考研高数三角函数复习

合集下载

考研数学三知识点总结

考研数学三知识点总结

高数三角函数变换cos(A−B)=cosAcosB+sinAsinB cos(A+B)=cosAcosB+sinAsinB sin(A−B)=sinAcosB−cosAsinB sin(A+B)=sinAcosB+cosAsinBsinAcosB=12[sin(A+B)+sin(A−B)]sinxcosx=12sin2xsinAsinB=12[cos(A−B)−cos(A+B)]sin2x=12(1−cos2x)cosAcosB=12[cos(A−B)+cos(A+B)]cos2x=12(1+cos2x)cos2x=1−tan2x1+tan2xsin2x=2tanx1+tan2xarcsinx+arccosx=π2arctanx+arccotx=π2arctanx+arctan1x=π2圆柱体积V=πr2h圆锥体积V=13πr2h球体积V=43πr3椭圆面积S=πab抛物线y2=2px交点坐标(p2,0)准线x=−p2点到直线距离ax+by+c √a+b第一类间断点:包括可去间断点和跳跃间断点。

可去间断点:间断点处左右极限存在但不等于该点函数值。

f(x0+0)=f(x0−0)≠f(x0)跳跃间断点:间断点处左右极限存在但不相等。

f(x0+0)≠f(x0−0)第二类间断点:间断点处左右极限至少有一个是∞重要极限lim x→0sinxx=1limx→∞(1+1x)x=e limx→0(1+x)1x=ex趋向于0时的等价无穷小sinx∼x tanx∼x arcsinx∼x arctanx∼x1−cosx∼12x2ln (1+x )∼x log a (x +1)∼xlnae x −1∼x a x −1∼xlna n√1+x −1∼x n(1+bx )a−1∼abx 导数公式(a x )'=a x lna (log a x )'=1xlna(tanx )'=sec 2x (cotx )'=−csc 2x (secx )'=secx tanx (cscx )'=−cscx cotx (arcsinx )'√1−x 2 (arccosx )'√1−x 2(arctanx )'=11+x 2 (arccotx )'=−11+x 2[sin (ax +b )](n )=a n sin (ax +b +n2π)[cos (ax +b )](n )=a n cos (ax +b +n2π)(1ax +b )(n )=(−1)n a n n !(ax +b )n +1[ln (ax +b )](n )=(−1)n −1(n −1)!a n(ax +b )n积分公式√x 2±a2ln ∣x +√x 2±a 2∣+C dx √a 2−x2arcsin xa +C ∫dx x 2−a2=12ln ∣x −a x +a ∣+C ∫dx x 2+a2=1a arctan x a +C ∫dx a 2x 2+b2=1ab arctan axb +c ∫secxdx =ln ∣secx +tanx ∣+c∫cscxdx =ln ∣cscx −cotx ∣+c∫√a 2−x 2dx =a 22arcsin x 2+x 2√a 2−x 2+c ∫√x 2±a 2dx =x 2√x 2±a 2±a 22ln ∣x +√x 2±a 2∣+c∫0π2sin nxdx =∫0π2cos n xdx =(n −1)!!n !!π2(n 为偶数)∫0π2sin nxdx =∫0π2cos n xdx =(n −1)!!n !!(n 为奇数)∫0π2f (sinx )dx =∫0π2f (cosx )dx∫0πxf (sinx )dx =π2∫0πf (sinx )dx =π∫0π2f (sinx )dx ∣∫xf (t )dt ∣≤∫0x∣f (t )∣dt∫0af (x )dx =12∫0a[f (x )+f (−x )]dx ∫−aaf (x )dx =∫0a[f (x )+f (−x )]dxf x '(x ,y ),f y '(x ,y )在(x 0,y 0)连续⇒z =f (x ,y )在(x 0,y 0)可微⇒f (x ,y )在(x 0,y 0)连续二重积分特点积分区域D 关于x 轴对称∬D f (x ,y )d σ=0f 为y 的奇函数,即f (x ,−y )=−f (x ,y )∬Df (x ,y )d σ=2∬D 1f (x ,y )d σf 为y 的偶函数,即f (x ,−y )=f (x ,y )积分区域D 关于y 轴对称∬Df (x ,y )d σ=0f 为x 的奇函数,即f (−x ,y )=−f (x ,y )∬Df (x ,y )d σ=2∬D 1f (x ,y )d σf 为x 的偶函数,即f (−x ,y )=f (x ,y )积分区域关于原点对称∬D f (x ,y )d σ=0f 为x,y 的奇函数,即f (−x ,−y )=−f (x ,y )∬Df (x ,y )d σ=2∬D 1f (x ,y )d σf 为x,y 的偶函数,即f (−x ,−y )=f (x ,y )函数展开式e x=1+x +12!x 2+⋯+1n !x n =∑k =0nx kk !sinx =x −13!x 3+15!x 5−⋯+(−1)n −11(2n −1)!x 2n −1=∑k =0n(−1)k x 2k +1(2k +1)!cosx =1−12!x 2+14!x 4−⋯+(−1)n 1(2n )!x 2n =∑k =0n(−1)k x 2k (2k )!ln (1+x )=x −12x 2+13x 3+⋯+(−1)n −11n x n =∑k =1n (−1)k −1x kk 11+x =∑k =0n(−1)k x k11−x =∑k =0nx k多元函数极值:驻点(x0,y0)满足f x'(x0,y0)=0,f y'(x0,y0)=0且A=f xx''(x0,y0) ,B=f xy''(x0,y0),C=f yy''(x0,y0)B2−AC<0时,(x0,y0)是极值点,A>0时是最小值,A<0时是最大值。

考研数学备考:三角函数公式

考研数学备考:三角函数公式

考研数学备考:三角函数公式1500字备考数学这个科目,对许多考生来说都是一大挑战。

而数学中的三角函数是一个重要的知识点,也是考研数学中经常出现的题型。

掌握了三角函数的公式,就可以在考试中更好地解决问题。

下面,我将为大家详细介绍一些常用的三角函数公式,并给出一些应用举例。

一、基本概念在数学中,我们常常会遇到三角函数,即正弦函数 sin(x)、余弦函数 cos(x)、正切函数 tan(x) 等。

这三个函数都是周期函数,周期为2π。

通过这些函数,我们可以描述一个角度和它对应的三角比值。

二、简单公式1. 正弦函数的诱导公式:sin(a ± b) = sin a * cos b ± cos a * sin b此为最基本的三角函数公式之一,也是很多其他公式的基础。

2. 余弦函数的诱导公式:cos(a ± b) = cos a * cos b ∓ sin a * sin b同样是一种基础的公式,非常常用。

这两个公式非常重要,是进一步推导其他三角函数公式的基础。

三、常用公式1.和差变换公式:sin(a + b) = sin a * cos b + cos a * sin bsin(a - b) = sin a * cos b - cos a * sin bcos(a + b) = cos a * cos b - sin a * sin bcos(a - b) = cos a * cos b + sin a * sin b这些公式可以用来计算不包含三角函数的和差的三角函数值。

2.倍角公式:sin(2a) = 2sin a * cos acos(2a) = cos²a - sin²a = 2cos²a - 1 = 1 - 2sin²atan(2a) = 2tan a / (1 - tan²a)这些公式可以用来计算一个角的两倍角的三角函数值。

考研数学 高等数学三角函数公式总结e

考研数学 高等数学三角函数公式总结e

2021考研数学高等数学三角函数公式总结口诀:“奇变偶不变,符号看象限〞。

在复习的过程中,同学们一定要再温习一遍这些很根本的公式,不要因为公式记忆不牢丢分。

在做题时,要熟练应用这些公式。

2021年考研数学高分规划近几年的考研数学大纲根本没有变化。

对于选择题仍然考查考生的根本计算能力、根本逻辑推导能力等;填空题考查根本计算能力;而计算题考查根本计算能力、简单的应用能力和证明能力等。

我们考生在复习时,一定要以国家考试中心的考试大纲为标准,严格按照规定的考点及层次去复习,至今命题的核心是考察两个层次的问题,一个是根本概念、根本理论、根本方法,也就是“三基〞,这些题目占到80%以上;再一个就是知识的运用能力,所以凯程教育数学辅导专家提醒考生考研数学复习的准备也应该从这样两个方面去针对性的复习。

第一个层次——扎实的根底知识。

对于考试大纲中规定的所有考点,一定要系统、完备的理解和掌握,特别要注意课本外的理解和延展,结合一些根底题目去真正理解这些知识点以及了解这些知识点的使用条件等。

第二个层次——知识的灵活运用。

如果仅是依靠教材,很难把这种考试命题的特点归纳总结出来,因此要了解考试必须熟悉历年考试真题,通过真题的分析帮助自己真正的归纳总结一些题型,再针对每一类问题去分析。

根据真题,总结常考的题型及每种题型相应的解决方法有哪些,去总结和归纳,借助于题型再进一步完善知识点的理解和掌握。

不管进行哪个层次的复习,都必须保证一定的题量。

不通过一定的题量练习稳固知识根底,也很难把握知识的灵活运用,所以建议大家找一些典型的题做一些训练,通过这种练习来反应我们知识的把握情况,同时还能更好的掌握这些相关的知识。

根据命题考核层次及学习的科学规律,我们总的来说把复习规划可以分为三个阶段:第一个阶段是根底阶段。

这个阶段的长短应该根据自己的情况来实施,根底好一点的同学,这个时间可以短一点,根底差一点的同学,这个阶段可以长一点。

但是要提醒大家,这个根底阶段的时间不能太长,不能到了十月、十一月份还在打根底,那这样的话,复习的效率就太低了,我们建议根底再差的同学也要尽量在五、六月份把这个教材的打根底复习的阶段做完。

整理高数微积分公式+三角函数公式考研

整理高数微积分公式+三角函数公式考研

高数微积分公式三角函数公式考研整理表姓名:职业工种:申请级别:受理机构:填报日期:A4打印/ 修订/ 内容可编辑高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:文件编号:F8-65-23-08-CC 多元函数微分法及应用微分法在几何上的应用:文件编号:F8-65-23-08-CC 方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程整理丨尼克本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。

考研三角函数基础知识

考研三角函数基础知识
n
a n = a ; 当 n 为 偶数时,
(a ≥ 0) a a n =| a |= − a (a < 0)

(2)分数指数幂的概念 ①正数的正分数指数幂的意义是: a 的正分数指数幂等于 0. ② 正 数 的
m n
= n a m (a > 0, m, n ∈ N + , 且 n > 1) .0
(3)幂函数的性质 ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函 数时,图象分布在第一、二象限(图象关于 y 轴对称);是奇函数时,图象分布在第一、三 象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在 (0, +∞ ) 都有定义,并且图象都通过点 (1,1) . ③单调性:如果 α > 0 ,则幂函数的图象过原点,并且在 [0, +∞ ) 上为增函数.如果
1 b
1 1 < log b b b
C. log b < log
a
b
1 1 < log a b b
D. log
b
1 1 < log a < log a b b b
解: C 1.3.3 幂函数
(1)幂函数的定义 一般地,函数 y = xα 叫做幂函数,其中 x 为自变量, α 是常数. (2)幂函数的图象
a ⋅b
5
;
a 3b 2 ⋅ a 2b 3
解: (1)原式=

1
1
1
1
a b
1 6
5 6
=a
1 1 1 − + − 3 2 6
⋅b
1 1 5 + − 2 3 6

考研高数三角函数复习

考研高数三角函数复习

考研三角函数复习1、任意角的三角函数(划红线内容重点学习,其余部分建议学习)(1)任意角的三角函数的定义:角α的终边上任意一点p 的坐标是(x ,y),它和原点的距离是r(r >0),那么角α的正弦、余弦、正切、余切分别是(2)三角函数值的符号正弦值和余割值对于第一、二象限的角是正的,而对于第三、四象限的角是负的.余弦值和正割值对于第一、四象限的角是正的,而对于第二、三象限的角是负的.正切值和余切值对于第一、三象限的角是正的,而对于第二、四象限角是负的,也可以按正的在各象限的函数来记,即“一全、二正弦,三切、四余弦”(正割、余割分别和余弦、正弦符号相同) 2.同角三角函数的基本关系式(1)倒数关系:sinαcsc=1 cosαsecα= tan αcot α=1(3)平方关系:sin 2α+cos 2α=1 1+tan 2α=sec 2α 1+cot 2α=csc 2α 3.诱导公式(1) k·2π+α(k ∈Z),-α,π±a ,2π-α的三角函数值等于α的同名函数值,前面加上一个把α角看成锐角时原函数值的符号,即sin(k·2π+α)=sinα,cos(k·2π+α)=cosα ,tan(k·2π+α)=tan α,cot(k·2π+α)=cot α(k ∈Z) sin(-α)=-sinα,cos(-α)=cosα ,tan(-α)=-tan α,cot(-α)=-tan α sin(π+α)=-sinα, cos(π+α)=-cosα ,tan(π+α)=tan α, cot(π+α)=cot α sin(π-α)=sinα,cos(π-α)=-cosα ,tan(π-α)=-tan α,cot(π-α)=-cot α sin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tan α,cot(2π-α)=-cot αsin(2π-a) = cosa ,cos(2π-a) = sina ,sin(2π+a) = cosa ,cos(2π+a) = -sina (2) 90°±α, 270°±α的三角函数值等于α的余名函数值,前面加上一个把α看成锐角时原函数值的符号,例如sin(90°+α)=cosα, tan (270°+α)=-cot α综上,诱导公式可概括为k·90°±α(k ∈Z)的三角函数值,等于α的同名(k 为偶数时)或余名(k 为奇数时)的函数值,前面加上一个把α看成锐角时原函数值的符号.简称之为“奇余偶不变,符号看象限”.4.三角函数的图象和性质(1)三角函数线以原点为圆心,以单位长为半径的圆叫做单位圆,如图2—3,设角α的终边和单位圆的交点为p ,过p作PM 垂直于x轴,垂足为M,A(1,0)、B(0,1),过A、B点作单位的切线AT、BS分别和角α的终边或其反向延长线交于T、S则有向线及MP、OM、AT、BS、OT、OS分别叫作角α的正弦线、余弦线、正切线、余切线、正割线、余割线.(2)三角函数的图象正弦函数y=sinx 余弦函数y=cosx(如图2—4)正切函数y=tanx 余切函数y=cotx (如图2—5)(3)三角函数的周期①周期函数对于函数y=f(x),如果存在着一个不为零的常数T,使得当x取定义域内的每一个值时,都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.②最小正周期:对于一个周期函数来说、如果在所有的周期中存在着一个最小正数,就把这个最小的正数叫做最小正周期.教科书上所指三角函数的周期均为最小正周期.(4)三角函数的性质5、积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]6、和差化积sina+sinb=2sin 2b a +cos 2b a -,sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2b a -,cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+(1)积化和差和和差化积各有四个公式,它们实质是一类公式的正用或逆用,即积化和差公式的逆用就是和差化积公式。

上海市考研数学复习资料高等数学必考知识点汇总及解题技巧

上海市考研数学复习资料高等数学必考知识点汇总及解题技巧

上海市考研数学复习资料高等数学必考知识点汇总及解题技巧高等数学是考研数学中的重要科目,考生在备考过程中应该重点关注高等数学的必考知识点,并掌握解题的技巧。

本文将对上海市考研数学复习资料中的高等数学必考知识点进行汇总,并分享一些解题技巧,以供考生参考。

一、极限和连续在高等数学中,极限和连续是首要的考点,涉及到函数的性质以及极限运算。

考生在复习过程中需要掌握以下知识点:1. 三角函数的极限:考生需要熟悉正弦函数、余弦函数、正切函数等三角函数的极限表达式,并掌握相应的推导方法。

2. 数列极限:考生需要掌握数列极限的定义、性质以及收敛性的判断方法,了解单调有界数列的极限存在性和计算方法。

3. 函数的极限:考生需要了解函数极限的定义、性质以及计算方法,并掌握常见函数极限的计算技巧。

4. 无穷小量与无穷大量:考生需要熟悉无穷小量与无穷大量的定义、性质以及简单的计算方法,了解它们与极限的关系。

5. 连续函数:考生需要掌握连续函数的定义、性质以及常见函数的连续性判断方法,包括函数连续性的四则运算、复合函数的连续性等。

二、导数与微分导数与微分是高等数学中的另一个重要考点,涉及到函数的变化率以及局部性质。

考生在复习过程中需要注意以下知识点:1. 导数的定义与性质:考生需要了解导数的定义,掌握导数的基本性质,包括可导与连续的关系、导数与函数的单调性和极值等。

2. 基本导数公式:考生需要掌握基本导数公式,如常数函数、幂函数、指数函数、对数函数、三角函数等的导数计算方法。

3. 高阶导数:考生需要了解高阶导数的概念,并能够计算高阶导数,理解高阶导数与函数的凹凸性、拐点等的关系。

4. 微分的定义与性质:考生需要了解微分的定义以及微分的性质,包括微分的几何意义、微分的四则运算等。

5. 隐函数与参数方程的导数:考生需要掌握隐函数与参数方程的导数计算方法,以及求导链式法则的应用。

三、积分与微积分应用积分与微积分应用是考生在高等数学中掌握的另一个重要方面,它们与实际问题的建模与求解密切相关。

考研高等数学知识点总结

考研高等数学知识点总结

高等数学知识点总结导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研三角函数复习1、任意角的三角函数(划红线内容重点学习,其余部分建议学习) (1)任意角的三角函数的定义:角a 的终边上任意一点 p 的坐标是(x , y),它与原点的距离是 r(r >0),那么角a的正弦、余弦、正切、余切分别是角cefi 勺正割:seca =—x甬汶的余割匕C5C& =— y(2) 三角函数值的符号正弦值与余割值对于第一、二象限的角是正的,而对于第三、四象限的角是负的•余弦值与正割值对于第一、 四象限的角是正的,而对于第二、三象限的角是负的.正切值与余切值对于第一、三象限的角是正的,而对于第二、四象限角是负的,也可以按正的在各象限的函数来记,即一全、二正弦,三切、四余弦”正割、余割分别与余弦、正弦符号相同)2•同角三角函数的基本关系式(1) 倒数关系: sin a csc=1bos a sec a=n a COt a =1(3) 平方关系: sin 2 a +cOb a =1 1+tan 2a =seCx 1+cot 2 a =csC a3•诱导公式(1) k 2n + a (kZ), -a, n± a 2 n a 的三角函数值等于a 的同名函数值,前面加上一个把 a 角看成锐角时原函数值的符号,即sin(k 2 n + a=)sin a cos(k 2n + a )=cos , a an(k 2n + a tan a, cot(k 2 n + a ()et a (KE Z) sin(- a )=sin a cos(- a )= cos a, tan(- a )-tan a, cot(- a )-tan asin( n + a 浄门 a cos( n + a -)cos a , tan( n + a t)3n a, cot( n + a ()=t a sin( n a )=sin , a cos( n - a )pos a , tan( n a )=^an a , cot( n a )-cot a sin(2 n a )^in a cos(2 n a )=cos , (xtan( 2 n a )=an a, cot( 2 n a )=cot asin( -a) = cosa, cos( -a) = sina , sin( +a) = cosa, cos( +a) = -sina2 2 2 2(2) 90 °±a 270 ° ±的三角函数值等于a 的余名函数值,前面加上一个把 a 看成锐角时原函数值的符号,例如sin(90 ° + a )=cos tan (270 ° + a co* a综上,诱导公式可概括为 k • 90°±a zk 的三角函数值,等于a 的同名(k 为偶数时)或余名(k 为奇数时)的函数值, 前面加上一个把a 看成锐角时原函数值的符号•简称之为奇余偶不变,符号看象限”.sina =—(2)商数关系.si not tga 二 ---- COSClt cos ac 培罠= --sin a4.三角函数的图象和性质(1)三角函数线以原点为圆心,以单位长为半径的圆叫做单位圆,如图2 —3,设角a 的终边与单位圆的交点为 p ,过p 作PM垂直于x 轴,垂足为M , A(1, 0)、B(0, 1),过A 、B 点作单位的切线 AT 、BS 分别与角a 的终边或其反向延长线交 于T 、S 则有向线及 MP 、OM 、AT 、BS OT 、OS 分别叫作角a 的正弦线、余弦线、正切线、余切线、正割线、余割 线.(2) 三角函数的图象 正弦函数 y=si nx 余弦函数正切函数 y=ta nx 余切函数(3) 三角函数的周期① 周期函数对于函数y=f(x),如果存在着一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T 叫做这个函数的周期.② 最小正周期:对于一个周期函数来说、如果在所有的周期中存在着一个最小正数,就把这个最小的正数叫 做最小正周期•教科书上所指三角函数的周期均为最小正周期.y=cosx (如图 2—y=cotx (如图 2 —③函数y = Aan(厲x; + 厲〉0)的周期T ・(4)三角函数的性质5、积化和差sinasinb = 1-[cos(a+b)-cos(a-b)]2cosacosb =1[cos(a+b)+cos(a-b)] sin acosb = 1[sin( a+b)+s in( a-b)] cosas inb = 1[si n(a+b)-si n(a-b)]6和差化积a b a b sin a+s in b=2s in cos —2 2, 小 a b a cosa+cosb = 2coscos —— 2 2sin (a b)tan a+ta nb=(1)积化和差与和差化积各有四个公式,它们实质是 一类公式的正用a b . a b,sina-sinb=2cos sin 2 2 b a b . a b ,cosa-cosb = -2sin sin cosacosb或逆用,即积化和差公式的逆用就是和差化积公式。

这些公式既是重点,又是难点,只有掌握准确,才能熟练应用。

(2)积化和差公式是运用两角和、两角差的三角函数公式推导出来的,推导中用了解方程组”的思想。

和差化积公式是从三角函数的积化和差的公式逆推出来的。

推导中用了换元”的思想。

我们要熟悉推导过程,掌握推导方法,这既有助于对公式的充分理解,又有助于运用公式解决问题。

(3)要注意寻找公式特征,掌握它们的异同点:即角、函数名称、函数间的运算、系数等方面的异同点。

只有系数绝对值相同的同名函数的和与差,才能运用公式化成和的形式。

②如果是一正弦与一余弦的和或差,可先用诱导公式化成积的形式。

例如:JTIS = c<?s C —- 11) + cosP■匹兀 a + pr p - a K= l ------------ ---- ----- +—J * cos \ — ~一-一)(4 )对三角函数的和差化积,常因所采取的途径不同,而导致结果在形式上的差异,但结果实际上是一致的 (如上例)。

和差化积”不能只注意到化成三角函数的积”而忽略了答案的最简形式。

例如,解如下习题:把sin2a-sin2B化成积的形式。

解sin2a-sin2B=〔sLn。

+ sin P ) 〔sjn。

- sinP )CL 4- p a - p a + p=2sin -------------- * cos---------------- * 2 cos --------------- •2 2 2• a - Bsm-------------2=sin (a +p •in ( a- ®最后一步,往往会忽略丢掉,应予充分注意。

(5)把三角函数式化成积的形式,有时需要把某些数当成三角函書攵值,如把—sSsin —,把看做匚亍^sin45?,杷2. 6 J Z1壬护_u . 兀2 36(6)将asin a +bcos型的三角函数式化成积的形式,即asin a +曲2二(a + e),其中①是辅助角,我们要认真拿握。

它为研究函数y=asinx+bcosx的性质提供了一条途径。

辅助角0终边所在象限由点(乳b)确定,巾角大水由堀4> =3确定aa(7)所谓三角函数的和差化积是指:把多项式”化为单项式”而不影响原式的值的变形。

因此四个和差化积公式的运用可 分为以下几种类型:① 直接运用公式;② 经过简单变形后就可运用公式;③ 设置辅助角,对形如 asinx+bcosx 型的三角函数式进行和差化积; ④"三项式"的和差化积问题,如把 1+sin 0 +co 化成积的形式。

6.5、两角和与差的三角函数 sin( A+B)= si n(A-B)=cos(A+B)=si nAcosB+cosAsi nB sin AcosB-cosAsi nB =cosAcosB-s inAsinB =cosAcosB+s inAsinB tan( A+B): =ta nA ta nB 1-ta nAta nB tan( A-B)= tanA tanB 1 tan Ata nBcot(A+B):=cotAcotB -1cotB cotA cot(A-B)= cotAcotB 1 cotB cotA7、二倍角的正弦、余弦、正切sin2 a =2sin a cos a1 ± Sin2 a ^sin+cos a± 2sin a cos a =(s in a ± cos a) cos2 a =c&s-sin 2 a =2cos a -1=1-2sin 2 a3sin3 a =sin(2 a + a )=sin2-cosmos sin a =3s4sir a a cos3 a =cos(2 a +a )=cos2 -sincbsoc a sin a =4c-scos a8半角的正弦、余弦、正切Ct fl + COSWCOSCCV ~2~3S inCl -sin3CL41 - cosa sin a 1一匚3 理1 + coco! 1 + coso! sin aQ万能公式:sin Cl = ------------------i 2"叫cos atgar =说明①半倍公式的“土"号的选取是由彳所在的象限来确定②对倍半角的理解’号是门的半幕4□是2的倍角.彳-01是彳-2 a的半角等.③对于公式T?的无理形式和有理形式在应用上有不同.2④万能公式可按倍角公式来事握.它实质上是用培#表示a的任意三角函数.备用知识正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]} 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=(注:D2+E2-4F>0 抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2 圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l 弧长公式l=a*r a是圆心角的弧度数r >0扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h 斜棱柱体积V=S'L注:其中S是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。

相关文档
最新文档