弯曲变形的强度条件和强度计算
梁弯曲的强度条件和刚度条件及应用

范中查到。
在梁的设计计算中,通常是根据强度条件确定截面尺寸,然
后用刚度条件进行校核。具体过程参看下面例题。
工程力学
梁弯曲的强度条件和刚度条件及应用
(1)小跨度梁或荷载作用在支座附近的梁。此时梁的Mm ax可能较小而FSmax较大。
(2)焊接的组合截面(如工字形)钢梁。当梁截面的腹板厚 度与高度之比小于型钢截面的相应比值时,横截面上可能产 生较大的切应力τmax。
(3)木梁。木梁在顺纹方向的抗剪能力差,可能沿中性层 发生剪切破坏。
梁弯曲的强度条件和刚度条件及应用
2. 强度条件的应用 【例8-6】
梁弯曲的强度条件和刚度条件及应用
(2)内力分析。绘制内力图如图8-27(b)和(c)所示, 确定最大剪力、弯矩为
FSmax=60 kN,Mmax=18 kN·m (3)根据正应力强度条件选择截面。由式(8-26)得
查附录型钢表,可选用16号工字钢,其抗弯截面系数 Wz=141 cm3,高h=16 cm,腿厚t=9.9 mm,腹板厚b1= 6 mm。
梁弯曲的强度条件和刚度条件及应用
图8-27
梁弯曲的强度条件和刚度条件及应用
1.2 弯曲梁的刚度条件
梁除满足强度条件外,还应满足刚度要求。根据工程实际的
需要,梁的最大挠度和最大(或指定截面的)转角应不超过某一规
定值,由此梁的刚度条件为
ymax≤y
(8-28)
θmax≤θ
(8-29)
式中,许可挠度y和许可转角θ的大小可在工程设计的有关规
工程力学
ห้องสมุดไป่ตู้
梁弯曲的强度条件和刚度条件及应用
1.1 梁弯曲的强度条件及应用 1. 强度条件
由于梁弯曲变形时横截面上即有正应力又有切应力,因此强度条 件应为两个。当弯曲梁横截面上最大正应力不超过材料的许用正应力, 最大切应力不超过材料的许用切应力时,梁的强度足够,即
梁的剪应力及其强度条件梁的弯曲应力与强度计算剪应力计算公式

8.1 梁弯曲时横截面上的正应力 8.2 弯曲正应力的强度条件 8.3 梁的剪应力及其强度条件 8.4 提高弯曲强度的措施
8.1 梁弯曲时横截面上的正应力
横截面上有弯矩又有剪力。 例如:AC和DB段。 称为横力弯曲(剪切弯曲)。 横截面上有弯矩没有剪力。 例如:CD段。 称为纯弯曲。
力 max 发生在弯矩最大的截面上,且离中性轴最远处。即
引用记号 则
max
M max ymax Iz
Wz
Iz ymax
max
M max Wz
Wz 称为弯曲截面模量。它与截面的几何形状有关,单位为m3。
8.2 弯曲正应力的强度条件
对于宽为 b ,高为 h 的矩形截面
Wz
Iz ymax
bh3 /12 h/2
A
A
M
E
Iz
式中1/ρ为梁弯曲后轴线的曲率。
EIz 称为梁的弯曲刚度。
8.1 梁弯曲时横截面上的正应力
E y
(b)
由上面两式,得纯弯曲时正应力的计算公式:
将弯矩 M 和坐标 y 按规定的正负代入,所得到的正应力若为 正,即为拉应力,若为负则为压应力。
一点的应力是拉应力或压应力,也可由弯曲变形直接判定。 以中性层为界,梁在凸出的一侧受拉,凹入的一侧受压。
8.1 梁弯曲时横截面上的正应力
E y
(b)
将式(b)代入式(d),得
M y
z dA 0
A
(d)
M z
y dA M
A
(e)
z dA E y z dA 0
A
A
A y z dA I yz 0
(自然满足)
y 轴为对称轴,必然有Iyz=0。
弯曲强度.

max
MB yb MD yd 70MPa, d 35MPa IZ IZ
5) 强度校核:
max d [ ]
b [ ]
强度满足。
讨论:
1)对于脆性材料必须要同时校核拉、压正应力强度。 2)危险截面一般在峰值点或极值点,最好把各点的 拉压最大应力计算出来,进行校核,不能遗漏。
[P] 38.3(kN)
4)求最大剪应力
max
3 Q 3.83MPa 2 bh
5)求最大正应力
PL max 102MPa WZ
注:若叠梁的板间接触面光滑无约束,则每层板承受的弯 矩相等。
(Mmax ) New
(Wz ) New
M max 3
Wz 9
( max )New 3 max 306MPa
* Za * Z max 3
7) 求
z'
Q maxS* Za a 2.81MPa ba I Z QmaxS* Z max c 0.707MPa bc I Z max a 2.81MPa
max
五、提高弯曲强度的主要措施 M max 控制条件: max [] WZ
M max [ ] Wz
40kN.m
M max Wz 235 103 mm3 [σ ]
①圆截面:
②正方形:
d 3 d 133.8mm, A 14060 2 mm Wz 1 32
a3 Wz 6
a 112.1mm, A2 12570 mm2
③h/b=2的矩形:
y
x ①变形几何关系: y y
y
y ②物理关系: E E
工程力学习题库-弯曲变形

第8章 弯曲变形本章要点【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。
剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。
【公式】 1. 弯曲正应力 变形几何关系:yερ=物理关系:Ey σρ=静力关系:0N AF dA σ==⎰,0y AM z dA σ==⎰,2zz AAEI EM y dA y dA σρρ===⎰⎰中性层曲率:1MEIρ=弯曲正应力应力:,My Iσ=,max max z M W σ=弯曲变形的正应力强度条件:[]maxmax zM W σσ=≤ 2. 弯曲切应力矩形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F bh F S S 2323max ==τ工字形梁弯曲切应力:dI S F y z z S ⋅⋅=*)(τ,A F dh F S S ==max τ圆形截面梁弯曲切应力:bI S F y z z S ⋅⋅=*)(τ,A F S 34max =τ弯曲切应力强度条件:[]ττ≤max3. 梁的弯曲变形梁的挠曲线近似微分方程:()''EIw M x =-梁的转角方程:1()dwM x dx C dx EIθ==-+⎰ 梁的挠度方程:12()Z M x w dx dx C x C EI ⎛⎫=-++ ⎪⎝⎭⎰⎰ 练习题一. 单选题1、 建立平面弯曲正应力公式zI My /=σ,需要考虑的关系有()。
查看答案A 、平衡关系,物理关系,变形几何关系B 、变形几何关系,物理关系,静力关系;C 、变形几何关系,平衡关系,静力关系D 、平衡关系, 物理关系,静力关系;2、 利用积分法求梁的变形,不需要用到下面那类条件()来确定积分常数。
查看答案A 、平衡条件B 、边界条件C 、连续性条件D 、光滑性条件3、 在图1悬臂梁的AC 段上,各个截面上的()。
梁的弯曲变形简单计算方法

梁的弯曲变形简单计算方法
梁是传动重要机构之一,其弯曲变形是广泛应用于结构力学设计中的一项重要技术。
它可
以用来分析梁承载的荷载情况,为梁的安全性能设计提供参考。
计算梁的弯曲变形是构造设计中的重要部分,因此有必要掌握有效的简便方法。
梁的弯曲变形一般是有三种计算方法:等强度线法、活荷载平移法、真实三维变形法。
这
三种计算方法的计算时间和计算精度不同,可根据实际情况选择合适的计算方法。
等强度线法是最简单且计算时间最短的方法,利用梁受力后形成的抗压线和抗张线构成图形,并将图形转化为梁形成的弯曲变形。
活荷载平移法则分析了活荷载作用于梁的变形状,将活荷载平移线与梁截面结合起来,表征出梁的弯曲变形。
而真实三维变形则完整量化了
梁的受力状态,找出真实的变形轮廓,从而获得准确的弯曲变形。
总之,梁的弯曲变形计算方法可根据实际应用场合选择合适的方法,以便为梁的设计提供参考。
在工程应用中,其梁的弯曲变形计算通常使用简便方法,如等强度线法和活荷载平
移法,而对于有特殊要求的情况,可以采用真实三维变形法,以保证梁的安全性能。
学习任务6 弯曲强度计算

例2 已知悬臂梁如图,l 1.5m ,P=32kN,梁由22a工字
钢制成,自重按 q 0.33kN / m ,材料的 160 MPa
140 MPa 校核粱强度。
q
p
A
B
z
l
例3 矩形截面松木梁如图,已知 q 3.6kN / m ,材料的
10MPa 2MPa l 4m
计算:1)若截面高宽比h/b=2,设计木梁尺寸b、h。 2)若木梁采用b=140mm,h=210mm的矩形截面,计算
z
Wz1
D13
32
max
1.33 m
4Q 3A
D1
As D12 a2 , a
4
R; (R D1 / 2)
a
z
Wz 2
bh2 6
(
R)3
6
1.18Wz1
a
max 1.5 m
当 D12
4
[D2
(0.8D)2 ]时, D 4
1.67 D1
Wz3
D3
32
(1 -
0.8
4
)
2.75Wz1
z
max 2 m
0.8D D
2a1
当 D12
4
2a12时, a1
2 D1 / 4
Wz 4
bh2 6
4a13 6
1.67Wz1
max 1.5 m
z a1
2a2 1.6a2
当 D12
4
2a22
0.81.6a22时, a2
1.05D1
z 0.8a2
a2
Wz5 4.57Wz1
max 2.3 m (= Q Af )
求最大应力并校核强度
max
梁的弯曲应力和强度计算

88
7.5 106 7.6 106
88 86.8MPa
弯曲正应力计算
三、计算题
27.一矩形截面简支梁,梁上荷载如图所示.已知P=6kN、 l=4m、b=0.1m、h=0.2m,试画出梁的剪力图和弯矩图并求 梁中的最大正应力. 解:(1) 作剪力图、弯矩图
(2)求最大正应力
Mmax 6kN m
横向线:仍为直线,仍与纵向线正交,相对转动了一个角度 纵向线:曲线,下部伸长,上部缩短
(2)假设 平面假设:横截面在变形前为平面,变形后仍为平面,且仍
垂直于变形后梁的轴线,只是绕横截面上某个轴 旋转了一个角度。 单向受力假设:梁由无数根纵向纤维组成,之间无横向挤压,
只受轴向拉伸与压缩。
中性层
3、正应力计算公式 〖1〗几何变形关系
内容回顾
弯曲正应力 1. 基本假设:
(1)平面假设:变形前为平面的横截面,变形后仍为平面,但转动了一角度。 (2)单向受力假设:杆件的纵截面(与杆轴平行的截面)上无正应力。
2.中性轴Z:
中性层与横截面的交线,平面弯曲时中性轴过形心且与对称轴垂直。
3.正应力计算公式:
中性层
4.正应力分布规律:沿截面高度呈线性分布。
4、正负号确定 1)M、y 符号代入公式
2)直接观察变形
5、适用范围及推广
〖1〗适用范围: 平面弯曲(平面假设、单向受力假设基础上)、 线弹性材料
〖2〗推广: ① 至少有一个对称轴的截面; ② 细长梁 (l/h>5);
6、最大正应力
工程上关心的是极值应力:
只与截面形状、尺寸有关
抗弯截面模量
对剪切(横力)弯曲: 矩形:
解:(1)作弯矩图,
求最大弯矩
混凝土弯曲变形试验标准

混凝土弯曲变形试验标准一、前言弯曲试验是混凝土力学试验中的一种常见试验方法,用于研究混凝土在受弯曲荷载作用下的变形性能,是评价混凝土抗弯强度和变形能力的重要依据。
因此,制定一套完整的混凝土弯曲变形试验标准对于混凝土工程的设计和施工具有重要的指导意义。
二、试验目的本试验的目的是研究混凝土在受弯曲荷载作用下的变形特性和抗弯强度,并为混凝土的设计和施工提供科学依据。
三、试验设备1. 试验机:承载力不小于200kN,采用比例秤或应变计来测量荷载。
2. 弯曲试验模具:模具应符合GB/T50081-2002《混凝土试件制作规范》中的规定,模具尺寸为100mm×100mm×500mm,模具内表面应平整、无明显损伤。
3. 试验钢模:钢模尺寸为50mm×50mm×500mm,钢模表面应平整、无明显损伤。
4. 底座:底座应具有足够的强度和稳定性。
5. 量具:包括卡尺、游标卡尺等。
四、试验原理混凝土在受弯曲荷载作用下,内部产生剪应力和弯曲应力,导致混凝土产生弯曲变形。
根据梁的基本理论,可得出混凝土抗弯强度和变形能力的相关参数。
五、试验步骤1. 混凝土试件制作:按照GB/T50081-2002《混凝土试件制作规范》的要求制作100mm×100mm×500mm的混凝土试件。
2. 试件表面处理:试件表面要平整,去除松散物质和突出物。
3. 钢模和混凝土试件的安装:将钢模放置于底座上,将试件放置在钢模上,调整试件与钢模的位置,使试件的中心线与钢模的中心线重合。
4. 荷载施加:将试验机的压头移动到试件的上方,调整高度,使荷载与试件中心线重合。
调整试验机的速度,每10秒钟增加一次荷载,直至试件破坏。
5. 记录数据:记录荷载和试件的挠度数据,并绘制荷载-挠度曲线。
六、试验结果的计算1. 抗弯强度:按照GB/T50081-2002《混凝土试件制作规范》的公式计算。
2. 弯曲变形模量:根据荷载-挠度曲线的斜率计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弯曲变形的强度条件和强度计算
当梁受到一组垂直于其轴线的力即横向力或位于轴线平面内的外力偶作用时,梁的轴线由一条直线变为曲线,称为弯曲变形。
如果梁的几何形状材料性能和外力都对称于梁的纵向对称面则称为对称弯曲。
如果梁变形后的轴为形心主惯性平面内的平面曲线则称为平面弯曲。
本课程中主要研究以对称弯曲为主的平面弯曲,如图1所示。
图1 平面弯曲
一、梁弯曲时的内力——剪力和弯矩
梁的横截面上有两个分量——剪力和弯矩,它们都随着截面位置的变化而变化,可表示为F S=F S(x)和M=M (x),称为剪力方程和弯矩方程。
为了研究方便,通常对剪力和弯矩都有正负规定:使微段梁发生顺时针转动的剪力为正,反之为负,如图2所示;使微段梁上侧受拉下侧受压的弯矩为正,反之为负,如图3所示。
图2 剪力的正负
图3 弯矩的正负
例1:试写出下图所示梁的内力方程,并画出剪力图和弯矩图。
解:(
1
)求支反力
=
∑C M:0
3
10
12
6=
⨯
-
-
⋅
Ay
F,kN
7
=
Ay
F
=
∑Y:0
10=
-
+By
Ay
F
F,kN
3
=
By
F
(2)列内力方程
剪力:
⎩
⎨
⎧
<
<
-
<
<
=
6
3
kN
3
3
kN
7
)
(
S x
x
x
F
弯矩:
⎩
⎨
⎧
≤
≤
≤
≤
⋅
-
⋅
-
=
6
3
3
m
kN
)
6(3
m
kN
12
7
)
(
x
x
x
x
x
M
(3)作剪力图和弯矩图
二、梁弯曲时的正应力
在一般情况下,梁的横截面上既有弯矩又有剪力。
若梁上只有弯矩没有剪力,称为纯弯曲。
本讲主要讨论纯弯曲时横截面上的应力——正应力。
梁横截面上的正应力大小与该点至中性轴的距离成正比,即正应力沿截面宽度均匀分布,沿高度呈线性分布,如图4所示。
图4 梁弯曲时的正应力分布图
即有y
I
x
M
z
)
(
=
σ(1)
中性轴把截面分成受拉区和受压区两部分,且最大拉应力和最大压应力发生在上下边缘处,其值为max max y I M
z
=
σ。
令max y I W z z
=,即有:
z
W M =
max σ (2)
式中,W z 称为抗弯截面系数,它与横截面的几何尺寸和形状有关,量纲为[长度]3,常用单位为mm 3或m 3。
(1)对于矩形截面(高为h ,宽为b ,z 轴通过截面形心且平行于矩形的宽度方向。
):
6
2
h b W Z =
(3)
(2)对于圆形截面(直径为D ):
32
3
d W Z π=
(4)
(3)对于圆环形截面(外径为D ,内径为d ):
()
D
d D W Z
324
4-=π (5)
三、梁的强度计算
梁的强度要求可概括为两个方面,即梁内的最大正应力不超过材料的许用应力和最大切应力不超过材料的许用切应力。
一般说来,梁的正应力强度占主要地位,切应力强度是次要的,所以只考虑正应力强度问题。
对于等直梁,强度条件为:
][max
max σσ≤=
z
W M (6)
根据梁的正应力强度条件,可以解决梁的强度校核、选择截面尺寸和确定许用荷载三类工程强度设计问题。
例2:图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2×F 2=5kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1)求最大弯矩(位于固定端)
max 7.5 kN M =
(2)计算最大应力
(3)计算K 点的应力
6
max max max
227.510176 MPa
408066
Z
M M bh W σ⨯====⨯6max max 337.51030
132 MPa
40801212
K Z
M y M y bh I σ⋅⋅⨯⨯====⨯
1 z。