三相异步电动机变频调速的课程设计

合集下载

变频调速三相异步电动机的设计

变频调速三相异步电动机的设计

变频调速三相异步电动机的设计本文将探讨变频调速技术在三相异步电动机设计中的应用。

本文将简要介绍变频调速技术的原理和发展概况;将详细阐述三相异步电动机的基本工作原理和设计步骤;将讨论变频调速技术在三相异步电动机设计中的应用及其优势。

变频调速技术是一种基于电力电子技术与微控制技术的调节电动机转速的方法。

它通过对电源频率的改变,实现对电动机的平滑调速。

变频调速技术具有高效、节能、精准控制等优点,已成为现代工业领域中广泛应用的调速技术之一。

近年来,随着电力电子器件的不断更新和微控制技术的进步,变频调速技术的性能和可靠性得到了极大的提高。

三相异步电动机是一种应用广泛的电动机类型,它利用电磁感应原理将电能转化为机械能。

三相异步电动机由定子和转子两部分组成,定子绕组接通电源后,产生旋转磁场,转子绕组在旋转磁场的作用下产生感应电流,进而产生电磁转矩,使电动机旋转。

三相异步电动机的设计核心是电磁场的分析和计算,以及转子结构和参数的优化。

三相异步电动机的设计步骤主要包括以下几个方面:(1)明确设计需求:根据实际应用场景,明确电动机的功率、转速、尺寸和温升等参数需求。

(2)选定电动机结构型式:根据应用场景的要求,选择电动机的结构型式,如封闭式、开启式、防护式等。

(3)确定电磁负荷:根据电动机的设计需求,计算电磁负荷,包括每相绕组的匝数、线径、磁路尺寸等。

(4)计算气隙磁通密度:通过电磁负荷的计算结果,计算气隙磁通密度,以确定电动机的电磁性能。

(5)优化转子结构和参数:根据气隙磁通密度计算结果,优化转子结构和参数,以获得更好的电磁性能和机械性能。

(6)设计定子铁心:根据电磁负荷和气隙磁通密度的计算结果,设计定子铁心,包括铁心尺寸、槽形和材料等。

(7)选择冷却方式:根据电动机的设计需求和结构型式,选择合适的冷却方式,如自然冷却、强迫通风冷却等。

变频调速技术在三相异步电动机设计中的应用及其优势变频调速技术在三相异步电动机设计中的应用,主要是通过在电源侧施加变频电压,达到调节电动机转速的目的。

三相异步电动机变频调速系统设计

三相异步电动机变频调速系统设计

三相异步电动机变频调速系统设计【摘要】本文主要针对三相异步电动机变频调速系统进行设计,系统主要包括三相异步电动机、变频器、传感器及控制电路等部分。

首先介绍了三相异步电动机的基本原理和特点,然后详细分析了变频器的工作原理和调速控制策略。

接着,设计了变频调速系统的硬件电路和软件程序,并进行了性能测试和实验验证。

最后,对系统的优缺点进行了总结,并提出了进一步改进和优化的建议。

【关键词】三相异步电动机;变频调速系统;变频器;控制电路;调速控制策略1.引言三相异步电动机是工业领域中最常用的电动机之一,具有结构简单、可靠性高和成本低的优点。

在很多应用中,为了满足不同的负载工况和调速要求,需要对三相异步电动机进行调速控制。

传统的调速方法主要是通过改变电压和频率的方式实现,然而这种方法效率低、调速范围有限,并且对电网影响大。

因此,采用变频调速系统可以有效解决这些问题。

2.三相异步电动机原理与特点3.变频器工作原理变频器是实现三相异步电动机无级调速的关键设备,主要由整流器、逆变器和滤波器等部分组成。

在调速过程中,变频器通过改变输出频率和电压来实现对电动机转速的控制。

4.1硬件设计变频调速系统的硬件设计包括电源电路、信号采集电路、控制电路和保护电路等。

其中,电源电路提供稳定的直流电压和功率;信号采集电路实现对电机运行状态的监测和采集;控制电路根据采集到的信号进行转速控制;保护电路用于监测电机的工作状态,当出现异常情况时能及时切断电源,以保护电机和设备的安全运行。

4.2软件设计变频调速系统的软件设计主要包括调速控制策略的设计和程序的实现。

调速控制策略根据电机的负载情况和调速要求,采用合适的控制算法来调节变频器的输出频率和电压。

程序的实现主要包括采集电机信号、控制变频器输出、处理反馈信号等过程。

5.性能测试与实验验证为了验证设计的变频调速系统的性能,进行了一系列的实验测试。

测试结果表明,系统能够实现稳定的转速调节,并能根据负载情况自动调整输出功率和电压。

三相异步电动机变频调速控制系统设计

三相异步电动机变频调速控制系统设计

三相异步电动机变频调速控制系统设计一、引言异步电动机是工业生产中最常使用的电动机之一,其调速控制系统能够在实际应用中实现对电动机的灵活调节和控制。

随着科技的不断进步和电力电子技术的发展,变频调速技术成为了电动机调速控制的关键技术之一、本文将针对三相异步电动机变频调速控制系统进行设计,为毕业设计提供基本的框架和思路。

二、设计内容1.变频器的选择:选择适合三相异步电动机调速控制的变频器,可以根据电动机的额定功率和调速要求来确定变频器的参数和型号。

变频器是实现电动机调速的核心设备,必须确保其质量和性能可靠。

2.变频器安装与连接:根据变频器的安装说明书,将其正确连接到电动机上,确保电路连接稳固可靠。

同时,还需要将变频器与外部的传感器、控制器等设备连接,以实现系统的正常运行和控制。

3.变频控制回路设计:根据变频调速的相关原理和要求,进行变频控制回路的设计。

包括电源输入回路、电流检测回路、速度反馈回路等。

其中,电源输入回路用于将市电直流电源转换成适合变频器工作的电源;电流检测回路用于对电机的电流进行检测和反馈控制,实现恒流控制;速度反馈回路用于对电机的转速进行检测和反馈,实现恒速控制。

4.控制程序的编写:根据所选择的变频器类型和调速要求,编写相应的控制程序。

控制程序可以通过编程软件进行编写和调试,包括实时监测电机的状态、控制电机的转速等功能。

5.系统调试与性能测试:系统调试是整个设计过程中非常重要的环节。

通过对系统中各个回路的调试和参数的设置,确保系统的正常运行和稳定性。

同时,还需进行性能测试,测试不同转速下电机的输出功率、效率、转矩等性能指标。

三、设计要点1.系统的可靠性和稳定性是设计的核心要点。

在选择和配置相关设备时,需注意其质量和性能可靠,以确保系统的稳定运行。

2.系统的控制精度和响应速度是设计的重要目标。

调速系统需要具备良好的控制精度和快速的响应能力,以满足不同工况下的调速要求。

3.系统的安全性和保护功能是设计的基本要求。

三相异步电动机变频调速系统设计

三相异步电动机变频调速系统设计

三相异步电动机变频调速系统设计一、设计背景随着现代工业的发展,电动机已经成为各种设备中最主要的驱动装置之一、为了满足不同工作需求的变化,电动机的速度调节功能变得越来越重要。

而传统的调速方法,如调整电网电压或通过调整传动装置的机械结构,都存在一定的限制和缺陷。

因此,变频调速系统逐渐成为工业应用中的主流。

二、设计原理1.变频器:变频器是将市电的交流电源转换为可调频率、可调电压、可调时间比的交流电源的装置。

它通过改变输出电压的频率和幅值,实现电动机转速的调整。

2.控制系统:控制系统主要包括速度控制回路和电机保护回路。

速度控制回路通过采集电动机的转速,与设定的转速进行比较,通过调整变频器的输出频率和幅值来实现转速的调节。

电机保护回路主要用于监测电动机的电流、电压、温度等参数,一旦出现异常,就会自动切断电源,保护电机的安全运行。

3.变频电机:变频电机是与变频器配套使用的电动机,其结构和普通的异步电动机基本相同。

通过变频器调整输出频率和幅值,可以实现变频电机的转速调节。

三、系统组成1.变频器:选用合适的功率和规格的变频器,能够满足电动机的调速要求。

2.控制面板:控制面板上设置设定转速、实际转速的显示器,以及转速调节的按钮和指示灯。

3.传感器:采用合适的传感器,如光电编码器、霍尔传感器等,用于采集电动机的转速信号。

4.电机保护装置:包括过流保护、欠压保护、过压保护、过温保护等功能,能够确保电机的安全运行。

四、系统设计步骤1.确定需求:根据实际应用的需求确定电动机的转速范围、精度要求等参数。

2.选型:根据需求选用合适的变频器、传感器和电机保护装置。

3.确定控制方式:根据电动机的应用特点选择合适的控制方式,如闭环控制还是开环控制。

4.连接布线:按照电路图将变频器、传感器和电机保护装置与电动机进行连接布线。

5.调试和测试:对系统进行调试和测试,确保各个部件的正常工作,并对控制参数进行优化。

6.安装和投入使用:将系统安装到实际应用场所,进行调试和运行测试,确保系统满足需求。

三相异步电动机变频调速系统设计及仿真

三相异步电动机变频调速系统设计及仿真

三相异步电动机变频调速系统设计及仿真引言:随着现代工业生产的不断发展,能源的需求也越来越大。

传统的电动机调速系统通常采用机械传动或者直接调节电压、频率等方式来实现调速,但是这些方法存在效率低、调速精度不高等问题。

为了解决这些问题,引入变频调速技术,可以通过改变电机供电频率来实现调速,不仅能够提高效率,还可以实现精确调速。

因此,本文设计了一种三相异步电动机变频调速系统,并进行了仿真验证。

一、系统框架设计本文设计的三相异步电动机变频调速系统主要包括三相异步电动机、变频器、控制器和传感器等几个主要组件。

其中,三相异步电动机作为执行部分,负责将电能转换成机械能,变频器作为调速部分,通过改变输入电压频率来控制电机转速。

控制器则负责监测和控制整个系统的工作状态,传感器则用来获取电机的实时状态信息,如电流、转速等。

二、电机模型建立为了进行仿真验证,需要建立电机的数学模型。

三相异步电动机可以通过电磁转矩方程来描述其动态特性。

根据电路分析和电磁场理论,可以得到如下电机转矩方程:T=(3*ρ*f*V^2*s)/(2*π*N_1)其中,T为电机转矩,ρ为极数,f为电机运行频率,V为电机定子端电压,N_1为电机定子匝数,s为滑差。

根据这个方程,可以通过调节频率和滑差来控制电机的转矩和转速。

三、变频器控制策略变频器是实现电机调速的关键设备,其工作原理是通过改变输入电压频率实现输出电压频率的调节。

常见的变频器控制策略有开环控制和闭环控制两种。

开环控制是根据电机的数学模型,通过计算期望转速和实际转速之间的误差,来调节输出电压频率;闭环控制则需要实时监测电机的转速,并将实际转速与期望转速进行比较,来调节输出电压频率。

四、系统仿真验证为了验证设计的变频调速系统的性能,需要进行仿真实验。

通过MATLAB/Simulink软件,可以搭建一个模拟的实验环境,获取电机的转速、电流等实时状态信息,并对比期望转速和实际转速之间的误差。

根据不同的控制策略,可以得到不同的调速结果,并通过比较分析来选择最优的控制策略。

三相异步电动机的变频调速控制

三相异步电动机的变频调速控制

综合实验:三相异步电动机变频调速控制一.实验目的1.熟悉模拟量输入和输出模块的应用。

2.进一步掌握数据传输指令。

3.掌握通过模拟量给定实现变频器速度控制的设计方法。

二.实验器材1.GE PAC System RX3i可编程控制实验台一台,其中需要用到电源模块IC695PSD040,CPU模块IC695CPU310,以太网模块IC695ETM001,数字量输入模块IC693ACC300,数字量输出模块IC694MDL754,模拟量输入模块IC695ALG600,模拟量输出模块IC695ALG704。

2.变频器一台。

3.三相异步电动机一台。

4.计算机一台。

5.网线一根。

6.连接导线若干。

三.预习要求1.复习PAC应用指令、数据指令的编程方法。

2.阅读模拟量输入/输出模块相应的手册,学习其不同输入、输出信号的连接方法。

3.熟悉本实验原理、电路、内容、步骤。

四.实验原理大家都知道,从发电厂送出的交流电的频率是恒定不变的,在我国是50Hz,而交流电动机的同步转速为:060fn=P(1)式(1)中,n为同步转速,r/min;f为定子频率,Hz;P为电动机的磁极对数。

而三相异步电动机转速为:060n=(1-s)n(1-s)f P(2)式(2)中,s 为异步电动机的转差率, 00n n ns -=一般为2%---5%。

n0和n 均与送入电动机的电流频率成正比或接近于正比,也就是说,改变频率可以方便的改变电动机的运行速度,变频对交流电动机的调速是非常适合的。

三相异步电动机的速度调节主要是通过变频器输出频率的变换实现的,在本实验中主要是熟悉模拟量输入和输出模块的使用,变频器输出频率控制主要通过外输入端子模拟量频率选择控制方式。

控制思路为:将0~5V 的电位器输出信号送至PAC 色模拟量输入模块,然后由PAC 内部处理后,再将这个信号变化为0~10V 的电压信号由PAC 的模拟量输出模块输出,送到变频器的模拟输入端子中,从而实现频率的调节及三相异步电动机转速的控制,其基本控制流程如图所示。

实验4 三相异步电动机变频调速实验

实验4 三相异步电动机变频调速实验

广西大学行健文理学院
6
电 机 学 实 验
☆ 在频率50 Hz 至 10 Hz范围内,测取6-8组数据,填 入表4-1。 表4-1
序号 频率(Hz) 电压(V) 转速(r/min) 1 2 3 4 5 6 7 8
广西大学行健文理学院
7
电 机 学 实 验
2. 异步电动机机械特性曲线的测绘
☆ 起动电机前,将三相调压器旋钮逆时针调到底,并将 MEL-13中“转矩控制”和“转速控制”选择开关扳向“转 速控制”,并将“转速设定”调节旋钮逆时针调到底。 ☆ 按下绿色“闭合”按钮开关,调节交流电源输出调节 旋钮,使电压输出为220V,起动交流电机。观察电机的旋 转方向,是之符合要求。 ☆ 采用SPWM控制,调节频率设定电位器,使输出频率 为 50 Hz。

4


返回主页
上一实验
下一实验
广西大学行健文理学院
电机与拖动
实验 4 三相异步电动机变频调速实验返回主页Biblioteka 1 上一实验下一实验
2
电 机 学 实 验
实验 4
三相异步电动机变频调速实验
一、实验目的
通过实验掌握异步电动机变频调速系统的组成及工作原 理。 掌握异步电动机变频调速系统的调试方法。 掌握异步电动机机械特性的测试方法。
二、预习内容
三相异步电动机的机械特性 三相异步电动机的变频调速
序号 转速(r/min) 转矩(N.m)
广西大学行健文理学院
U=
1 2 3
V
4 5 6 7
f=
8
Hz
9 10
9
电 机 学 实 验
☆ 当电机转速下降到200转/分时,逆时针回调“转速设 定”旋钮,转速开始上升,直到升到空载转速为止,在这 范围内,读出8-10组异步电机的转矩 M,转速n,其中在 最大转矩附近多测几点,填入表4-3。 表4-3

三相异步电动机变频调速系统设计

三相异步电动机变频调速系统设计

三相异步电动机变频调速系统设计一、系统需求分析1.系统功能需求:a)实现对三相异步电动机的调速控制;b)实现对电动机的起动、停止、正转、反转等控制功能;c)实现对电动机的运行状态监测和数据显示功能;d)具备系统故障保护功能,如过流、过压、欠压等。

2.系统性能需求:a)调速范围:根据实际需求确定调速范围;b)控制精度:根据实际需求确定控制精度;c)故障保护响应时间:保证故障保护功能的及时性。

二、硬件设计1.选择变频器:根据实际需求选择合适的变频器,以满足系统的调速范围和控制精度要求。

2.选择传感器:a)选择合适的电流传感器和电压传感器,用于测量电动机的电流和电压,以实现对电动机的运行状态监测和数据显示功能;b)选择合适的转子位置传感器,用于测量电动机转子位置,以实现对电动机的起停和运转控制功能。

3.硬件电路设计:a)设计电源和电压稳定模块,以提供电动机控制和传感器工作所需的稳定电压;b)设计模拟电路和数字电路,用于接收和处理传感器信号,实现对电动机的调速控制和运行状态监测功能;c)设计故障保护电路,用于监测电动机的运行状态,当发生故障时及时切断电动机的供电。

三、软件设计1.硬件驱动程序设计:a)实现对电动机的起停和运转控制功能;b)实现对传感器信号的采集和处理功能。

2.算法设计:a)设计调速算法,根据所需的调速范围和控制精度,采用合适的调速算法,如PID控制算法;b)设计故障保护算法,根据所需的故障保护响应时间,设计相应的故障判别和保护算法。

3.用户界面设计:设计用户界面,实现对电动机运行状态的监测和控制,以及故障报警和信息显示功能。

四、系统测试1.硬件测试:a)测试电源和电压稳定模块的性能稳定性和可靠性;b)测试传感器的灵敏度和准确性。

2.软件测试:a)测试硬件驱动程序的正确性和稳定性;b)测试调速算法的性能和控制精度;c)测试故障保护算法的响应时间和故障判别准确性。

3.系统整体测试:将系统与电动机连接后进行整体测试,测试系统的调速控制、运行状态监测和故障保护等功能的正确性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程报告课程名称:三相异步电动机变频调速的实现学生姓名:刘佐威王一哲王宇洋赵馨雨专业班级: 12级电气一班2016 年 1月 4日摘要变频调速是一种典型的交流电动机调速方法,交流电动机采用变频调速技术不仅能够实现无级调速,而且可以根据负载的不同,通过适当调节电压和频率的关系,使电机始终在高效率区运行,并且保证良好的动态性能,因而被广泛使用。

目前,世界上有60%左右的发电量是通过电动机消耗的。

据统计,我国各类电动机的装机容量已超过4亿kW,其中异步电动机约占90%,拖动风机、水泵及压缩机类机械的电动机约1.3亿kW。

在目前4亿kW的电动机负载中,约有50%的负载是变动的,其中的30%可以使用电动机调速。

虽然,有专门为变频调速系统而设计的变频调速电机,但是由于变频调速电机价格较贵,所以在大多数有调速要求的系统中都是变频器和普通交流异步电机组成的调速系统[4]。

但是,在实际生产中,还只是凭借经验确定交流异步电机运行的频率范围,而对普通交流异步电机在频率改变时,电机的各项性能指标的大小和变化情况还没有定量研究。

在本文中,我们以Y100L1-4普通三相交流异步电机和松下VF-8X变频器组成的变频调速系统为测试对象,测试普通交流异步电机在频率改变时的各项性能指标,以这些实验数据为依据,进而分析确定普通交流异步电机变频调速的最佳调速范围。

在测试中所有的实验均按照国标中三相异步电机型式实验的相关规定进行。

课程目的笼式三相异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。

正由于此,通过此课程设计,实现三相异步电动机的变频调速控制与应用。

课程意义这次课程设计可以使我们在学校学的理论知识用到实践中,使我们在学习中起到主导地位,是我们在实践中掌握相关知识,能够培养我们的职业技能,课程设计是以任务引领,以工作过程为导向,以活动为载体,给我们提供了一个真实的过程,通过设计和运行,反复调试、训练、便于我们掌握规范系统的电机方面的知识,同时也提高了我们的动手能力。

课程内容在这次课程设计中,我们的主要工作在于1. 电机的结构与工作原理2. 变频器的结构与原理3. 变频器的调速方法及工作过程第二章相关技术与理论1.1电动机的基本结构(如图)1.1.1定子部分1、定子铁心作用:电机磁路的一部分,并在其上放置定子绕组。

交流电机定子结构定子铁芯:是电机磁路的一部分,定子铁芯内圆上均匀开有槽,安放定子绕组。

机座:是用作固定与支撑定子铁芯。

定子绕组:是电机电路部分,它由三个在空间相差120°电角度、结构相同的绕组连接而成,按一定规律嵌放在定子槽中。

绕组分类:单层绕组和双层绕组。

绕组应用:单层绕组一般用在10kW以下的电机,双层短距绕组用在较大容量的电机中。

2、定子绕组作用:是电动机的电路部分,通入三相交流电,产生旋转磁场。

构造:由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。

定子绕组的主要绝缘项目有以下三种:(保证绕组的各导电部分与铁心间的可靠绝缘以及绕组本身间的可靠绝缘)。

(1)对地绝缘:定子绕组整体与定子铁心间的绝缘。

(2)相间绝缘:各相定子绕组间的绝缘。

(3)匝间绝缘:每相定子绕组各线匝间的绝缘。

1.1.2 转子部分1、三相异步电动机的转子铁心:作用:作为电机磁路的一部分以及在铁心槽内放置转子绕组。

构造:所用材料与定子一样,由0.5毫米厚的硅钢片冲制、叠压而成,硅钢片外圆冲有均匀分布的孔,用来安置转子绕组。

通常用定子铁心冲落后的硅钢片内圆来冲制转子铁心。

一般小型异步电动机的转子铁心直接压装在转轴上,大、中型异步电动机(转子直径在300~400毫米以上)的转子铁心则借助与转子支架压在转轴上。

转子铁芯:一般用0.5mm的硅钢片叠压而成,它是磁路的一部分。

转子绕组:是用作产生感应电势、并产生电磁转矩它分鼠笼式和绕线式两种。

气隙:中、小容量的电动机气隙一般在0.2~1.5mm范围。

转子鼠笼转子2、三相异步电动机的转子绕组作用:切割定子旋转磁场产生感应电动势及电流,并形成电磁转矩而电动机旋转。

构造:分为鼠笼式转子和绕线式转子。

1)鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的环组成。

若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组。

小型笼型电动机采用铸铝转子绕组。

2)绕线式转子:绕线转子绕组与定子绕组相似,也是一个对称的三相绕组,一般接成星形,三个出线头接到转轴的三个集流环上,再通过电刷与外电路联接。

1.1.3 电动机其他附件其他部分包括端盖、风扇等。

端盖除了起防护作用外,在端盖上还装有轴承,用以支撑转子轴。

风扇则用来通风冷却电动机。

三相异步电动机的定子与转子之间的空气隙,一般仅为0.2mm~1.5mm。

气隙太大,电动机运行时的功率因数降低;气隙太小,使装配困难,运行不可靠,高次谐波磁场增强,从而使附加损耗增加以及使启动性能变差1.2电动机的分类三相异步电动一般为系列产品,其系列、品种、规格繁多,因而分类也较繁多。

1按电动机尺寸大小分类大型电动机:定子铁心外径D>1000mm或机座中心高H>630mm。

中型电动机:D=500~1000mm或H=355~630mm。

大型电动机:D=120~500mm或H=80~315mm。

2 按电动机外壳防护结构分类3 按电动机冷方式分类电动机按冷却方式可分为自冷式、自扇冷式、他扇冷式等。

可参见国家标准GB/T1993-93《旋转电机冷却方式》。

4.按转子结构形式分类三相笼型异步电动机三相绕线型异步电动机1.3电动机的工作原理电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。

当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。

电动势的方向由右手定则来确定。

因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。

在电动势的作用下,闭合的导条中就产生电流。

该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力F,电磁力的方向可用左手定则确定。

由电磁力进而产生电磁转矩,转子就转动起来。

按照电机学的基本原理,电机的转速满足如下的关系式:n=(1-s)60f/ P =n0×(1-s) ………①式中:P-电机极对数;f-电机运行频率;s-滑差。

从式中看出,电机的同步转速n0正比于电机的运行频率(n0=60f/p),由于滑差s一般情况下比较小(0-0.05),电机的实际转速n约等于电机的同步转速n0,所以调节了电机的供电频率f,就能改变电机的实际转速。

而改变频率必须改变供电电压,由交流电机成立的电磁关系式:E=4.44fwΦ………②式中:E-电机电动势,f-定子频率,W-绕组系数,Φ-气隙主磁通。

对异步电机调速时,希望主磁通Φ恒定,即U/F保持恒定,所以改变频率时,供电电压也应跟着变化。

1.4 变频器结构原理图1.5变频器结构与工作原理介绍变频器主要由模块,CPU控制板,电源驱动板组成,见上图.L1为进线电抗器,一般需外接,L2为直流电抗器,大部份变频器需要外接,象施耐德,丹佛斯变频器都内置了直流电抗器。

PM1为整流模块,PM2为逆变模块,一般小功率变频器是将整流和逆变整合在一起,大功率变频器整流和逆变都是分开的,功率越大电流越大,因为单一的整流和逆变的电流有限,所以整流和逆变可以并联使用。

PM3是制动晶体,1 5KW以下的变频器都内置制动晶体,外接一个制动电阻就能做能耗制动。

C1,C2是滤波电容,变频器功率越大,电容的容量就越大,滤波电容的耐压一般是450V,因为380V级的变频器整流滤流后的电压是600V,所以可以将两个耐压为450V的滤波电容串联使用,总的耐压就可以达到900V。

R1是启动电阻,它的作用是在上电的时候限制滤波电容的充电电流,当电容充电完成后接触器K1动作,R1被旁路。

R2和R3的作用有两个:一是作放电电阻,关机后将电容上的电尽放放掉,另一个是均压,保持滤波电容上的电压相等。

CT是霍尔电流互感器,比如台安变频器的互感器型号是HY-15P,它的含义是通过互感器初级电流为0-15A时互感器的输出电压是0-4V。

互感器也有输出电流型的。

大部份变频器都是用的霍尔电流互感器,象西门子,华为等变频器用的是另一种检测方法,在输出U,V,W分别串联一个小电阻,通过检测电阻上的压降来检测电流。

SA1-SA3是进线压敏电阻,可以抑制瞬态过电压,起到保护变频器的作用。

T1是380V/220V电源变压器,小功率变频器的风扇都是12V或24V供电的,电源取自开关电源部份,大功率变频器的风扇是220V的,所以加了个变压器转换一下。

电源驱动板的作用:一是提供变频器所有的供电电源,二是将控制板的IGB T驱动信号进行隔离放大。

控制板相当于变频器的大脑,通过操作面板做人机对话,实现各种控制功能。

2.1三相异步电动机的异步调速方法交流电动机比起直流电动机来,省去了换向器,使得结构更简单、结实、紧凑,它具有维修工作量小、运行效率高、转动惯量小、动态响应快的特点。

过去由于对它缺少相应的控制手段,实现速度的调节比较困难,所以在20世纪的大部分年代里,交流电动机主要在不调速的场合应用。

近年来,由于电力电子和微电子技术的飞速发展,新器件和新的控制系统的不断推出,使交流电气传动也具有与直流电气传动同样优良的调速性能,从而使交流调速得到了迅速发展。

三相异步电动机的转速公式为:n = n1 (1 - s) =60f1/p(1 - s)从上式可见,改变供电频率f1、电动机的极对数p及转差率s均可达到改变转速的目的。

从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速n1 或不改变同步转速n1 两种。

具体来讲,三相异步电动机的调速主要有以下七种方法:2.1.1绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

串入的电阻越大,电动机的转速越低。

此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。

属有级调速,机械特性较软。

2.1.2液力耦合器调速方法液力耦合器是一种液力传动装置,一般由泵轮和涡轮组成,它们统称工作轮,放在密封壳体中。

壳中充入一定量的工作液体,当泵轮在原动机带动下旋转时,处于其中的液体受叶片推动而旋转,在离心力作用下沿着泵轮外环进入涡轮时,就在同一转向上给涡轮叶片以推力,使其带动生产机械运转。

液力耦合器的动力传输能力与壳内相对充液量的大小是一致的。

在工作过程中,改变充液率就可以改变耦合器的涡轮转速,做到无级调速,其特点为: 功率适应范围大,可满足从几十千瓦至数千千瓦不同功率的需要; 结构简单,工作可靠,使用及维修方便,且造价低; 控制调节方便,容易实现自动控制。

相关文档
最新文档