随机振动分析
随机振动分析报告

随机振动分析报告1. 引言随机振动是振动工程中的重要研究领域,对于各种结构和系统的设计与分析都具有重要的意义。
本文将介绍随机振动分析的基本概念、方法和步骤,并通过一个示例来说明如何进行随机振动分析。
2. 随机振动的基本概念随机振动是指在一定时间范围内,振动信号的幅值和频率是不确定的、随机变化的。
随机振动的特点是无法通过确定性的数学模型来描述,因此需要采用统计方法进行分析。
3. 随机振动分析的步骤随机振动分析的基本步骤包括:信号采集、数据预处理、频谱分析、统计分析和模型建立等。
3.1 信号采集随机振动信号的采集可以通过传感器等设备进行。
采集到的信号需要进行滤波和采样处理,以便后续分析。
3.2 数据预处理在进行频谱分析和统计分析之前,需要对采集到的数据进行预处理。
常见的预处理方法包括去除噪声、补充缺失数据和归一化处理等。
3.3 频谱分析频谱分析是对随机振动信号进行频域分析的方法。
通过对信号的频谱特性进行分析,可以了解信号的频率分布和主要频率成分。
3.4 统计分析统计分析是对随机振动信号进行统计学特征分析的方法。
常见的统计分析方法包括均值、方差、自相关函数和互相关函数等。
3.5 模型建立通过对随机振动信号的分析,可以建立相应的数学模型,用于预测和仿真。
常见的模型包括自回归模型和自回归移动平均模型等。
4. 示例:汽车发动机的随机振动分析以汽车发动机的随机振动分析为例,介绍随机振动分析的具体步骤。
4.1 信号采集使用加速度传感器对汽车发动机进行振动信号的采集。
将传感器安装在发动机的合适位置,以获取准确的振动信号。
4.2 数据预处理对采集到的振动信号进行滤波和采样处理,去除噪声和不必要的频率成分,并将信号进行归一化处理。
4.3 频谱分析将预处理后的振动信号进行频谱分析,得到信号的频谱特性。
可以使用FFT算法将信号从时域转换为频域,并绘制频谱图。
4.4 统计分析对频谱分析得到的数据进行统计分析,计算信号的均值、方差和自相关函数等统计学特征。
随机振动响应分析技术研究

随机振动响应分析技术研究一、引言随机振动响应分析是结构工程领域中一个非常重要的课题。
结构物的振动响应具有随机性、复杂性和非线性等特点,因此,能够对结构物在随机激励下的振动响应进行研究和分析,对于提高结构物的可靠性、耐久性和安全性非常关键。
二、随机振动响应分析的方法随机振动响应分析技术主要包括两种方法:频域分析和时域分析。
1. 频域分析频域分析是指将随机振动信号分解成一系列特定频率的正弦波分量,然后对这些正弦波分量进行分析、计算和处理。
这种方法一般使用离散傅里叶变换(DFT)或快速傅里叶变换(FFT)进行处理,可以方便地进行频率分析和频率响应。
2. 时域分析时域分析是指基于时间序列的方法,通过对随机振动信号的时间序列进行分析,得到结构物的响应特性。
这种方法可以使用自相关函数、互相关函数、功率谱密度和相干函数等分析工具。
三、随机振动响应分析的应用随机振动响应分析技术在各个领域都有广泛的应用。
1. 土木工程在土木工程中,随机振动响应分析技术可以用来评估建筑物、桥梁、隧道等结构物在地震或风荷载下的响应情况,以及评估疲劳损伤的程度。
2. 航空航天工程在航空航天工程中,随机振动响应分析技术可以用来评估航天器在发射过程中的响应情况,以及评估机体结构在飞行过程中的疲劳损伤程度。
3. 机械工程在机械工程中,随机振动响应分析技术可以用来评估机械系统在振动环境下的可靠性和安全性,以及寻找和消除机械系统的振动问题。
四、随机振动响应分析技术的发展趋势随着科学技术和计算机技术的快速发展,随机振动响应分析技术也得到了极大发展和应用。
未来,随机振动响应分析技术的发展主要将呈现以下几个趋势:1. 多物理场耦合建模针对涉及多种物理场同时作用的振动问题,将机械、声学、热学、流体力学等多种物理场有机结合起来,建立更加全面且真实的多物理场耦合模型,以便更好地分析和解决复杂振动问题。
2. 精细化建模分析建立尽可能精细的结构物和振动环境的建模,以更加准确地反映实际情况,预测结构物的振动响应和疲劳损伤情况,从而提高结构物的可靠性和安全性。
17-随机振动分析

3.随机振动分析步骤
(2)分析设置 Analysis Settings > Output Controls (1)默认情况下,位移,速度和加速度响应是输出的; (2)为了不输出速度或加速度响应,可以将输出选项设置 为No。
Training Manual
Advanced Contact & Fasteners
2.随机振动分析理论
(2)随机振动
Training Manual
Advanced Contact & Fasteners
在实际工程中,可以分别描述响应的幅值和频率,也可以采用复数 形式函数的定义可知
1)频率响应函数的幅值等于系统输出幅值与输入幅值的比值; 2)频率响应函数的虚部与实部的比值等于相位角的正切值。
Training Manual
Advanced Contact & Fasteners
如果用户激活该选项: 1)输入0,表示采用模态计算的所有阶数计算结果; 2)输入1,表示不使用任何模态阶数计算的结果; 3)输入0-1的数字,则用户按照比例进行选用模态计算的结果,例如 输入0.3,则采用计算的模态数量=模态提取的模态数量*(1-0.3)。
2.随机振动分析理论
(1)随机振动激励分布规律
Training Manual
Advanced Contact & Fasteners
因为随机振动激励被假设为服从高斯正态分布,因此没有计算发生 概率为100%的结构响应。
在实际工程中,分布式激励更加普遍;
此外,高sigma激励发生的概率很低;
基于这个特点,在实际计算中一般取3 sigma为计算的上限; 高斯正态分布具有以下重要属性:如果高级正态分布激励作用在线性系统 上,则输出的激励是不同的随机过程,但是仍然服从另外一个高斯正态分 布。
(推荐)6-随机振动分析

Advanced Contact & Fasteners
1、随机振动分析简介
下面两幅图给出结构的正弦振动(强迫和自由) -下面的振动曲线是输入的振动载荷是一个固定的频率
Training Manual
更加一般的振动载荷时随机振动,这种振动是在同一时间点以不同的频 率进行振动
Advanced Contact & Fasteners
2、功率谱密度(PSD)
Training Manual
用来表征随机振动的一个参数称之为功率谱密度(PSD)
Advanced Contact & Fasteners
对于一个横定幅值的正弦振动,其1HZ的频率带宽的功率谱密度 为其幅值的平方值。
2、功率谱密度(PSD)
Training Manual
Advanced Contact & Fasteners
1)随机振动是稳定的(不随时间变化而变化),响应是一个稳定的 随机过程。
2)ergodic (one sample tells us everything about the random process)。
Advanced Contact & Fasteners
3、随机振动理论简介
(1)随机振动激励分布规律 许多随机过程都遵守着高斯分布规律。
Advanced Contact & Fasteners
1、随机振动分析简介
Training Manual
如果随机振动过程,其振动幅值是常量变化的,那我们如何 对随机振动激励进行评估和描述呢?
关键点:随机振动过程中,在给定的频率范围内,虽然其激励的 幅值还是发生变化,但是对于这个过程,幅值的平均值趋向于一 个相对稳定的常量。
Ansys培训-随机振动分析

15. In the Details of the PSD Load,
14
change “Direction” to “Y Axis” for
this particular XYZ orientation.
16. For >Load Data chose >New PSD Load
Acceleration
– The data points can be entered for each Freq & Amplitude, or a function can be entered.
Acceleration
A2
A3
A1 A4
F1 F2
F3
F4
Frequency
Workshop – 假定
• The Girder has fixed constraints along all lower edges.
2. Click OK, thus accepting the default number of modes
3. Choose the U.S. inch pound unit system.
– “Units > U.S. Customary (in, lbm, lbf, …)” 1
2
3
Workshop – 前处理-壳体厚度
PSD分析. • Steps: 进行模态和随
机振动分析,并显示 结果.
随机振动分析
随机振动分析流程 打开, Tower.dsdb.
• Browse to file if not in list
• 打开分析向导…
随机振动分析
随机振动分析流程
随机振动分析
结构体系的随机振动分析与优化设计

结构体系的随机振动分析与优化设计结构体系的随机振动分析与优化设计是结构工程领域中的重要研究方向之一。
随机振动是指结构在受到随机外力作用下的振动响应。
优化设计则是通过对结构参数进行调整,以达到最优的性能指标。
结合随机振动分析和优化设计,可以提高结构的抗震性能、减小振动响应,从而保证结构的安全性和稳定性。
随机振动分析是通过数学方法来描述结构在随机外力作用下的振动特性。
随机外力可以是地震、风荷载、交通荷载等。
在随机振动分析中,常用的方法有频域分析和时域分析。
频域分析是通过将随机外力和结构的响应转换到频率域进行分析,常用的方法有傅里叶变换和功率谱密度分析。
时域分析则是直接在时间域内对结构的振动响应进行分析,常用的方法有有限元法和模态超级位置法。
通过随机振动分析,可以得到结构的振动频率、振型、振幅等参数,为后续的优化设计提供依据。
优化设计是在已有的结构基础上,通过调整结构参数来达到最优的性能指标。
常用的优化设计方法有参数优化、拓扑优化和形状优化等。
参数优化是通过调整结构的参数来达到最优的性能指标,常用的方法有遗传算法、粒子群算法和模拟退火算法等。
拓扑优化则是通过改变结构的拓扑形态来达到最优的性能指标,常用的方法有拓扑优化算法和材料优化算法等。
形状优化则是通过调整结构的形状来达到最优的性能指标,常用的方法有形状优化算法和变形优化算法等。
通过优化设计,可以使结构在受到随机外力作用下的振动响应最小化,提高结构的抗震性能和稳定性。
结构体系的随机振动分析与优化设计在工程实践中具有重要的应用价值。
首先,通过随机振动分析,可以评估结构在受到随机外力作用下的振动响应,为结构的设计提供科学依据。
其次,通过优化设计,可以改善结构的抗震性能和稳定性,提高结构的安全性和可靠性。
最后,随机振动分析与优化设计的研究,可以推动结构工程领域的技术进步和创新发展。
总之,结构体系的随机振动分析与优化设计是结构工程领域中的重要研究方向。
通过随机振动分析,可以评估结构在受到随机外力作用下的振动响应;通过优化设计,可以改善结构的抗震性能和稳定性。
随机振动分析及其应用

随机振动分析及其应用在物理学和工程学领域中,振动运动被广泛应用于各种机械系统中,这些系统包括建筑物、飞机、船舶、汽车和工业机械等等。
振动分析是通过对振动系统进行分析和研究,揭示振动行为的动力学行为和振动特性。
这是传统工程学和机械学中一个重要的研究领域,随着科技的不断进步,应用场景也越来越广泛。
随机振动分析是对复杂振动系统进行分析和研究的一种方法。
随机振动分析涉及到的振动信号通常是由许多不同的信号组成的,这些信号通常是从随机系统和随机场中收集得到的,因此随机振动分析是将随机信号进行分析的过程。
随机振动的特点和应用随机振动信号常常包含各种各样的频率分量,这使得对其进行详细分析和建模非常困难。
此外,随机振动信号还具有随机性,可能会随着时间的推移而发生变化。
随机振动分析在许多实际应用场景中都起着至关重要的作用。
例如,在车辆和机械设备中,随机振动可以导致覆盖物件的破裂和损坏,从而影响整个系统的安全性和可靠性。
在结构动力学领域中,随机振动分析可以揭示建筑物的长期行为和生命周期问题。
此外,随机振动分析还可以用于预测物体的寿命和损坏机理。
随机振动分析方法随机振动分析一般包括两种分析方法:时域分析和频域分析。
时域分析时域分析是将信号在时间域内进行分析的方法。
通过时域分析,我们可以研究振动系统在不同时间段内的行为,并获得振动信号的统计特性。
时域分析方法包括了自相关函数、互相关函数等。
频域分析频域分析是将信号在频率域内进行分析的方法。
频域分析通常适用于振动系统具有稳态行为的情况下。
通过分析系统中不同频率的分量,我们可以揭示振动的谐波和非谐波特性,并且可以预测系统随着时间的发展可能会出现什么问题。
常用的频域分析方法包括功率谱密度函数、自谱函数等。
随机振动分析的应用1. 随机震动分析随机震动分析广泛应用于地震和气动力学研究,以及建筑物、桥梁和船舶等结构的工程设计中。
在地震研究中,随机震动分析可以用于评估不同地震条件下建筑物的安全性。
随机振动系统的分析与控制

随机振动系统的分析与控制随机振动系统是一个普遍存在的现象,在人们生活和工作中随处可见。
悬挂在高空的吊车、眼科医生用来检查眼内健康的硬化眼镜、地震或风暴中建筑物的震动等都是典型的随机振动现象。
随机振动系统通常富含复杂的动力学特征,往往产生较大的不确定性和不可预测性,如何对随机振动系统进行分析与控制,成为了科学家们关注的热点领域。
一、随机振动系统的特点随机振动系统是由多个参量的作用共同导致的,因此其振动相比于单自由度振动系统更具有不确定性。
随机振动系统产生的振动信号是一个随机过程,具有在时间和频率上的随机性,因此随机振动系统的振动信号往往难以用传统的频域和时域分析方法进行有效描述。
随机振动具有振动能量均匀分布于频带内,且其频谱随机性显著的特点,使得其变现形态、预测和控制都具有一定的难度。
二、随机振动系统分析方法1.功率谱法在随机振动系统分析中,功率谱法是一种常用的方法。
功率谱是指信号根据其频率所包含的能量之大小给出的一种特征函数。
通过测量随机振动系统在不同的频率下功率谱密度,可以对系统的振动特性进行优化。
2.相关分析法相关分析法是一种量化随机振动系统内在相互关系的方法。
这种方法通过分析数据序列之间的平均相对关系,获得时间上的相关数据。
通过这种方法,可以对随机振动系统的特性作出更为具体的描述,从而实现精确分析。
3.小波变换分析法小波变换分析法是随机振动系统分析的一种常用方法。
小波变换法将信号分解为不同的子波,并对每个子波进行分析。
尽管小波变换的准确度和复杂性高于其他方法,但其能够提供更为具体的结果,并允许分析时间和空间上的振动特性,并深入分析随机振动系统的内在结构。
三、随机振动系统的控制在随机振动系统的控制方面,主要有开环控制和闭环控制两种方法。
1.开环控制开环控制是指应用一定的输入以产生一定的输出,可以有效降低随机振动的能量。
开环控制是一种简便,快速且成本低的方法,但其主要缺点是在随机振动系统中使用不恰当的输入信号时,可能会产生错误的反馈和多余的能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:在ANSYS中的谱密度响应就成为PSD响应(RPSD),谱 密度输入就称为输入的PSD。
3.随机振动分析步骤
(1)建立PSD分析系统
3.随机振动分析步骤
(2)分析设置
Analysis Settings > Options (1)设置使用模态计算结果的阶数 建议用户包括的模态固有频率范围大于输入的PSD曲线频率 范围的1.5倍。
(2)是否排除不重要的模态计算结果 如果用户不激活该选项,则程序计算中 采用提取的所有模态计算结果; 如果用户激活该选项: 1)输入0,表示采用模态计算的所有阶数计算结果; 2)输入1,表示不使用任何模态阶数计算的结果; 3)输入0-1的数字,则用户按照比例进行选用模态计算的结果,例如 输入0.3,则采用计算的模态数量=模态提取的模态数量*(1-0.3)。
随机振动分析
1.随机振动分析简介
功率谱密度谱是一种概率统计方法,是对随机变量均方 值的量度。一般用于随机振动分析,连续瞬态响应只能通过 概率分布函数进行描述,即出现某水平响应所对应的概率。 功率谱密度是结构在随机动态载荷激励下响应的统计结果, 是一条功率谱密度值-频率值的关系曲线,其中功率谱密度可 以是位移功率谱密度、速度功率谱密度、加速度功率谱密度 、力功率谱密度等形式。数学上,功率谱密度值—频率值的 关系曲线下的面积就是方差,即响应标准偏差的平方值。与 响应谱分析相似,随机振动分析也可以是单点的或多点的。 在单点随机振动分析时,要求在结构的一个点集上指定一个 功率谱密度谱;在多点随机振动分析时,则要求在模型的不 同点集上指定不同的功率谱密度谱。
1.随机振动分析简介
什么是随机振动分析
– 基于概率的谱分析. – 典型应用如火箭发射时结构承受的载荷谱,每次发射的谱不同,但统 计规律相同.
1.随机振动分析简介
• 和确定性谱分析不同,随机振动不能用瞬态动力学分析代 替. • 应用基于概率的功率谱密度分析,分析载荷作用过程中的 统计规律
什么是PSD?
• PSD是激励和响应的方差随频率的变化。 – PSD曲线围成的面积是响应的方差. – PSD的单位是 方差/Hz (如加速度功率谱的单位是 G2/Hz). – PSD可以是位移、速度、加速度、力或压力.
2.随机振动分析理论
(1)随机振动激励分布规律 因为随机振动激励被假设为服从高斯正态分布,因此没有计算发生 概率为100%的结构响应。 在实际工程中,分布式激励更加普遍; 此外,高sigma激励发生的概率很低;
程序支持多个PSD基础激励,但是不考虑其关联性,也就 是程序不支持计算不同PSD激励的关联性。
3.随机振动分析步骤
(4)计算结果 程序支持三个方向的位移,速度和加速度; 因为每个方向的计算结果是统计结果,因此不 能使用一般的方法进行合并。
如果需要输出应力和应变,可用的应力结果只有名义应变和应力, 剪切应变和应力,等效应力。
3.随机振动分析步骤
(2)分析设置
Analysis Settings > Output Controls (1)默认情况下,位移,速度和加速度响应是输出的; (2)为了不输出速度或加速度响应,可以将输出选项设置 为No。
3.随机振动分析步骤
(3)载荷和支撑条件
1)支撑条件必须在模态分析中进行设置; 2)PSD分析中只支持PSD基础激励,包括 -PSD加速度 -PSD G加速度 -PSD速度 -PSD位移
有频率响应函数的定义可知
1)频率响应函数的幅值等于系统输出幅值与输入幅值的比值; 2)频率响应函数的虚部与实部的比值等于相位角的正切值。
2.随机振动分析理论
(2)随机振动 根据随机振动理论可知,对于单一输入的PSD值,则系统输出为
其中:
1)Sout-谱密度响应(惯用术语); 2)Sin-谱密度输入(来自于输入的PSD曲线); 3)aout-计算的单自由输(4)计算结果 位移计算结果:
-位移计算结果是相对基础(固定支撑)的相对值。
速度和加速计算结果
-考虑基础运动效应,是个绝对值
反力和反力矩只能作用于远端位移。
3.随机振动分析步骤
(4)计算结果 RPSD为每个节点每个自由方向计算其响应;
RPSD在指定的方向绘制频率与响应的曲线;
基于这个特点,在实际计算中一般取3 sigma为计算的上限; 高斯正态分布具有以下重要属性:如果高级正态分布激励作用在线性系统 上,则输出的激励是不同的随机过程,但是仍然服从另外一个高斯正态分 布。
2.随机振动分析理论
(2)随机振动 在实际工程中,可以分别描述响应的幅值和频率,也可以采用复数 形式进行描述,这个描述方法称为频率响应函数H(ω) (FRF).
4.工程实例:电路板的随机振动计算