湖南省益阳市赫山区城区公立学校2020-2021学年九年级第一次月考数学试题

合集下载

2020—2021学年度第一学期九年级数学第一次月考试卷

2020—2021学年度第一学期九年级数学第一次月考试卷

2020—2021学年度第一学期第一次月考九年级数学试题(考试时间:100分钟 满分:120分)特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效.2.答题前请认真阅读试题及有关说明.3.请合理安排好答题时间.一.选择题(本大题满分42分,每小题3分) 1.下列根式中不是最简二次根式的是( )A .2B .6C .8D .10 2.1x -实数范围内有意义,则x 的取值范围是( )A .1x >B .1≥xC .1x <D .1≤x 3.下面与2是同类二次根式的是( ) A .3B .12C .8D .64.下列式子是一元二次方程的是( )A. 012=-+x x B. 122+-x x C. 21=+x D. 0212=+-xx 5.下列计算正确的是( )A .235+=B .236=·C .84=D .2(3)3-=-6.若二次根式5+k 与3是同类二次根式,则k 的值可以是( ) A .3 B .4 C .1 D .7 7.方程0)3(=+x x 的解是( )A .3-=xB .3=xC .3,021-==x x D .3,021==x x8.以3和1-为两根的一元二次方程是 ( ); A .0322=-+x x B .0322=++x xC .0322=--x x D .0322=+-x x9.将一元二次方程0162=+-x x 用配方法可变形为( )A .8)3(2=-x B .8)3(2-=-xC .10)3(2=-x D .8)3(2=+x10.某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A .256)1(2892=-x B .289)1(2562=-x C .256)21(289=-x D .289)21(256=-x11.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片.如果全班有x 名学生,根据题意,列出方程为( ) A .(1)2070x x -= B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -= 12.若15a =,55b =,则a b 、两数的关系是( )A .a b 、互为相反数B .a b 、互为倒数C .5ab =D .a b = 13.关于x 的方程0122=-+x kx 有实数根,则k 的取值范围是 ( )A .0≠kB .1->kC .1-≥kD .1-=k14.如果m 是方程0122=+-x x 的解,那么m m 422-值是( )A .-1B .-2C .1D .2 二.填空题(本大题满分16分,每小题4分) 15.计算2)5(= .16.如果一元二方程043)222=-++-m x x m (有一个根为0,则m= ; 17.计算:()()_______232320162016=+-18..如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列方程为 .三.解答题(本大题满分62分) 19.(8分)(1)计算 :①481227+-②13126-+(2)(5分)数a 、b 在数轴上的位置如图所示,化简:()()2211-++b a -()2b a -20. (12分)解方程(1)2)3(2=-y (2)0542=-+x x (3) 3)52(=-x x21. (8分)已知1-722x x A +=,14+=x B ,当x 为何值时A 与B 互为相反数?22.(8分)先化简,再求值:)1111(12-++÷-x x x x ,其中12-=x .23.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,为了扩大销售,专卖店决定采取适当降价的方式促销,经调查发现,如果每千克核桃降低1元,则平均每天的销售量可增加10千克. (1)降价前专卖店每天的利润是多少元?(2)要使专卖店每天销售这种核桃的利润达到2240元,且更有利于减少库存,则每千克应降价多少元?24.(11分)已知:如图所示,在△ABC 中,∠C =90°,BC =6cm ,AC =8cm.两个动点P 、Q 分别从B 、C 两点同时出发,其中点P 以1cm/s 的速度沿着线段BC 向点C 运动,点Q 以2cm/s 的速度沿着线段CA 向点A 运动。

湖南省益阳市九年级上学期数学10月月考试卷

湖南省益阳市九年级上学期数学10月月考试卷

湖南省益阳市九年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·乐清月考) 把方程2x(x-3)-3(x-1)化成一般式,则各项系数a,b,c的值分别是()A . 2.-3.-3B . 2.-9.-3C . 2.-9.3D . 2.-3.32. (2分) (2017九上·钦州月考) 一个直角三角形的两条直角边的长是方程的两个根,则此直角三角形的面积为()A . 6B . 12C . 7D . 无法确定3. (2分) (2017九上·盂县期末) 二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x…-3-2-101…y…-60466…给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的左侧;③抛物线一定经过(3,0)点;④在对称轴左侧y随x的增大而减增大.从表中可知,其中正确的个数为()A . 4B . 3C . 2D . 14. (2分) (2015八下·开平期中) 若分式的值为0,则x的值为()A . 1B . ﹣1C . ±1D . 25. (2分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是()A . m= n,k>hB . m=n ,k<hC . m>n,k=hD . m<n,k=h6. (2分) (2019九上·湖州月考) 如图,二次函数y=ax2+bx+c(a 0)的图象过点(-2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1 , m),B(x2 , m)是抛物线上的两点,当x=x1+x2时,y=c;④若方程a (x+2)(4-x)=-2的两根为x1 , x2 ,且x1<x2 ,则-2 x1<x2<4.其中结论正确的有()img 小部件A . 1个B . 2个C . 3个D . 4个7. (2分)某化肥厂第一季度生产了m肥,后每季度比上一季度多生产x%,第三季度生产的化肥为n,则可列方程为()A . m(1+x)2=nB . m(1+x%)2=nC . (1+x%)2=nD . a+a (x%)2=n8. (2分) (2019九上·孝昌期末) 已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤ ;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A . 1个B . 2个C . 3个D . 4个9. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①方程ax2+bx+c=0的两根之和大于0;②abc<0;③y随x的增大而增大;④a-b+c<0;⑤a+b<0.其中正确的是A . 4个B . 3个C . 2个D . 1个10. (2分) (2019九上·句容期末) 下列关于二次函数y=-x2-2x+3说法正确的是()A . 当时,函数最大值4B . 当时,函数最大值2C . 将其图象向上平移3个单位后,图象经过原点D . 将其图象向左平移3个单位后,图象经过原点二、填空题 (共6题;共6分)11. (1分)已知关于x的一元二次方程x2-6x+1=0两实数根为x1、x2,则x1+x2=________ .12. (1分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.如果第二天、第三天收到捐款的增长率相同,则捐款增长率是________。

湖南省益阳市2021年九年级上学期数学12月月考试卷A卷

湖南省益阳市2021年九年级上学期数学12月月考试卷A卷

湖南省益阳市2021年九年级上学期数学12月月考试卷A卷姓名:________ 班级:________ 成绩:________一、单选题。

(共10题;共20分)1. (2分) (2019九上·中山期中) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分) (2016九上·长春期中) 若关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则常数c的值为()A . ±4B . 4C . ±16D . 163. (2分) (2020九上·陇县期中) 关于二次函数,下列说法正确的是()A . 图象与y轴的交点坐标为B . 图象的对称轴在y轴的右侧C . 当时,y的值随x值的增大而减小D . y的最小值为-34. (2分)为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()A . 289(1﹣x)2=256B . 256(1﹣x)2=289C . 289(1﹣2x)=256D . 256(1﹣2x)=2895. (2分) (2019九上·秀洲期中) 抛物线把抛物线向右平移2个单位,则所得抛物线的表达式为A .B .C .D .6. (2分) (2020九下·武汉月考) 如图,身高 1.8m 的某学生想测量一棵大树的高度,她沿着树影 BA 由 B 向 A 走去,当走到 C 点时,她的影子顶端正好与树的影子顶端重合,测得 BC=3.2m,CA=0.8m,则树的高度为()A . 4.8mB . 6.4mC . 8mD . 9m7. (2分) (2016九上·滨州期中) 如图,⊙O是△ABC的外接圆,已知∠ABO=40°,则∠ACB的大小为()A . 40°B . 30°C . 45°D . 50°8. (2分) (2018九上·杭州月考) 已知二次函数的图象如下图所示,则四个代数式,,,中,值为正数的有()A . 4个B . 3个C . 2个D . 1个9. (2分) (2019九下·温州模拟) 已知二次函数 y = x2- 4x + n (n 是常数),若对于抛物线上任意两点 A (x1, y1 ) ,B (x2 , y2 ) 均有 y1>y2 ,则 x1 , x2 应满足的关系式是()A . x1 - 2>x2 - 2B . x1 - 2<x2 - 2C . | x1 - 2|>|x2 - 2|D . | x1 - 2 | <|x2 - 2 |10. (2分)(2019·乐陵模拟) 如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG 的边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A .B .C .D .二、填空题。

湖南省益阳市九年级上学期数学12月月考试卷

湖南省益阳市九年级上学期数学12月月考试卷

湖南省益阳市九年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)如图是有几个相同的小正方体组成的一个几何体.它的左视图是()A .B .C .D .2. (2分) (2018九上·武汉期末) 一元二次方程x2+2 x+m=0有两个不相等的实数根,则()A . m>3B . m=3C . m<3D . m≤33. (2分) (2016九下·长兴开学考) 一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,则女生当组长的概率是()A .B .C .D .4. (2分)如图,点A在双曲线上,且OA=4,过A作AC⊥轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A . 2B . 5C . 4D .5. (2分)某超市1月份的营业额是0.2亿元,第一季度的营业额共1亿元.如果平均每月增长率为x,则由题意列方程应为().A . 0.2(1+x)2=1B . 0.2+0.2×2x=1C . 0.2+0.2×3x=1D . 0.2×[1+(1+x)+(1+x)2]=16. (2分) (2019九上·哈尔滨月考) 一次函数y=kx+b和反比例函数的图象如图所示,则有()A . k>0,b>0,a>0B . k<0,b>0,a<0C . k<0,b>0,a>0D . k<0,b<0,a>0二、填空题 (共6题;共7分)7. (1分)(2019·定远模拟) 如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________8. (1分) (2019八上·昭通期末) 一元二次方程2x2﹣4x+1=0有________个实数根.9. (1分) (2019八下·奉化期末) 有一个一元二次方程,它的一个根 x1=1,另一个根-2<x2<0. 请你写出一个符合这样条件的方程:________.10. (1分) (2018八上·长寿月考) 在△ABC中,若∠B=2∠A,∠C=60°,则∠A=________.11. (1分)如图,在平行四边形中,,,将平行四边形沿翻折后,点恰好与点重合,则折痕的长为________.12. (2分)(2016·崂山模拟) 如图一次函数y1=k1x+b的图象与反比例函数y2= 的图象交于点A、B两点,其中点A的横坐标为2,在y轴右侧,当y1<y2时,x的取值范围是________.三、解答题 (共11题;共60分)13. (10分)计算:(2016﹣2015π)0+(﹣)﹣1﹣|tan60°﹣2|+[ ]﹣1 .14. (2分)(2019·吴兴模拟) 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸图中,点A,B都在格点处.①请在图中作等腰△ABC,使其底边AC= ,且点C为格点.②在①的条件下,作出平行四边形ABDC,且D为格点,并直接写出平行四边形ABDC的面积.15. (10分)(2018·广州模拟) 现有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果;(2)求一次打开锁的概率.16. (5分) (2018八上·浉河期末) 阅读下面材料:学习了三角形全等的判定方法(即“SAS”“ASA”“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪的探究方法是对∠B分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B 是直角时,如图1,△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B 是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等 B.不全等 C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°.过点C作AB边的垂线交AB延长线于点M;同理过点F作DE边的垂线交DE延长线于N,根据“ASA”,可以知道△CBM≌△F EN,请补全图形,进而证出△ABC≌△DEF.17. (2分) (2020九上·合肥月考) 如图,已知A(-4,n),B(2,-4)是一次函数y1=kx+b的图像和反比例函数的图像的两个交点(1)求反比例函数和一次函数的解析式(2)求直线与x轴的交点C的坐标及△AOB的面积(3)当x取何值时,y1=y2;当x取何值时,y1>y218. (10分) (2019九上·澧县月考) 如图,在中,,,.点P从点A开始沿边AB向点B以的速度移动,与此同时,点Q从点B开始沿边BC向点C以的速度移动.设P、Q分别从A、B同时出发,运动时间为t,当其中一点先到达终点时,另一点也停止运动.解答下列问题:(1)经过几秒,的面积等于?(2)是否存在这样的时刻t,使线段PQ恰好平分的面积?若存在,求出运动时间t;若不存在,请说明理由.19. (10分) (2016九上·东莞期中) 如图,△ABC中,∠C=90°,⊙O是△ABC的内切圆,D、E、F是切点.(1)求证:四边形ODCE是正方形;(2)如果AC=6,BC=8,求内切圆⊙O的半径.20. (5分)(2017·邹城模拟) 如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.21. (2分)(2018·越秀模拟) 已知反比例函数y= (m为常数)的图象经过点A(﹣1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y= 的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.22. (2分) (2020八下·醴陵期末) 如图,直线交x轴于点A,y轴于点B.(1)求线段AB的长和∠ABO的度数;(2)过点A作直线L交y轴负半轴于点C,且△ABC的面积为,求直线L的解析式.23. (2分)(2018·安徽模拟) 如图1,△ABC中,点D在线段AB上,点E在线段CB延长线上,且BE=CD,EP∥AC交直线CD于点P,交直线AB于点F,∠ADP=∠ACB(1)图1中是否存在与AC相等的线段?若存在,请找出,并加以证明,若不存在,说明理由;(2)若将“点D在线段AB上,点E在线段CB延长线上”改为“点D在线段BA延长线上,点E在线段BC延长线上”,其他条件不变(如图2).当∠ABC=90°,∠BAC=60°,AB=2时,求线段PE的长.参考答案一、单选题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共6题;共7分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:三、解答题 (共11题;共60分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、答案:15-2、考点:解析:答案:16-1、考点:解析:答案:17-1、答案:17-2、答案:17-3、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。

2021年湘教版九年级数学上册第一次月考考试卷(及参考答案)

2021年湘教版九年级数学上册第一次月考考试卷(及参考答案)

2021年湘教版九年级数学上册第一次月考考试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 2.若a ≠b ,且22410,410a a b b -+=-+=则221111a b +++的值为( ) A .14 B .1 C ..4 D .33.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-1 4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .22﹣2C .22+2D .227.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.分解因式:3244a a a -+=__________.3x 1+有意义,则x 的取值范围是_______. 4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =k x(k ≠0)的图象经过其中两点,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′,求△O A ′B ′的面积.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.5.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、C6、B7、D8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、2(2)a a -;3、x 1≥-且x 0≠4 5、706、-1三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)y=﹣x 2﹣2x+3;(2)抛物线与y 轴的交点为:(0,3);与x 轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)略(2)64、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)200 , 8415m n ==,;(2)1224人;(3)见解析,23. 6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。

2021年湘教版九年级数学上册第一次月考考试卷带答案

2021年湘教版九年级数学上册第一次月考考试卷带答案

2021年湘教版九年级数学上册第一次月考考试卷带答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .12020 2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人 4.若函数y =(3﹣m )27mx -﹣x+1是二次函数,则m 的值为( ) A .3 B .﹣3C .±3D .9 5.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.抛物线2y 3(x 1)1=-+的顶点坐标是( )A .()1,1B .()1,1-C .()1,1--D .()1,1-7.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A .15B .18C .21D .248.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________.2.因式分解:a 3-a =_____________.3.抛物线23(1)8y x =-+的顶点坐标为____________.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___________cm .三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、B5、A6、A7、A8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、a (a -1)(a + 1)3、(1,8)4、140°5、136、15.三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)k ≤58;(2)k=﹣1.3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1P 2352,),P 3),P 4(52-.4、(1)理由见详解;(2)2BD =或1,理由见详解.5、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。

2021年湘教版九年级数学上册第一次月考测试卷(加答案)

2021年湘教版九年级数学上册第一次月考测试卷(加答案)

2021年湘教版九年级数学上册第一次月考测试卷(加答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.﹣3的绝对值是( )A .﹣3B .3C .-13D .13 2.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100993.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.若实数a 、b 满足a 2﹣8a+5=0,b 2﹣8b+5=0,则1111b a a b --+--的值是( ) A .﹣20 B .2 C .2或﹣20 D .125.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣27.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A .14B .16C .90α-D .44α-8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:( )A .B .C .D . 10.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136_____________. 2.分解因式:a 2﹣4b 2=_______.3.若代数式1x x -有意义,则x 的取值范围为__________. 4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.3.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分) 众数(分) 初中部 85(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、C6、D7、A8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、(a+2b )(a ﹣2b )3、0x ≥且1x ≠.4、5、x <1或x >36、24三、解答题(本大题共6小题,共72分)1、x=12、(1)k ≤58;(2)k=﹣1.3、(1)略;(24、(1)答案略;(2)45°.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。

湖南省益阳市2021年九年级上学期数学第一次月考试卷(II)卷

湖南省益阳市2021年九年级上学期数学第一次月考试卷(II)卷

湖南省益阳市2021年九年级上学期数学第一次月考试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列方程中,是一元二次方程的是()A . x2+3x+y=0B . x+y+1=0C . =D . x2++5=02. (2分)(2018·长清模拟) 从棱长为2a的正方体零件的一角,挖去一个棱长为a的小正方体,得到一个如图所示的零件,则这个零件的俯视图是()A .B .C .D .3. (2分)如图中三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的,则按时间先后顺序可排列为()A . ③②①B . ②①③C . ①②③D . ②③①4. (2分)(2017·新野模拟) 小刚身高180cm,他站立在阳光下的影子长为90cm,他把手臂竖直举起,此时影子长为115cm,那么小刚的手臂超出头顶()A . 35cmB . 50cmC . 25cmD . 45cm5. (2分)如图,A、B是双曲线y= 上关于原点对称的任意两点,AC∥y轴,BD∥y轴,则四边形ACBD的面积S满足()A . S=1B . 1<S<2C . S=2D . S>26. (2分)已知反比例函数的图象过点M(-1,2),则此反比例函数的表达式为()A . y=B . y=-C . y=D . y=-二、填空题 (共12题;共15分)7. (1分) (2019九下·南宁月考) 分解因式:4m2﹣16n2=________.8. (1分) (2016九上·连州期末) 方程x2=4x的解________.9. (1分) (2020八下·新昌期中) 已知多边形的内角和等于外角和的三倍,则边数为________.10. (1分)某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为________.11. (1分)(2017·胶州模拟) 如图,四边形ABCD是正方形,CF∥BD,DF∥BE,若BE=BD,则∠CDF=________.12. (1分) (2019九上·重庆月考) 如图,在中,,,现将绕点顺时针旋转得到,此时点、、恰好三点共线,则阴影面积为________.13. (1分) (2019九上·镇原期末) 如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为________.14. (2分)(2020·武汉模拟) 如图,四边形ABCD是圆O的内接四边形,AC⊥BD交于点P,半径R=6,BC =8,则tan∠DCA=________.15. (1分) (2019七下·江城期末) 已知是方程kx+2y=-8的解,则k=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档