A按顺时针方向旋转60°后的线段.图①图②试一试画出如图②所示的四边形ABCD以O为中心,顺时针旋转60°的旋转图形.思考旋转和平移有什么异同?典例精析例1 (教材P60例题)如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.解:∵点A是旋转中心,∴它的对应点是.正方形ABCD中,AD=AB,∠DAB= ,∴旋转后B和D重合.设点E的对应点为E′.∵△ADE△ABE′,∴∠ABE′==,BE′=,因此在CB的延长线上截取点E′,使BE′=,则△ABE′为旋转后的图形.想一想还有其他方法确定点E的对应点E′吗?方法总结:旋转作图的基本步骤:(1)明确旋转三要素:旋转中心、旋转方向和旋转角度. (2)找出关键点;(3)作出关键点的对应点;(4)作出新图形;(5)写出结论.练一练:下图为4×4 的正方形网格,每个小正方形的边长均为1,将△OAB绕点O逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B'吗?例2 如图,点A,C的坐标分别为(1,1)、(2,4),将△ABC绕点A按逆时针方向旋转90°,得到△A'B'C',则C'点的坐标为( )A.(-2,4)B.(4,0)C.(-2,2)D.(-1,3)方法点拨:根据题意画出图形,然后结合直角坐标系即可得出C'的坐标.练一练:如图,正方形OABC的两边OA.OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( )A .(2,10)B .(-2,0)C .(2,10)或(-2,0)D .(10,2)或(-2,0)分析:要注意分顺时针旋转和逆时针旋转两种情况讨论解答.方法点拨:关于平面直角坐标系中的图形旋转后对应点的坐标的计算,通常要结合已知点及其对应点构造直角三角形,利用旋转的性质,证明所构造的两个直角三角形全等即可解决.探究点2:旋转设计作图合作探究1.选择不同的__________、不同的__________旋转同一个图案,会出现不同的效果.(1)两个旋转中,旋转中心不变,__________改变了,产生了_______的旋转效果.(2)两个旋转中,旋转角不变,__________改变了,产生了_______的旋转效果.2.我们可以借助旋转可以设计出许多美丽的图案.例3 如图,该图形在绕点O 按下列角度旋转后,不能与其自身重合的是( )A .72°B .108°C .144°D .216°三、课堂小结作旋转图形①分析图形,找出图形的关键点;②确定三要素;③将关键点分别与旋转中心连接后旋转,找到关键点的对应点;④顺次连接各对应点.旋转的作图确定旋转中心找两条对应点连线段的垂直平分线的交点当堂检测1.如图,是由一个矩形沿顺时针方向旋转90度后所形成的图形是( )A.(1)(3)B.(2)(3)C.(1)(2)D.(3)2.等边三角形绕着它的中心O旋转,若旋转后的三角形能与自身重合,则旋转角最小是( ) A.360° B.240° C.120° D.60°3.如图,平面直角坐标系中,已知△ABC的顶点A的坐标为(-1,2).(1)将△ABC向右平移3个单位得到△DEF,请在图中画出平移后的图形;(2)将△ABC绕点C按逆时针方向旋转90°后得到△MNC,请在图中画出旋转后的图形,并写出点M,N的坐标.4.如图,四边形ABCD绕O点旋转后,顶点A的对应点为E,试确定B.C.D对应的点的位置,以及旋转后的四边形.参考答案自主学习一、知识链接1. 旋转中心旋转角相等相等旋转形状大小2. B BD ∠D A60°课堂探究二、要点探究探究点1:画一画作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°;(2)在射线AX上取点C,使得AC=AB.线段AC为所求.图略试一试图略思考①相同:都是一种运动;运动前后不改变图形的形状和大小.②不同:图形变换运动方向运动量的衡量平移直线移动一定距离旋转顺时针或逆时针转动一定的角度典例精析例1 点A 90 ° ≌90 ° ∠ADE DE DE想一想解:延长CB,以点A为圆心,AE 的长为半径画弧,交CB的延长线于E',连接AE',则△ABE'为旋转后的图形.练一练图略例2 C练一练C探究点2:合作探究 1. 旋转中心旋转角(1) 旋转角不同(2) 旋转中心不同例3 B当堂检测1. B2.C3.解:(1)图略.(2)图略.M(-3,-2),N(-2,-4)4.解:(1)连接OA.OB.OC.OD.OE;(2)分别以OB.OC.OD为一边作∠BOF,∠COG,∠DOH,使∠BOF= ∠COG= ∠DOH=∠AOE;(3)分别在射线OF,OG,OH上,截取OF=OB,OG=OC,OH=OD;(4)连接EF,FG,GH,HE,四边形EFGH就是四边形ABCD绕O点旋转后的图形.。

23.1 图形的旋转 第2课时 旋转作图

23.1  图形的旋转 第2课时 旋转作图
a.旋转中心不变,旋转角改变,产生不同的旋转效果.b.旋转角不变,旋转中心改变,产生不同的旋转效果.
O
O
β
α
(1)旋转中心不变,改变旋转角(如图).
O1
α
O2
α
(2)旋转角不变,改变旋转中心.
(3)美丽的图案是这样形成的.
用旋转的知识设计图形
运用旋转作图应满足三要素:旋转中心、旋转方向、旋转角,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角会作出不同效果的图案.
轴对称:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
直线EF与GH相交于图形的中心O,且互相垂直,先把左边的两个“十字”作关于EF的轴对称图形,然后作这两部分关于GH的轴对称图形,这样就可以得到整个图形.
平移:
平移的方向
平移的距离
仅靠平移无法得到
旋转:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.
平移、 旋转相结合:
先平移
后旋转
下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”先通过一次平移成图形右侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.
B
3. 如图,在Rt△ABC中,∠ACB=90°,∠A= 40°,以直角顶点C为旋转中心,将△ABC旋 转到△A′B′C的位置,其中A′、B′分别是A、 B的对应点,且点B在斜边A′B′上,直角边C A′交AB于点D,则旋转角等于( ) A.70° B.80° C.60° D.50°

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

2024年人教版九年级数学上册教案及教学反思全册第23章 旋转图形的旋转 (第2课时)教案

23.1图形的旋转(第2课时)一、教学目标【知识与技能】进一步加深对旋转性质的理解,能用旋转的性质解决具体问题及进行图案设计.【过程与方法】经历对生活中旋转现象的观察、推理和分析过程,学会用数学的眼光看待生活中的有关问题,体验数学与现实生活的密切联系.【情感态度与价值观】进一步培养学生学习数学的兴趣和热爱生活的情感,体会生活的旋转美,发展学生的美感,增强学生的艺术创作能力和艺术欣赏能力.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】利用旋转的性质设计简单的图案.【教学难点】利用旋转性质进行旋转作图.五、课前准备课件、直尺、圆规、铅笔、图片等.六、教学过程(一)导入新课教师问:1.平移的特征有哪些.(出示课件2)2.旋转的特征有哪些.(出示课件3)3.如何做出符合要求的旋转后的图形呢?学生回顾前面所学过知识,巩固旋转的性质.(二)探索新知探究一简单的旋转作图画一画:如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.(出示课件5)学生回顾前面所学过知识,并完成画图.作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°.(2)在射线AX上取点C,使得AC=AB,线段AC为所求.画出下图所示的四边形ABCD以O为中心,旋转角都为60°的旋转图形.(出示课件6)学生画图,教师加以巡视并订正.师生共同总结:平移与旋转的异同(出示课件7)2同:都是一种运动;运动前后不改变图形的形状和大小.②不同:出示课件8:例如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.图形变换运动方向运动量的衡量平移直线移动一定距离旋转顺时针或逆时针转动一定的角度教师问:本题中作图的关键是什么?学生答:作图关键-确定点E的对应点E′.师生共同解答如下:(出示课件9)解:∵点A是旋转中心,∴它的对应点是点A.正方形ABCD中,AD=AB,∠DAB=90°,所以旋转后点D与点B重合.设点E的对应点为E′.∵△ADE≌△ABE′∴∠ABE′=∠ADE=90°,BE′=DE,因此在CB的延长线上截取点E′,使BE′=DE.则△ABE′为旋转后的图形.教师问:还有其他方法确定点E的对应点E′吗?(出示课件10)学生答:延长CB,以点A为圆心,AE的长为半径画弧,交CB的延长线于E',连接AE',则△ABE'为旋转后的图形.教师归纳:旋转作图的基本步骤:(出示课件11)(1)明确旋转三要素:旋转中心、旋转方向和旋转角度;(2)找出关键点;(3)作出关键点的对应点;(4)作出新图形;(5)写出结论.巩固练习:1.如何确定它们的旋转中心位置?(出示课件12,13)学生自主解答:找到两条对应点所连线段的垂直平分线的交点.2.下图为4×4的正方形网格,每个小正方形的边长均为1,将△OAB绕点O逆时针旋转90°,你能画出△OAB旋转后的图形△O'A'B'吗?学生自主操作:如图所示.探究二利用多种图形变化的方法进行图形变化教师问:下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?还有其他方式吗?(出示课件14)学生1:仅靠平移无法得到.学生2:整个图形可以看作是右边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.(出示课件15)学生3:整个图形可以看作是右边的两个小“十字”先通过一次平移成图形左侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.(出示课件16)出示课件17:例怎样将甲图案变成乙图案?学生通过观察,感受图案的形成过程,然后师生共同解答.可以先将甲图案绕图上的A点旋转,使得图案被“扶直”,然后,再沿AB 方向将所得图案平移到B点位置,即可得到乙图案.巩固练习:如图,怎样将右边的图案变成左边的图案?(出示课件18)学生观察后自主解答.答:以右边图案的中心为旋转中心,将图案按逆时针方向旋转90°,然后平移,即可得到左边的图案探究三利用旋转设计图案选择不同的旋转中心、不同的旋转角旋转同一个图案,会出现不同的效果.(出示课件19)教师利用课件19,20,21进一步展示“月芽”的旋转效果.思考:(1)在旋转过程中,产生了不同旋转效果,这是什么原因造成的呢?(2)你能仿照上述图示方法进行图案设计吗?与同伴交流.(三)课堂练习(出示课件22-28)1.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O、A1、B为顶点的三角形的形状.(无须说明理由)2.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是()A. B. C. D.3.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是()A.甲B.乙C.丙D.丁4.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?5.如图,△ABC中,∠C=90°,∠B=40°,点D在边BC上,BD=2CD.△ABC绕着点D顺时针旋转一定角度后,点B恰好落在初始△ABC的边上.求旋转角α(0°<α<180°)的度数.参考答案:1.解:(1)如图所示,△A1B1C1即为所求。

23.1图形的旋转(第二课时)

23.1图形的旋转(第二课时)
2)连接AA1,求证 四边形OAA1B1是平行 四边形

(3)求四边形OAA1B1 的面积?
2.已知:如图,在△ABC中,∠BAC=1200,以BC为边向 形外作等边三角形△BCD,把△ABD绕着点D按顺时针 方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD 的度数与AD的长. E
A
1.已知线段A000后的图形. M
B′ A′ N B
O A
例4.在等腰直角△ABC中,∠C=900,BC=2cm,如果 以AC的中点O为旋转中心,将这个三角形旋转1800, 点B落在点B′处,求BB′的长度.
B′
O
C′ C
A A′
B
练一练
如图,在正方形ABCD中,E是CB延长线上一 点,△ABE经过旋转后得到△ADF,请按图回答:
简单的旋转作图
例3
如图,△ABC绕C点旋转后,
顶点A得对应点为点D. 试确定顶点 B对应点的位置以及旋转后的三角
形.
A
E
D
B
C
则△DEC即为所求作.
3、如图,ΔDEF是由△ABC绕某一中心 旋转一定的角度得到,请你找出这旋转 中心. A C
D B E F
旋转中心在对应点连线的垂直平分线上。
.O
简单的旋转作图
C
B
D
(二)、新知学习: 自学教材 P60 例题,画出旋转后的 图形,并写出画法,写出理由。
简单的旋转作图
例1 : 将A点绕O点沿顺时针方向旋转60˚.
点的旋转作法
B
B点即为所求作.
A O
简单的旋转作图
例2 将线段AB绕O点沿顺时针方向旋转60˚.
线段的旋转作法
C

图形的旋转及旋转作图知识点总结和重难点精析

图形的旋转及旋转作图知识点总结和重难点精析

图形的旋转及旋转作图知识点总结和重难点精析在九年级数学中,图形的旋转及旋转作图是一个重要知识点,它不仅在几何学中有着广泛应用,也在实际生活中具有许多应用场景。

本文将对该知识点进行总结,并针对重难点进行精析,以帮助学生更好地掌握这一部分内容。

一、知识点总结1.旋转条件:图形旋转需要确定一个中心点,同时需指定绕该中心点旋转的角度。

2.旋转性质:旋转前后的图形是全等的;对应点到旋转中心的距离相等;对应点与旋转中心连线所成的角相等。

3.作图方法:先确定旋转中心和旋转角度,然后作出图形旋转后的对应点,最后连接对应点形成旋转后的图形。

二、重难点精析1.确定旋转中心:旋转中心的选择可以是图形上的任意一点,但不同的选择会影响到旋转后图形的形状和大小,因此需要学生有一定的空间感知能力。

2.旋转角度的确定:旋转角度的确定是影响旋转作图的关键因素,角度错误会导致旋转后的图形与原图形不一致。

学生需要熟练掌握角度的测量和计算方法。

3.对应点的确定:对应点的确定是旋转作图的重点之一,学生需要细心观察图形,通过对应点到旋转中心距离相等的特点,正确作出旋转后的对应点。

4.连接对应点:连接对应点时,要注意对应点与旋转中心连线所成的角相等的特点,正确作出旋转后的图形。

特别是在作较复杂的图形旋转时,需要有一定的空间思维能力。

三、题目解析【例题】如图所示,已知三角形ABC,请以点A为中心,将三角形ABC逆时针旋转90度,作出旋转后的三角形AB'C'。

【解析】1.确定旋转中心:本题中旋转中心为点A。

2.确定旋转角度:本题中要求将三角形ABC逆时针旋转90度。

3.确定对应点:根据对应点到旋转中心距离相等的性质,可以作出旋转后的对应点B'和C'。

4.连接对应点:根据对应点与旋转中心连线所成的角相等的性质,可以作出旋转后的三角形AB'C'。

具体步骤如下:(1) 画出点A的水平线和垂直线,作为辅助线。

§3.2(2) 图形的旋转 --旋转作图之二

分析 明确:旋转中心,旋转的方向与旋转角度;
假设顶点 B 的对应点为 E ,
E
D
则∠BCE 、∠ACD都是旋转角,
A
且 ∠BCE =∠ACD 、CE=CB 、CD=CA
B
C
下午3时3分
17
例题解析
例1.如图△ABC绕C点旋转后,顶点A的对应点为点D。
试确定顶点B的对应位置,以及旋转后的三
角形。
下午3时3分
11
1、 将下图中大写字母N绕它右下侧的顶点按顺时 针方向旋转90˚,作出旋转后的图案.
下午3时3分
12
• 2. 小明在广场游玩时, 看见许多喷水嘴正在给草
坪浇水。 喷水嘴不停地旋转着, 但每时每刻喷出
的水雾总是四分之一圆。请问:“如果喷出水雾
的范围内有一正方形, 喷水嘴位于它的中心, 那么
弧;与BM交于点C(A’)
B A
3. 线段B C(A’) 即为所求作的线段.
下午3时3分
5
1.线段的旋转(以线段外一点为旋转中心)
例2.线段AB,旋转中心O, M 旋转角:100°.
方向:逆时针
B′
作法:1.联结OA 2.以OA为始边,逆时针方向作 1000角,在角的终边ON上截取 线段OA′=OA,得点A ′
2.以C为圆心,以CB为半径画弧;
3.以A’为圆心,以AB为半径作 弧,两弧交于点B’;
B’(D) ·
A
·D(A’)
4.连结A’B’,B’C.
则△A’B’C即为所求作的三
角形。
B
C
下午3时3分
7
2.三角形的旋转 (课本P79)
E
例3. 如图,△ABC绕C点旋转后,顶点A

《图形的旋转》旋转PPT(第2课时)


练习
如图,将ΔABC 绕点P 顺时针旋转90°得到ΔA1B1C1,则点 P 的坐标是(__1_,__2_)_____.
旋转出等腰
如图,正方形A'B 'C 'D '是正方形
ABCD按顺时针方向旋转45°而成的
(1)若AB=4,
S 则 正方形A'B'C'D'=____1_6_____;
(2)∠BAB '= 45°
练习 图是由正方形ABCD 旋转而成. (1)旋转中心是____A______ (2)旋转的角度是___4__5_°___ (3)若正方形的边长是1,则C ’D =_________
练习
下列现象中属于旋转的有___4____个
①地下水位逐年下降;②传送带的移动; ③方向盘的转动;④水龙头开关的转动; ⑤钟摆的运动;⑥荡秋千运动.
探究 (1)线段 OA 和 OA’ 有什么关系? (2)∠AOA’ 和 ∠BOB ’有什么关系?
相等 (3)图中还有哪些类似关系的线段和角?
OB =OB ’,OC =OC ’ ∠COC ’=∠BOB ’=∠AOA’ (4)Δ ABC 和 Δ A’B ’C ’ 有什么关系? 全等
归纳 旋转的性质 1.对应点到旋转中心的距离_相__等___.
总结
确定旋转中心的步骤
1.连接两组对应点.
2.作对应点连线的垂直平分线.
O
3.交点就是旋转中心.
答案:60°,5. 总结:旋转60°会产生等边三角形.
直角绕正方形中心旋转
已知,如图正方形 EFOG 绕与之边长相等的正方形 ABCD 的 中心 O 旋转任意角度.求证图中阴影部分的面积等于正方形 面积的四分之一.

北师大版八年级下册数学《3.2第2课时旋转作图》说课稿

北师大版八年级下册数学《3.2 第2课时旋转作图》说课稿一. 教材分析北师大版八年级下册数学《3.2 第2课时旋转作图》这一节课,主要让学生了解旋转变换在实际问题中的应用。

通过本节课的学习,学生能够理解旋转变换的概念,掌握旋转变换的性质,并能运用旋转变换解决一些实际问题。

教材通过丰富的实例,引导学生探究旋转变换的特点,从而培养学生的动手操作能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了图形的平移和轴对称变换,对图形的变换已经有了一定的认识。

然而,旋转变换与平移和轴对称变换有所不同,需要学生能够从新的角度去理解和掌握。

此外,学生需要具备一定的空间想象能力和逻辑思维能力,才能更好地理解和运用旋转变换。

三. 说教学目标1.知识与技能目标:让学生理解旋转变换的概念,掌握旋转变换的性质,并能运用旋转变换解决一些实际问题。

2.过程与方法目标:通过观察、操作、交流和探究,培养学生动手操作能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 说教学重难点1.教学重点:旋转变换的概念和性质。

2.教学难点:旋转变换在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究学习法。

2.教学手段:多媒体课件、实物模型、几何画板等。

六. 说教学过程1.导入新课:通过一个简单的实例,让学生感受旋转变换的效果,引发学生的兴趣。

2.探究旋转变换的性质:引导学生动手操作,观察旋转变换前后的图形,总结旋转变换的性质。

3.应用旋转变换解决实际问题:出示一些实际问题,让学生运用旋转变换的知识解决,培养学生的解决问题的能力。

4.巩固练习:出示一些练习题,让学生独立完成,巩固旋转变换的知识。

5.课堂小结:让学生回顾本节课所学的内容,总结旋转变换的性质和应用。

七. 说板书设计板书设计如下:1.概念:图形绕某点旋转一定的角度得到的新图形。

九年级数学上册教学课件《旋转作图与坐标系中的旋转变换》


旋转中心 旋转方向 旋转角
顺时针 逆时针
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
01

找出旋转中心、旋转方向、旋转角以 及表示图形的关键点(如顶点)
02 连 连接图形的每一个关键点与旋转中心
03

把连线绕旋转中心按旋转方向旋转相 同的角度(旋转角的度数)
举例: 画出旋 转后的 三角形.
04

在旋转后所得的射线上截取与关键点到旋转中 心距离相等的线段,得到各关键点的对应点
05

按原图顺次连接各关键点的对应点,并标上 相应字母,写出结论
知识点一 用旋转的知识作图
例 如图,E是正方形ABCD中CD边上任意
一点,以点A为中心,把△ADE顺时针旋转90°,
画出旋转后的图形.
A
D
想一想:本题中作图
E
的关键是什么?
确定点E的对应点E' B
C
解:因为点A是旋转中心,所以它的对应点是 点A .
正方形ABCD中,AD=AB,∠DAB=90°,所以旋
逆时针旋转,画出旋转后的图形.【教材P62习题23.1 第3题】
A
A
P'
BP
C
BP
C
解:如图所示,△ACP'即为所求作的图形.
3. 分别画出△ABC绕点O逆时针旋转90°和
180°后的图形. 【教材P62习题23.1 第4题】
B'' A''
解: 旋转90° 后的图形 如图所示.
C' C''
OC
B'
转后点D与点 B 重合.
设点E的对应点为点E'. 因为旋转后的图形与旋转前的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 用配方法解一元二次方程
活动2 教材导学
旋转作图 分析图23-1-6①,②,④中阴影部分的分布规律,按此规
律在图③中画出其中的阴影部分.
图23-1-6
图23-1-5
第2课时 旋转作图
[解析] ①→②可以看作以点C为旋转中心按顺时针方向把△ABC旋转 90°得到的,(1)正确.①→③可以看作先以点C为旋转中心顺时针旋转 90°,再以点B为旋转中心顺时针旋转90°得到的,(2)错误.①→④, △A″B″C″与△ABC的对应边A″C″与AC在同一直线上,可以看作平移, (3)正确.②→③可以看作把△A′CB′绕点B′旋转得到的,(4)正确.
第2课时旋转作图预习
2020/8/15
第二十三章 旋转
第2课时 旋转作
如图23-1-5中的Rt△ABC向右翻滚,下列说法:
(1)①→②是旋转; (2)①→③是平移; (3)①→④是平移; (4)②→③是旋转. 其中正确的有( C )
A.1个 B.2个 C.3个 D.4个
相关文档
最新文档