中外数控机床发展史
1954年生产出世界上第一台工业用数控机床

课题1 数控车床概述
② 按功能分类 a)经济型数控车床 用于要求不高的回转类零件的车削加工。 b) 普通数控车床 用于一般回转类零件的车削加工。 同时控制两个坐标轴,即X轴和Z轴(X-Z联动) 。 c) 车削加工中心 增加了C轴和动力头,有刀库。 可控制X、Z和C三个坐标轴,联动控制可以是(X-Z)、 (X-C)或(Z-C)。 除可以进行一般车削外,还可以进行径向和轴向铣削、 曲面铣削、中心线不在零件回转中心的孔和径向孔的 钻削等加工。
采用计算机 数字化控制或装 备了数控系统的 机床,称为数控 机床。
课题1 数控车床概述
⑵ 数控车床的组成及特点 数控车床是采用计算机数字化进行控制,实现 自动车削加系统
辅助装置
床 身
主 轴
溜 板
刀 架
显 示 器
控 制 面 板
液 压 系 统
冷 却 润 滑 系 统
排 泄 装 置
电 子 管 时 代
晶 体 管 时 代
小 规 模 集 成 电 路
小 型 计 算 机
微 机 控 制 的 CNC
基 于 PC 的 通 用 CNC 系统
课题1 数控车床概述
2. 数控车床的基本组成
⑴ 数控机床的概念 数控(NC)是数字控制的简称,是20世纪 中叶发展起来的用数字化信息进行自动控制的 一种方法。 计算机数控(CNC)用计算机控制加工功 能,实现数字化控制,称为计算机数字化控制。
课题1 数控车床概述
3.数控机床的分类 按工艺用途分:数控车床、数控铣床、加工中心、数控 钻床、数控镗床、数控磨床、数控冲床、数控电火花加工机床、 数控线切割机床等。 ⑴ 数控机床分类 数控机床按照有无检测反馈装置及检测装置的位置不同分 为 开环控制、闭环控制和半闭环控制三种。
数控机床发展史

数控机床的发展史1.第一代数控机床产生于1952年(电子管时代)美国麻省理工学院研制出一套试验性数字控制系统,并把它装在一台立式铣床上,成功地实现了同时控制三轴的运动。
这台数控机床被大家称为世界上第一台数控机床,但是这台机床毕竟是一台试验性的机床。
到了1954年11月,在帕尔森斯专利基础上,第一台工业用的数控机床由美国本迪克斯公司。
2.第二代数控机床产生于1959年(晶体管时代)电子行业研制出晶体管元器件,因而数控系统中广泛采用晶体管和印制电路板,使数控机床跨入了第二代。
同年3月,由美国克耐·杜列克公司(Keaney &Trecker Corp)发明了带有自动换刀装置的数控机床,称为“加工中心”。
现在加工中心已成为数控机床中一种非常重要的品种,在工业发达的国家中约占数控机床总量的l/4左右。
生产出来。
3. 第三代数控机床产生于1960年(集成电路时代)研制出了小规模集成电路。
由于它的体积小,功耗低,使数控系统的可靠性得以进一步提高,数控系统发展到第三代。
以上三代,都是采用专用控制的硬件逻辑数控系统(NC)。
4.第四代数控机床产生于1970年前后随着计算机技术的发展,小型计算机的价格急剧下降、小型计算机开始取代专用控制的硬件逻辑数控系统(NC),数控的许多功能由软件程序实现。
由计算机作控制单元的数控系统(CNC),称为第四代。
1970年,在美国芝加哥国际展览会上,首次展出了这种系统。
5.第五代数控机床产生于1974年美、日等国首先研制出以微处理器为核心的数控系统的数控机床。
30多年来,微处理机数控系统的数控机床得到飞速发展和广泛的应用,这就是第五代数控(MNC)。
后来,人们将MNC也统称为CNC。
柔性制造系统1967年,英国首先把几台数控机床联接成具有柔性的加工系统,这就是最初的FMS—Flexible Manufacturing System柔性制造系统。
之后,美、欧、日等国也相继进行了开发和应用。
数控机床的发展历程和趋势

现代数控机床的应用领域拓展
01
02
03
04
航空航天领域
用于加工飞机和航天器的复杂 零部件,如发动机叶片、机翼
等。
汽车制造领域
用于加工汽车零部件,如发动 机缸体、曲轴等。
模具制造领域
用于加工各种模具零部件,如 注塑模、压铸模等。
医疗器械领域
用于加工各种医疗器械零部件 ,如人工关节、牙科种植体等
高精度直线导轨和滚珠丝 杠
高精度直线导轨和滚珠丝杠的 应用提高了数控机床的定位精 度和重复定位精度,进一步提 升了加工质量。
智能化技术
中期发展阶段开始引入智能化 技术,如自适应控制、模糊控 制等,使数控机床能够根据不 同的加工条件自动调整参数, 提高加工过程的稳定性和效率 。
中期发展的主要应用领域
高速发展阶段
21世纪初,中国数控机床 产业进入高速发展阶段, 技术水平不断提高,产品 种类日益丰富。
中国数控机床的产业现状
产业规模
中国数控机床产业规模不断扩大, 已经成为全球最大的数控机床生 产国之一。
技术水平
中国数控机床的技术水平不断提高, 已经具备了国际竞争力。
产品种类
中国数控机床的产品种类日益丰富, 涵盖了各种加工中心、数控车床、 数控铣床等。
新兴领域应用 数控机床在新兴领域如新能源、 新材料、生物医药等领域的应用 不断拓展,为数控机床的发展提 供了新的机遇。
技术创新驱动 数控机床技术的不断创新和发展, 将推动其在高效、高精度、智能 化等方面取得更大突破。
如何应对数控机床发展的挑战和机遇
加强技术研发和创新
企业应加大技术研发和创新投入,提升 数控机床的技术水平和核心竞争力。
数控机床发展简史

1、1948年美国空军部门为制造飞机杂零件,研究四年,於1952年试制出世界第一台数控铣床,立即生产100台交付军工使用。
在成果上显示了它是社会需求、科技水平、人员素质三者的结晶;在技术上则显示出机电一体化机床在控制方面的巨大创新。
数控机床种类繁多,一般将数控机床分为16大类:数控车床(含有铣削功能的车削中心)数控铣床(含铣削中心)数控铿床以铣程削为主的加工中心.数控磨床(含磨削中心)数控钻床(含钻削中心)数控拉床数控刨床数控切断机床数控齿轮加工机床数控激光加工机床数控电火花线切割机床数控电火花成型机床(含电加工中心) 数控板村成型加工机床数控管料成型加工机床其他数控机床2.数控机床的发展趋势2.1 高速化随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。
(1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;(2)进给率:在分辨率为0.01μm时,最大进给率达到240m/min且可获得复杂型面的精确加工;(3)运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。
由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm时仍能获得高达24~240m/min的进给速度;(4)换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0.5s。
德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。
2.2 高精度化数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。
(1)提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;(2)采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。
关于各个国家的数控机床的发展历史

关于各个国家的数控机床的发展历史Newly compiled on November 23, 2020关于各个国家的数控机床的发展历史数控机床是由美国发明家约翰·帕森斯上个世纪发明的。
随着电子信息技术的发展,世界机床业已进入了以数字化制造技术为核心的机电一体化时代,其中数控机床就是代表产品之一。
数控机床是制造业的加工母机和国民经济的重要基础。
它为国民经济各个部门提供装备和手段,具有无限放大的经济与社会效应。
欧、美、日等工业化国家已先后完成了数控机床产业化进程,而中国从20世纪80年代开始起步,仍处于发展阶段。
美国发展美国政府重视机床工业,美国国防部等部门因其军事方面的需求而不断提出机床的发展方向、科研任务,并且提供充足的经费,且网罗世界人才,特别讲究"效率"和"创新",注重基础科研。
因而在机床技术上不断创新,如1952年研制出世界第一台数控机床、1958年创制出加工中心、70年代初研制成FMS、1987年首创开放式数控系统等。
由于美国首先结合汽车、轴承生产需求,充分发展了大量大批生产自动化所需的自动线,而且电子、计算机技术在世界上领先,因此其数控机床的主机设计、制造及数控系统基础扎实,且一贯重视科研和创新,故其高性能数控机床技术在世界也一直领先。
当今美国生产宇航等使用的高性能数控机床,其存在的教训是,偏重于基础科研,忽视应用技术,且在上世纪80代政府一度放松了引导,致使数控机床产量增加缓慢,于1982年被后进的日本超过,并大量进口。
从90年代起,纠正过去偏向,数控机床技术上转向实用,产量又逐渐上升。
德国发展德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植。
于1956年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。
企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。
数控机床概述.

床自动测量零件尺寸,表面粗糙度。调整、确
定切削用量(改变切削速度和进给量),使切
削过程处于最佳状态,保证获得较高的生产率,
较好的加工质量,较长的刀具寿命,也就是最
大的经济效益。
继美国之后,英.日.德也相继制造出了
“适应控制”的数控机床。 适应控制技术也是数控机床的一个重要发 展。 随着数控机床控制技术的发展,过去一台
数控装置的分类:
一 按进给伺服系统的不同分类
(1)开环进给伺服系统
开环进给伺服系统中没有测量装置。数控装置根据程序所要求的
进给速度,方向和位移量输出一定频率和数量的进给指令脉冲பைடு நூலகம்经驱
国产中低端数控系统在技术路线上,采用了开放
式的体系平台。随着计算机技术的进步,其稳定性、可 靠性都有了长足的进步。特别是中国驻南斯拉夫大使馆 被轰炸后,中国高层领导逐步认清了数控技术对提高国
家综合实力的重要性,从政策到资金对数控技术的开发、
研究给予了极大地倾斜,极大地加快了数控技术在我国
的发展。相信在不久的将来,国产数控系统一定能赶上 或达到世界先进水平。
数控机床概述
数控机床的历史
1946年世界上诞生了第一台电子管计算 机。 2~3年后,美国人开始研究把计算机技术应 用于机床的控制。1952年制成了世界上第一台 三坐标数控铣床。之后bendix等公司开始生产 数控机床及数控装置。
国外数控机床的发展情况
继美国1952年制造出数控机床后,英国和日本在1958 年制造出数控机床。德国在1959制造出数控机床。 工业应用中,数控机床日益显示出具有技术上的先进
在低速移动时不能爬行。传动间隙及反向传动间隙要小。否则
指令脉冲位移量将被间隙吞噬掉了。
5)测量装置 测量装置的作用是将机床工作台的实际位置(工作台的
数控车床发展史

1970年代末至1980年代初
美国、德国、日本等国在数控机床领域取得显著进展,推出了一系列高性能的数控机床
数控机床技术逐渐成熟,应用领域不断扩大
1980年代
日本数控机床产量超过美国,成为世界最大的数控机床生产国
日本在数控机床领域的技术创新和质量控制使其在全球市场上占据领先地位
数控车床发展史
时间节点
发展事件
技术特点
1952年
美国帕森斯公司与麻省理工学院合作试制出世界上第一台三坐标联动、利用脉冲乘法器原理工作的立式数控铣床
数控技术的初步探索,采用电子管控制
1954年
美国本迪克斯公司生产了世界上第一台工业用数控机床
数控机床的工业化应用开始,标志着数控技术的初步成熟
1959年
数控系统发展到第二代,采用晶体管控制
1990年代至今
数控机床技术持续发展,各国纷纷推出高性能、高精度的数控机床
数控机床在控制、精度、自动化、灵活性等方面不断提升,广泛应用于航空航天、汽车、电子等高端制造领域
2020年代
中国数控机床产业发展迅速,技术突破显著,打破了国外的技术垄断
相比电子管,晶体管具有更高的可靠性和稳定性
1965年
数控系统发展到第三代,采用小规模集成电路控制
集成电路的应用提高了数控系统的性能和可靠性
1970年
第四代数控系统出现,小型计算机开始用于数控系统
计算机技术的应用使数控系统具有更高的智能化和自动化水平
1974年
第五代数控系统出现,微处理器开始用于数控系统
数控机床的发展历史和趋势

未来的数控机床
智能化、 3.智能化、网络化: 智能化 网络化:
追求加工效率的智能化,如自适应控制; 追求加工效率的智能化,如自适应控制;提高驱动性 能及使用连接方便的智能化,如电机参数的自适应运 能及使用连接方便的智能化, 算等;简化编程、简化操作的智能化, 算等;简化编程、简化操作的智能化,如智能化的自 动编程、智能诊断等。 动编程、智能诊断等。 数控装备的网络化实现了新的制造模式如敏捷制造、 数控装备的网络化实现了新的制造模式如敏捷制造、 虚拟企业等。 虚拟企业等。
数控机床的发展先后 经历了电子管( 经历了电子管(1952 )、晶体管 晶体管( 年)、晶体管(1959 )、小规摸集成电 年)、小规摸集成电 路(1965年)、大规 年)、大规 模集成电路及小型计 算机( 算机(1970年)和微 年 处理机或微型机算机 (1974年)等五代数 年 控系统。 控系统。
高精度、高可靠性 高精度、高可靠性: 普通级数控机床的加工精度已由±10μm提高 普通级数控机床的加工精度已由±10μm提高 5μm; 到±5μm; 精密级加工中心的加工精度则从± 5μm, 精密级加工中心的加工精度则从±3~5μm, 提高到± 1.5μm。 提高到±1~1.5μm。 数控装置的平均无故障时间值已达6000小时 数控装置的平均无故障时间值已达6000小时 平均无故障时间值已达6000 以上,驱动装置达30000小时以上。 30000小时以上 以上,驱动装置达30000小时以上。
2.复合化、多轴化: 2.复合化、多轴化: 复合化 一次装夹,整体加工。 一次装夹,整体加工。 在加工自由曲面时, 在加工自由曲面时,5轴联动控制对球头 铣刀的数控编程比较简单, 铣刀的数控编程比较简单,并且能使球头铣 刀在铣削3 刀在铣削3维曲面的过程中始终保持合理的切 从而提高加工效率。 速,从而提高加工效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数控技术》论文题目:数控机床发展史姓名:江源班级:汽车13-1学号:1307130106指导教师:卢万杰完成日期:2015.5.8辽宁工程技术大学机械工程学院二零一六年五月数控机床发展史摘要:数控机床是数字控制机床是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。
数控机床具有广泛的适应性,加工对象改变时只需要改变输入的程序指令;加工性能比一般自动机床高,可以精确加工复杂型面,因而适合于加工中小批量、改型频繁、精度要求高、形状又较复杂的工件,并能获得良好的经济效果。
随着数控机床在工业生产中日益风靡,人们不禁要问:数控机床是如何发展的?以后又会向什么方向发展呢?关键词:数控机床发展一·数控机床发展1·数控机床的起源1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。
由于样板形状复杂多样,精度要求高,一般加工设备难以适应,于是提出计算机控制机床的设想。
1949年,该公司在美国麻省理工学院(MIT)伺服机构研究室的协助下,开始数控机床研究,并于1952年试制成功第一台由大型立式仿形铣床改装而成的三坐标数控铣床,不久即开始正式生产,于1957年正式投入使用。
这是制造技术发展过程中的一个重大突破,标志着制造领域中数控加工时代的开始。
数控加工是现代制造技术的基础,这一发明对于制造行业而言,具有划时代的意义和深远的影响。
2·数控机床的兴起1952年美国麻省理工学院和吉丁斯·路易斯公司首先联合研制出世界上第一台数控升降台铣床,随后德国、日本、苏联等国于1956年分别研制出本国的第一台数控机床。
60年代初,美国、日本、德国、英国相继进入商品化试生产,由于当时数控系统处于电子管、晶体管、和集成电路初期,设备体积大、线路复杂、价格昂贵、可靠性差,数控机床大多是控制简单的数控钻床,数控技术没有普及推广,数控机床技术发展整体进展缓慢。
70年代,出现了大规模集成电路和小型计算机,特别是微处理器的研制成功,实现了数控系统体积小、运算速度快、可靠性提高、价格下降,使数控系统总体性能、质量有了很大提高,同时,数控机床的基础理论和关键技术有了新的突破,从而给数控机床发展注入了新的活力,世界发达国家的数控机床产业开始进入了发展阶段。
80年代以来,数控系统微处理器运算速度快速提高,功能不断完善、可靠性进一步提高,监控、检测、换刀、外围设备得到了应用,使数控机床得到了全面发展,数控机床品种迅速扩展,发达国家数控机床产业进入了发展应用阶段。
90年代,数控机床得到了普遍应用,数控机床技术有了进一步发展,柔性单元、柔性系统、自动化工厂开始应用,标志着数控机床产业化进入成熟阶段。
中国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。
在1958~1979年间为第一阶段,从1979年至今为第二阶段。
第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,一哄而上又一哄而下,曾三起三落、终因表现欠佳,无法用于生产而停顿。
主要存在的问题是盲目性大,缺乏实事求是的科学精神。
在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。
在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、五面或五轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。
至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,与日本数控机床的水平差距很大。
3·数控机床的高潮进入21世纪,军事技术和民用工业的发展对数控机床的要求越来越高,应用现代设计技术、测量技术、工序集约化、新一代功能部件以及软件技术,使数控机床的加工范围、动态性能、加工精度和可靠性有了极大地提高。
科学技术特别是信息技术的发展迅速,高速高精控制技术、多通道开放式体系结构、多轴控制技术、智能控制技术、网络化技术、CAD/CAM与CNC的综合集成,使数控机床技术进入了智能化、网络化、敏捷制造、虚拟制造的更高阶段。
二·数控机床的发展方向未来数控机床的类型将更加多样化,多工序集中加工的数控机床品种越来越多;激光加工等技术将应用在切削加工机床上,从而扩大多工序集中的工艺范围;数控机床的自动化程度更加提高,并具有多种监控功能,从而形成一个柔性制造单元,更加便于纳入高度自动化的柔性制造系统中。
具体说来,发展方向有:1 高速、高效2 高精度3 高可靠性4 复合化5 多轴化6 智能化7 网络化8 柔性化9 绿色化2.1 高速化随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。
(1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;(2)进给率:在分辨率为0.01μm时,最大进给率达到240m/min且可获得复杂型面的精确加工;(3)运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。
由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm 时仍能获得高达24~240m/min的进给速度;(4)换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0.5s。
德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。
2.2 高精度化数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。
(1)提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;(2)采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。
研究结果表明,综合误差补偿技术的应用可将加工误差减少60%~80%;(3)采用网格解码器检查和提高加工中心的运动轨迹精度,并通过仿真预测机床的加工精度,以保证机床的定位精度和重复定位精度,使其性能长期稳定,能够在不同运行条件下完成多种加工任务,并保证零件的加工质量。
2.3 功能复合化复合机床的含义是指在一台机床上实现或尽可能完成从毛坯至成品的多种要素加工。
根据其结构特点可分为工艺复合型和工序复合型两类。
工艺复合型机床如镗铣钻复合——加工中心、车铣复合——车削中心、铣镗钻车复合——复合加工中心等;工序复合型机床如多面多轴联动加工的复合机床和双主轴车削中心等。
采用复合机床进行加工,减少了工件装卸、更换和调整刀具的辅助时间以及中间过程中产生的误差,提高了零件加工精度,缩短了产品制造周期,提高了生产效率和制造商的市场反应能力,相对于传统的工序分散的生产方法具有明显的优势。
加工过程的复合化也导致了机床向模块化、多轴化发展。
德国Index公司最新推出的车削加工中心是模块化结构,该加工中心能够完成车削、铣削、钻削、滚齿、磨削、激光热处理等多种工序,可完成复杂零件的全部加工。
随着现代机械加工要求的不断提高,大量的多轴联动数控机床越来越受到各大企业的欢迎。
在2005年中国国际机床展览会(CIMT2005)上,国内外制造商展出了形式各异的多轴加工机床(包括双主轴、双刀架、9轴控制等)以及可实现4~5轴联动的五轴高速门式加工中心、五轴联动高速铣削中心等。
2.4 控制智能化随着人工智能技术的发展,为了满足制造业生产柔性化、制造自动化的发展需求,数控机床的智能化程度在不断提高。
具体体现在以下几个方面:(1)加工过程自适应控制技术:通过监测加工过程中的切削力、主轴和进给电机的功率、电流、电压等信息,利用传统的或现代的算法进行识别,以辩识出刀具的受力、磨损、破损状态及机床加工的稳定性状态,并根据这些状态实时调整加工参数(主轴转速、进给速度)和加工指令,使设备处于最佳运行状态,以提高加工精度、降低加工表面粗糙度并提高设备运行的安全性;(2)加工参数的智能优化与选择:将工艺专家或技师的经验、零件加工的一般与特殊规律,用现代智能方法,构造基于专家系统或基于模型的“加工参数的智能优化与选择器”,利用它获得优化的加工参数,从而达到提高编程效率和加工工艺水平、缩短生产准备时间的目的;(3)智能故障自诊断与自修复技术:根据已有的故障信息,应用现代智能方法实现故障的快速准确定位;(4)智能故障回放和故障仿真技术:能够完整记录系统的各种信息,对数控机床发生的各种错误和事故进行回放和仿真,用以确定错误引起的原因,找出解决问题的办法,积累生产经验;(5)智能化交流伺服驱动装置:能自动识别负载,并自动调整参数的智能化伺服系统,包括智能主轴交流驱动装置和智能化进给伺服装置。
这种驱动装置能自动识别电机及负载的转动惯量,并自动对控制系统参数进行优化和调整,使驱动系统获得最佳运行;(6)智能4M数控系统:在制造过程中,加工、检测一体化是实现快速制造、快速检测和快速响应的有效途径,将测量(Measurement)、建模(Modelling)、加工(Manufacturing)、机器操作(Manipulator)四者(即4M)融合在一个系统中,实现信息共享,促进测量、建模、加工、装夹、操作的一体化。
2.5 体系开放化(1)向未来技术开放:由于软硬件接口都遵循公认的标准协议,只需少量的重新设计和调整,新一代的通用软硬件资源就可能被现有系统所采纳、吸收和兼容,这就意味着系统的开发费用将大大降低而系统性能与可靠性将不断改善并处于长生命周期;(2)向用户特殊要求开放:更新产品、扩充功能、提供硬软件产品的各种组合以满足特殊应用要求;(3)数控标准的建立:国际上正在研究和制定一种新的CNC系统标准ISO14649(STEP-NC),以提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程乃至各个工业领域产品信息的标准化。