有理数无理数
有理数和无理数的区别是什么?

有理数和无理数的区别是什么?
还不清楚有理数和无理数区别的小伙伴快来看看吧,下面由小编小编为你精心准备了“有理数和无
理数的区别是什么?”,持续关注本站将可以持续获取更多的考试资讯!
有理数是整数和分数的集合,整数也可看做是分母为一的分数。
有理数的小数部分是有限或为无限循环的数。
无理数,也称为无限不循环小数,不能写作两整数之比。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
简单来讲,能够用分数表达的数就是有理数,不能用分数表达的
数就是无理数。
有理数是整数和分数的统称,正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因此有理数的数集可分为正有理数、负有理数和零。
无理数,也称为无限不循环小数。
简单来说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
有理数的性质是一个整数a和一个正整数b的比,例如3比8,通常为a比b。
无理数的性质是由整数的比率或分数构成的数字。
有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法4种运算均可进行。
而无理数是指实数范围内,不能表示成两个整数之比的数。
有理数与无理数

【有理数与无理数】无限不循环小数和开根开不尽的数叫无理数整数和分数统称为有理数数学上,有理数是两个整数的比,通常写作 a/b,这里 b 不为零。
分数是有理数的通常表达方法,而整数是分母为1的分数,当然亦是有理数。
数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作a/b,故又称作分数。
希腊文称为λογο?? ,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。
不是有理数的实数遂称为无理数。
所有有理数的集合表示为 Q,有理数的小数部分有限或为循环。
《有理数》概念、定义集合1、大于0的数叫做正数(positive).2、小于0的数叫做负数(negative).3、可以写成分数形式的数叫做有理数(rational number).4、只有符号不同的两个数叫做互为相反数(opposite number).5、数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value).6、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数.7、有理数减法法则:减去一个数,等于加上这个数的相反数.8、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0..9、乘积是1的两个数互为倒数.10、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.(两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0.)11、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power).在an中,a叫做底数(base number),n叫做指数(exponent),当an看作a 的n次方的结果时,也可读作a的n次幂.12、有理数混合运算的运算顺序:(1)先乘方,再乘除,最后加减.(2)同级运算,从左到右进行.(3)如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行.13、把一个大于10的数表示成a×10n的形式(a是整数数位只有一位的数,n是正整数),使用的是科学计数法.有理数(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a 也不一定是正数;p不是有理数;(2)有理数的分类: ① 整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a>0 a是正数;a<0 a是负数;a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .。
有理数与无理数

有理数与无理数是数学中两种基本的数类型,它们在性质和运算上有很大的区别。
了解有理数与无理数的概念、性质和运算规则,对于学习高等数学和其他数学分支具有重要意义。
一、有理数1. 定义:有理数是可以表示为两个整数的比值的数,即形如a/b(a、b为整数,且b≠0)的数。
有理数包括正整数、负整数、零和分数。
2. 性质:(1)加减法:两个有理数相加或相减,结果仍为有理数。
(2)乘除法:两个有理数相乘或相除,结果仍为有理数。
(3)倒数:一个非零有理数的倒数仍为有理数。
(4)绝对值:一个有理数的绝对值仍为有理数。
(5)有理数的四则运算满足交换律、结合律和分配律。
3. 运算规则:(1)加法:同号相加,异号相减,结果的符号与绝对值大的数相同;零与任何数相加,结果仍为零。
(2)减法:减去一个数等于加上这个数的相反数。
(3)乘法:分配律、交换律和结合律。
(4)除法:除以一个不为零的数等于乘以这个数的倒数;零除以任何非零数,结果仍为零。
二、无理数1. 定义:无理数是不能表示为两个整数的比值的实数,即不能表示为有限小数或无限循环小数的实数。
无理数包括圆周率π、2的平方根等。
2. 性质:(1)无理数不能表示为两个整数的比值,即不能表示为分数形式。
(2)无理数不能表示为有限小数或无限循环小数。
(3)无理数的长度无法用有限的数字表示。
(4)无理数的四则运算结果仍为无理数。
3. 运算规则:(1)加法和减法:无理数的加法和减法遵循有理数的加法和减法规则,但结果可能是无理数。
(2)乘法和除法:无理数的乘法和除法遵循有理数的乘法和除法规则,但结果可能是无理数。
(3)无理数之间不能进行比较大小的关系,因为它们的长度无法用有限的数字表示。
三、有理数与无理数的关系1. 有理数是无理数的一部分,但不是全部。
因为无理数还包括那些无法用有理数表示的实数,如√2等。
2. 有理数与无理数统称为实数。
实数是数学中最基本的概念之一,它包括了所有的有理数和无理数。
无理数与有理数的差异与联系

无理数与有理数的差异与联系在数学中,我们经常会遇到无理数和有理数这两个概念。
无理数和有理数在数轴上分布不均,有着明显的差异。
然而,它们之间也存在着联系和相互补充的关系。
本文将探讨无理数和有理数的差异与联系。
一、无理数的定义和特点无理数是指不能表示为两个整数之间的比值的数。
它们的十进制表示是无限不循环的小数。
无理数的定义最早可以追溯到古希腊数学家毕达哥拉斯提出的“无法用整数表示的数”。
以π(圆周率)和√2(根号2)为例,它们都是无理数。
1.1 π的无理性π是一个代表圆周长与直径之比的数学常数,其十进制表示为3.1415926535……。
π是一个无理数,这意味着无法用两个整数的比值来精确表示π的值。
无论我们取多少位小数,都无法找到一个有限的数字序列来准确表示π。
1.2 √2的无理性√2是一个代表平方根的数学符号,表示一个数的平方等于2。
然而,√2也是一个无理数。
我们无法找到两个整数的比值来精确表示√2的值。
√2的十进制表示为1.4142135623……,这个小数是无限不循环的。
二、有理数的定义和特点有理数是可以表示为两个整数之间的比值的数。
有理数的十进制表示可以是有限小数或循环小数。
有理数包括整数、分数和小数。
以2、-3/4和0.6为例,它们都是有理数。
2.1 整数的有理性整数是没有小数部分的数。
整数可以表示为分母为1的分数,因此整数是有理数。
例如,2和-5都是整数,也是有理数。
2.2 分数的有理性分数是两个整数的比值,其中分母不为零。
分数可以表示为有限小数或循环小数。
例如,-3/4可以写为-0.75,是一个有限小数,因此是有理数。
2.3 小数的有理性小数是可以写成有限小数或循环小数的数。
例如,0.6可以写为3/5,是一个有限小数,因此是有理数。
三、无理数与有理数的差异3.1 表示形式的差异无理数和有理数在数轴上的表示形式存在明显的差异。
有理数可以表示为两个整数之间的比值,因此它们在数轴上的位置是有限的。
【数学知识点】有理数和无理数的定义及区别

【数学知识点】有理数和无理数的定义及区
别
有理数为整数和分数的统称, 不是有理数的实数称为无理数。
接下来给大家分享有理数和无理数的定义及区别。
有理数是指整数(正整数、0、负整数)和分数的统称, 有理数是整数和分数的集合。
正整数和正分数合称为正有理数, 负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。
有理数a,b的大小顺序的规定: 如果a-b是正有理数, 则称当a大于b或b小于a, 记作a>b或b<a。
任何两个不相等的有理数都可以比较大小。
无理数, 也称为无限不循环小数, 不能写作两整数之比。
若将它写成小数形式, 小数点之后的数字有无限多个, 并且不会循环。
常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
无理数是指实数范围内不能表示成两个整数之比的数。
简单的说, 无理数就是10进制下的无限不循环小数, 如圆周率等。
(1)性质的区别:
有理数是两个整数的比, 总能写成整数、有限小数或无限循环小数。
无理数不能写成两个整数之比, 是无限不循环小数。
(2)结构的区别:
有理数是整数和分数的统称。
无理数是所有不是有理数的实数。
(3)范围区别:
有理数集是整数集的扩张, 在有理数集内, 加法、减法、乘法、除法(除数不为零)4种运算均可进行。
无理数是指实数范围内不能表示成两个整数之比的数。
感谢您的阅读, 祝您生活愉快。
【数学知识点】有理数和无理数的定义及分类

【数学知识点】有理数和无理数的定义及分类有理数为整数和分数的统称,不是有理数的实数称为无理数。
接下来给大家分享有理数和无理数的定义及分类。
有理数是指整数(正整数、0、负整数)和分数的统称,有理数是整数和分数的集合。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。
有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。
任何两个不相等的有理数都可以比较大小。
(一)按有理数的定义分类:(1)整数:整数就是像-3,-2,-1,0,1,2,3,10等这样的数。
整数包括正整数、0、负整数。
其中零和正整数统称自然数。
(2)分数:分数是一个整数a和一个正整数b的不等于整数的比。
分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。
(二)按有理数的性质分类:(1)正有理数:除了负数、0、无理数的数字都是正有理数。
正有理数还被分为正整数和正分数。
(2)0:0是介于-1和1之间的整数,是最小的自然数,也是有理数。
(3)负有理数:负有理数指小于0的有理数,就是小于零并能用小数表示的数。
无理数,也称为无限不循环小数,不能写作两整数之比。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。
无理数是指实数范围内不能表示成两个整数之比的数。
简单的说,无理数就是10进制下的无限不循环小数,如圆周率等。
感谢您的阅读,祝您生活愉快。
有理数和无理数区别是什么

有理数和无理数区别是什么
01
有理数是整数和分数的集合,整数也可看做是分母为一的分数。
有理
数的小数部分是有限或为无限循环的数。
无理数,也称为无限不循环小数,不能写作两整数之比。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
简单来讲,能够用分数表达的数就是有理数,不能
用分数表达的数就是无理数。
实数(R)可以分为有理数(Q)和无理数,其中无理数就是无限不循
环小数,有理数就是有限小数和无限循环小数;其中有理数又可以分为整
数(Z)和分数;整数按照能否被2整除又可以分为奇数(不能被2整除
的整数)和偶数(能被2整除的整数)。
有理数(Q)
有理数为整数(正整数、0、负整数)和分数的统称。
正整数和正分
数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数
可分为正有理数、负有理数和零。
由于任何一个整数或分数都可以化为十
进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
比如4=4.0,4/5=0.8。
无理数(R-Q)
无理数也称为无限不循环小数,不能写作两整数之比。
若将它写成小
数形式,小数点之后的数字有无限多个,并且不会循环。
常见的无理数有
非完全平方数的平方根、π和e(其中后两者均为超越数)等。
二者区别
简单来讲,能够用分数表达的数就是有理数,不能用分数表达的数就是无理数。
无理数与有理数的运算法则

无理数与有理数的运算法则
无理数和有理数是数学中两种不同的数。
有理数可以表示为两个整数的比例,而无理数则无法表示为有理数的比例。
在进行无理数和有理数的运算时,有以下法则:
1. 无理数和有理数相加减,结果为无理数。
例如,π+3=π+3,√2-4=√2-4。
2. 无理数和有理数相乘,结果为无理数。
例如,π×2=2π,√3×5=5√3。
3. 无理数和有理数相除,结果为无理数。
例如,π÷5=π/5,√5÷2=√5/2。
4. 无理数之间的加减乘除,结果为无理数。
例如,π+√2=π+√2,π×√2=π√2,π÷√2=π/√2。
5. 有理数之间的加减乘除,结果为有理数。
例如,2+3=5,4-2=2,2×3=6,6÷2=3。
在实际运用中,我们需要注意无理数和有理数的运算结果是否有实际意义,并根据需求进行适当的化简或精度控制。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限小数 0.8 0.555555555555555… -0.177777777777…
无限循环小数 无限循环小数 无限循环小数
0.18181818181818…
反过来,这些有限小数、无限循环小数都可 以化成分数,因此它们都是 有理数 那么无理数应该是怎样的?
如图,把边长为1的两个正方形沿对角线剪开, 得到四个一模一样的三角形. 如图,把这四个一模一样的三角形重新拼成一个 新的正方形,那么这个正方形的面积是多少? 边长又是多少?
讨论
还可以继续计算下去么? a可能是有限小数么?
结论: a=1.41421356……,它是一个无限不循环小数
估计面积为5的正方形的边长a的值,(结果精确 到十分位).
边长 a <a< 面积s=a2 <S<
<a<
<a<
<S<
<S<
<a<
<a;S<
a=2.2360679…它也是一个无限不循环小数
有理数
那么满足什么条件的数会叫无理数?
2.2有理数无理数
把下列各数表示成小数,你发现了什么? 4 ,5 , 8 , 2 5 9 45 11 4 = 0.8 5 5 = 0.555555555555555… 9 8 = -0.177777777777… 45 2 = 0.18181818181818… 11
同样,对于体积为2的立方体,求它的棱长.
边长 a
<a< <a<
体积V=a3
<V< <V<
<a<
<a< <a<
<V<
<V< <V<
a=1.25992105…它也是一个无限不循环小数.
定义
有理数总可以用有限小数或无限循环小数表示。 反之,任何有限小数或无限循环小数也都是有理数。
无限不循环小数叫做无理数
1之间0的个数逐次加2个)
解:有理数有: 3.14 ,
3 4
, 0.57
无理数有: 0.101000100 0001…
随堂练习
哪些是有理数?哪些是无理数? 2 3.14159… 0.351 3 4.3
-5.232323…
π 3
0.1234567891011…(由相继的正整数组成)
判断对错 (1)有限小数是有理数; ( )
面积为2的正方形,边长a究竟是多少?
即a2=2时,a是多少?
S=4
S=1
这3个正方形的面积之间关系怎样?边长之间又 有怎样的大小关系? 边长a的值会在哪两个数之间呢?
小明根据他的探索过程整理出如下的表格
边长 a
1<a<2 <a<
面积s=a2
1<S<4 < S<
<a<
<a< <a<
<S<
< S< < S<
(2)无限小数都是无理数; (3)无理数都是无限小数;
(4)有理数是有限小数.
( (
(
) )
)
谈谈你本节课的收获
有理数、无理数的定义; 会判断一个数是有理数还是无理数;
?
有理数 无理数
正整数 整数 零 负整数
正分数 分数 负分数
更多无理数
a=1.41421356… b=2.2360679… π=3.14159265… 0.58588588858888…(相邻两个5之间8的 个数逐次加1)
例1 下列各数中,哪些是有理数?哪些是无理数?
3 3.14 , - , 0.57, 0.101000100 0001…(相邻两个 4
正整数 整数 零 如1,2,3,0,-1,-2,-3等 负整数
正分数 分数 负分数
分数的形式为
m n
(m、n是整数且 n 0)
整数也可以表示成分数的形式吗? 5 0 4 5 , 4 , 0 1 1 1
我们把能够写成分数形式
m n
(m、n是整数且
n0
的数叫