大连理工大学高等数学(上)期中测试
大连理工大学《高等数学》在线作业答卷附标准答案 (2)

9.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:D
10.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:B
二、 判断题 (共 10 道试题,共 40 分)
1.
题目见图片
A. 错误
大连理工大学《高等数学》在线作业答卷附标准答案
试卷总分:100 得分:100
一、 单选题 (共 10 道试题,共 60 分)
1.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:B
2.
题目见图片
A.
B.
C.
D.
满分:6 分
8.
题目见图片
A. 错误
B. 正确
满分:4 分
正确答案:B
9.
题目见图片
A. 错误
B. 正确
满分:4 分
正确答案:B
10.
题目见图片
A. 错误
B. 正确
满分:4 分
正确答案:B
正确答案:C
6.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:B
7.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:D
8.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:B
大连理工大学附属高级中学2018-2019学年上学期期中高考数学模拟题

大连理工大学附属高级中学2018-2019学年上学期期中高考数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5 B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6]2. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如右图所示,则 f (0)的值为( ) A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.3. 已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-4. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D65. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.6. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当14x y+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 7. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60π D .72π8. 设集合,,则( )A BCD9. 已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=10.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4B .5C .6D .711.某几何体的三视图如图所示,则该几何体的体积为()A.16163π-B.32163π-C.1683π-D.3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.12.一个几何体的三视图如图所示,则该几何体的体积是()A.64 B.72C.80 D.112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知集合{}5,4,3,2,1=A ,{}6,4,2=B ,则)(B A C A =_____________. 14.已知tan()3αβ+=,tan()24πα+=,那么tan β= .15.要使关于x 的不等式2064x ax ≤++≤恰好只有一个解,则a =_________.【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力. 16.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.三、解答题(本大共6小题,共70分。
2020-2021大连理工大学附属中学高中必修一数学上期中第一次模拟试卷(带答案)

2020-2021大连理工大学附属中学高中必修一数学上期中第一次模拟试卷(带答案)一、选择题1.已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥2.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)3.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .04.不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞ B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦5.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)26.设函数3()f x x x =+ ,. 若当02πθ<<时,不等式(sin )(1)0f m f m θ+-> 恒成立,则实数m 的取值范围是( ) A .1(,1]2B .1(,1)2C .[1,)+∞D .(,1]-∞7.若函数()sin ln(f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2B .2±C .4D .4±8.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,49.函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞D .(4,)+∞10.已知定义在R 上的函数()21()x mf x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a << 11.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b12.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .78二、填空题13.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________. 14.若函数()y f x =的定义域是[0,2],则函数0.5()log (43)g x x =-的定义域是__________.15.设函数()f x 是定义在R 上的偶函数,记2()()g x f x x =-,且函数()g x 在区间[0,)+∞上是增函数,则不等式2(2)(2)4f x f x x +->+的解集为_____16.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 17.用max{,,}a b c 表示,,a b c 三个数中的最大值,设{}2()max ln ,1,4(0)f x x x x x x =--->,则()f x 的最小值为_______.18.如果函数221xx y a a =+-(0a >,且1a ≠)在[]1,1-上的最大值是14,那么a 的值为__________.19.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.20.某企业去年的年产量为a ,计划从今年起,每年的年产量比上年增加b ﹪,则第x ()x N *∈年的年产量为y =______.三、解答题21.已知函数f (x )=4x -2·2x +1-6,其中x ∈[0,3]. (1)求函数f (x )的最大值和最小值;(2)若实数a 满足f (x )-a ≥0恒成立,求a 的取值范围.22.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后,y 与t 之间的函数关系式y =f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?23.已知函数()f x 是定义R 的奇函数,当0x >时,2()2f x x x =-.(1)求函数()f x 的解析式;(2)画出函数()f x 的简图(不需要作图步骤),并求其单调递增区间(3)当[]1,1x ∈-时,求关于m 的不等式2(1)(1)0f m f m -+-< 的解集.24.已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.25.近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入()Q x (万元)满足20.522,016(){224,16x x x Q x x -+≤≤=>,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本); (2)工厂生产多少百台产品时,可使利润最多? 26.设a 为实数,函数()()21f x x x a x R =+-+∈.(1)若函数()f x 是偶函数,求实数a 的值;(2)若2a =,求函数()f x 的最小值;(3)对于函数()y m x =,在定义域内给定区间[],a b ,如果存在()00x a x b <<,满足()0()()m b m a m x b a-=-,则称函数()m x 是区间[],a b 上的“平均值函数”,0x 是它的一个“均值点”.如函数2y x =是[]1,1-上的平均值函数,0就是它的均值点.现有函数()21g x x mx =-++是区间[]1,1-上的平均值函数,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.2.B解析:B 【解析】 试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系3.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.4.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.5.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.6.D解析:D 【解析】【分析】 【详解】易得()f x 是奇函数,2()310()f x x f x '=+>⇒在R 上是增函数,不等式(sin )(1)0f m f m θ+-> 恒成立. 可得11(sin )(1)sin 1,0sin 111sin 1sin f m f m m m m m θθθθθ>-⇒>-⇒<<<⇒⇒≤--, 故选D.7.B解析:B 【解析】 【分析】根据图象对称关系可知函数为偶函数,得到()()f x f x =-,进而得到ax +=.【详解】()f x Q 图象关于y 轴对称,即()f x 为偶函数 ()()f x f x ∴=-即:()sin ln sin lnsin lnx ax x ax x ⋅+=-⋅=⋅ax ∴+=恒成立,即:222141x a x +-=24a ∴=,解得:2a =± 本题正确选项:B 【点睛】本题考查根据函数的奇偶性求解参数值的问题,关键是能够明确恒成立时,对应项的系数相同,属于常考题型.8.D解析:D 【解析】 【分析】画出函数22y x x =--的图象,结合图象及题意分析可得所求范围. 【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D . 【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系.9.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞), 令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增;当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.11.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.12.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=Q ,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.二、填空题13.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.14.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab 则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))解析:3,14⎛⎫⎪⎝⎭【解析】首先要使(2)f x 有意义,则2[0,2]x ∈, 其次0.5log 430x ->,∴0220431x x ≤≤⎧⎨<-<⎩,解得01314x x ≤≤⎧⎪⎨<<⎪⎩,综上3,14x ⎛⎫∈⎪⎝⎭. 点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为[a ,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.15.【解析】【分析】根据题意分析可得为偶函数进而分析可得原不等式转化为结合函数的奇偶性与单调性分析可得解可得的取值范围【详解】根据题意且是定义在上的偶函数则则函数为偶函数又由为增函数且在区间上是增函数则 解析:()(),40,-∞-+∞U【解析】【分析】根据题意,分析可得()g x 为偶函数,进而分析可得原不等式转化为()()22g x g +>,结合函数的奇偶性与单调性分析可得22x +>,解可得x 的取值范围. 【详解】根据题意()()2g x f x x =-,且()f x 是定义在R 上的偶函数,则()()()()()22g x f x x f x x g x -=---=-=,则函数()g x 为偶函数,()()()()()()()22224222422f x f x x f x x f g x g +->+⇒+--⇒+>>+,又由()g x 为增函数且在区间[0,)+∞上是增函数,则22x +>, 解可得:4x <-或0x >,即x 的取值范围为()(),40,-∞-+∞U , 故答案为()(),40,-∞-+∞U ; 【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析()g x 的奇偶性与单调性,属于中档题.16.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224x x xx a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-.故答案为3,4⎛⎫-+∞ ⎪⎝⎭. 【点睛】 本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.17.0【解析】【分析】将中三个函数的图像均画出来再分析取最大值的函数图像从而求得最小值【详解】分别画出的图象取它们中的最大部分得出的图象如图所示故最小值为0故答案为0【点睛】本题主要考查数形结合的思想与 解析:0【解析】【分析】将{}2()max ln ,1,4(0)f x x x x x x =--->中三个函数的图像均画出来,再分析取最大值的函数图像,从而求得最小值.【详解】分别画出ln y x =-,1y x =-,24y x x =-的图象,取它们中的最大部分,得出()f x 的图象如图所示,故最小值为0.故答案为0【点睛】本题主要考查数形结合的思想与常见函数的图像等,需要注意的是在画图过程中需要求解函数之间的交点坐标从而画出准确的图像,属于中等题型.18.3或【解析】【分析】令换元后函数转化为二次函数由二次函数的性质求得最大值后可得但是要先分类讨论分和求出的取值范围【详解】设则对称轴方程为若则∴当时解得或(舍去)若则∴当时解得或(舍去)答案:3或【点 解析:3或13【解析】【分析】令x t a =,换元后函数转化为二次函数,由二次函数的性质求得最大值后可得a .但是要先分类讨论,分1a >和01a <<求出t 的取值范围.【详解】设0x t a =>,则221y t t =+-,对称轴方程为1t =-. 若1,[1,1]a x >∈-,则1,x t a a a ⎡⎤=∈⎢⎥⎣⎦, ∴当t a =时,2max 2114y a a =+-=,解得3a =或5a =-(舍去).若01a <<,[1,1]x ∈-,则1,x t a a a ⎡⎤=∈⎢⎥⎣⎦∴当1t a =时,2max 112114y a a ⎛⎫=+⨯-= ⎪⎝⎭解得13a =或15a =-(舍去) 答案:3或13 【点睛】本题考查指数型复合函数的最值,本题函数类型的解题方法是用换元法把函数转化为二次函数求解.注意分类讨论.19.-1【解析】试题解析:因为是奇函数且所以则所以考点:函数的奇偶性 解析:-1【解析】试题解析:因为2()y f x x =+是奇函数且(1)1f =,所以,则,所以. 考点:函数的奇偶性. 20.y =a (1+b )x (x ∈N*)【解析】【分析】根据条件计算第一年产量第二年产量…根据规律得到答案【详解】设年产量经过x 年增加到y 件第一年为y =a (1+b )第二年为y =a (1+b )(1+b )=a (1+解析:y =a (1+b %)x (x ∈N *)【解析】【分析】根据条件计算第一年产量,第二年产量…根据规律得到答案.【详解】设年产量经过x 年增加到y 件,第一年为 y =a (1+b %)第二年为 y =a (1+b %)(1+b %)=a (1+b %)2,第三年为 y =a (1+b %)(1+b %)(1+b %)=a (1+b %)3,…∴y =a (1+b %)x (x ∈N *).故答案为:y =a (1+b %)x (x ∈N *)【点睛】本题考查了指数型函数的应用,意在考查学生的应用能力.三、解答题21.(1)f (x )min =-10,f (x )max =26;(2)(-∞,-10].【解析】试题分析:(1)由题意可得,f (x )=4x -2·2x +1-6,令t=2x ,从而可转化为二次函数在区间[1,8]上的最值的求解(2)由题意可得,a≤f (x )恒成立⇔a ≤f (x )min 恒成立,结合(1)可求试题解析:(1)f (x )=(2x )2-4·2x-6(0≤x ≤3).令t =2x ,∵0≤x ≤3,∴1≤t ≤8.则h (t )=t 2-4t -6=(t -2)2-10(1≤t ≤8).当t ∈[1,2]时,h (t )是减函数;当t ∈(2,8]时,h (t )是增函数.∴f (x )min =h (2)=-10,f (x )max =h (8)=26.(2)∵f (x )-a ≥0恒成立,即a ≤f (x )恒成立,∴a ≤f (x )min 恒成立.由(1)知f (x )min =-10,∴a ≤-10.故a 的取值范围为(-∞,-10]. 22.(1)0.8)4,015(,1t t t y t ≤≤⎧=⎨⋅>⎩n ; (2)服药一次后治疗有效的时间是5-=小时. 【解析】【分析】(1)由函数图象的奥这是一个分段函数,第一段为正比例函数的一段,第二段是指数函数的一段,由于两端函数均过点(1,4),代入点(1,4)的坐标,求出参数的值,即可得到函数的解析式;(2)由(1)的结论将函数值0.25代入函数的解析式,构造不等式,求出每毫升血液中函数不少于0.25微克的起始时刻和结束时刻,即可得到结论.【详解】(1)由题意,根据给定的函数的图象,可设函数的解析式为1)2,01(,1t a kt t y t -≤<⎧⎪=⎨⎪≥⎩n ,又由函数的图象经过点(1,4),则当1t =时,14k ⨯=,解得4k =,又由1t =时,11()42a -=,解得3a =, 所以函数的解析式为1)324,01(,1t t t y t -≤<⎧⎪=⎨⎪≥⎩n .(2)由题意,令0.25y ≥,即当01t ≤<时,40.25t ≥,解得116t ≥, 当1t ≥时,31()0.252t -≥,解得15t ≤≤,综上所述,可得实数t 的取值范围是1516t ≤≤, 所以服药一次后治疗有效的时间是17951616-=小时. 【点睛】本题主要考查了一次函数与指数函数模型的应用,解答中认真审题,合理设出函数的解析式,代入求解是解答的关键,同时应用指数函数模型应注意的问题:(1)指数函数模型的应用类型.常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时的关键.关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.23.(1)222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩;(2)图象见解析,(],1-∞-和 [)1,+∞;(3)[)0,1.【解析】【分析】(1)由函数的奇偶性可求得函数()f x 的解析式;(2)利用二次函数图像可作法可得函数()f x 的图像及单调增区间;(3)利用函数在[]1,1-为减函数且为奇函数,可得22111111(1)(1)0m m m m -≤-≤⎧⎪-≤-≤⎨⎪-+->⎩,再求解即可.【详解】解:(1)由函数()f x 是定义R 的奇函数,则(0)0f =,设0x >,则0x ->,因为函数()f x 是定义R 的奇函数,所以22()()()2)2(f x f x x x x x ⎡⎤=--=---=-⎦--⎣, 综上可得:222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩; (2)函数()f x 的图像如图所示,由图可得函数()f x 单调递增区间为(],1-∞-和[)1,+∞;(3)由(2)可知,函数()f x 在[]1,1-为减函数且为奇函数,当[]1,1x ∈-时,关于m 的不等式2(1)(1)0f m f m -+-<,即2(1)(1)f m f m -<-,则22111111(1)(1)0m m m m -≤-≤⎧⎪-≤-≤⎨⎪-+->⎩,即20202(2)(1)0m m m m ≤≤⎧⎪≤≤⎨⎪+-<⎩,解得01m ≤<,故关于m 的不等式的解集为[)0,1.【点睛】本题考查了利用函数的奇偶性求函数解析式及利用函数的性质求解不等式,重点考查了数形结合的数学思想方法,属中档题.24.(1)1()f x x -=;(2)存在,6a =.【解析】【分析】(1)由幂函数的定义和单调性,可得关于m 的方程与不等式;(2)由(1)得1()f x x -=,从而得到()(1)1g x a x =-+,再对1a -的取值进行分类讨论. 【详解】(1)因为幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减,所以22221,420,m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去), 所以1()f x x -=.(2)由(1)得1()f x x -=,所以()(1)1g x a x =-+,假设存在0a >使得命题成立,则当10a ->时,即1a >,()g x 在[1,2]-单调递增,所以(1)4,114,6(2)11,22111,g a a g a -=--+=-⎧⎧⇒⇒=⎨⎨=-+=⎩⎩; 当10a -=,即1a =,()1g x =显然不成立;当10a -<,即1a <,()g x 在[1,2]-单调递减,所以(1)11,1111,(2)4,2214,g a g a -=-+=⎧⎧⇒⎨⎨=--+=-⎩⎩a 无解; 综上所述:存在6a =使命题成立.【点睛】本题考查幂函数的概念及解析式、已知一次函数的定义域、值域求参数的取值范围,考查逻辑推理能力和运算求解能力,同时注意分类讨论思想的运用,讨论时要以一次函数的单调性为分类标准.25.(Ⅰ)20.51212,016(){21210,16x x x f x x x -+-≤≤=-> ;(Ⅱ)12 . 【解析】试题分析:(1)先求得()P x ,再由()()()f x Q x P x =-,由分段函数式可得所求;(2)分别求出各段的最大值,注意运用一次函数和二次函数的单调性求最值法,然后比较两个最值即可得到结果.试题解析:(1)由题意得()1210P x x =+∴()()()20.51212,016{21210,16x x x f x Q x P x x x -+-≤≤=-=-> . (2)当16x >时, 函数()f x 递减,∴()()1652f x f <=万元当016x ≤≤时,函数()()20.51260f x x =--+当12x =时,()f x 有最大值60万元所以当工厂生产12百台时,可使利润最大为60万元 .【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者). 26.(1);(2);(3)()0,2 【解析】试题分析:(1)考察偶函数的定义,利用通过整理即可得到;(2)此函数是一个含有绝对值的函数,解决此类问题的基本方法是写成分段函数的形式,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+<,要求函数的最小值,要分别在每一段上求出最小值,取这两段中的最小值;(3)此问题是一个新概念问题,这种类型都可转化为我们学过的问题,此题定义了一个均值点的概念,我们通过概念可把题目转化为“存在()01,1x ∈-,使得()0g x m =”从而转化为一元二次方程有解问题.试题解析:解:(1)()f x Q 是偶函数,()()f x f x ∴-=在R 上恒成立, 即()2211x x a x x a -+--+=+-+,所以x a x a +=-得0ax = x R ∈Q 0a ∴=(2)当2a =时,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+< 所以()f x 在[)2,+∞上的最小值为()25f =, ()f x 在(),2-∞上的的最小值为f ()=, 因为<5,所以函数()f x 的最小值为. (3)因为函数()21g x x mx =-++是区间[]1,1-上的平均值函数,所以存在()01,1x ∈-,使()0(1)(1)1(1g g g x --=--) 而(1)(1)1(1g g m --=--),存在()01,1x ∈-,使得()0g x m = 即关于x 的方程21x mx m -++=在()1,1-内有解;由21x mx m -++=得210x mx m -+-=解得121,1x x m ==-所以111m -<-<即02m <<故m 的取值范围是()0,2考点:函数奇偶性定义;分段函数求最值;含参一元二次方程有解问题.。
辽宁省大连市2024-2025学年高三上学期期中Ⅰ考试 数学含答案

2024-2025学年度上学期高三年级期中I 考试数学科试卷(答案在最后)命题人:第I 卷一、单选题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 是虚数单位,复数1z 、2z在复平面内对应的点分别为()1,2-、()1,1-,则复数21z z 的共轭复数的虚部为()A.15-B.15C.1i5- D.1i 52.等比数列{}n a 的公比为q ,前n 项和为n S ,则以下结论正确的是()A.“q >0”是“{}n a 为递增数列”的充分不必要条件B.“q >1”是“{}n a 为递增数列”的充分不必要条件C.“q >0”是“{}n a 为递增数列”的必要不充分条件D.“q >1”是“{}n a 为递增数列”的必要不充分条件3.函数()()e 1sin e 1xxx f x -=+,则=的部分图象大致形状是()A.B.C. D.4.某制药企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M (单位:mg /L )与时间t (单位:h )之间的关系为:0ektM M -=(其中0M ,k 是正常数).已知经过1h ,设备可以过速掉20%的污染物,则过滤一半的污染物需要的时间最接近()(参考数据:lg 20.3010=)A.3hB.4hC.5hD.6h5.若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A.718+-B.718- C.18-D.18-6.已知ABC V 是边长为点P 是ABC V 所在平面内的一点,且满足3AP BP CP ++=,则AP的最小值是()A.1B.2C.3D.837.已知4ln 3a π=,3ln 4b π=,34ln c π=,则a ,b ,c 的大小关系是A.c b a << B.b c a << C.b a c << D.a b c<<8.设函数()32||()e 1x f x x x=+-(44x -<<),若(21)(2)(12)f x f f x ++<-,则x 的取值范围是()A.31,22⎛⎫-- ⎪⎝⎭ B.31,22⎛⎫-⎪⎝⎭ C.1,2⎛⎫-∞-⎪⎝⎭D.3,2⎛⎫-+∞ ⎪⎝⎭二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知220,0,1a b a b ab >>+-=,下列不等式恒成立的是()A.112a b+≥ B.2a b +≥ C.332a b +≤ D.0323b <≤10.已知函数()()πsin 0,04f x A x B A ωω⎛⎫=++>> ⎪⎝⎭()A.若()f x 在区间π3π,44⎡⎤⎢⎥⎣⎦上单调,则0ω<≤B.将函数()y f x =的图像向左平移π2个单位得到曲线C ,若曲线C 对应的函数为偶函数,则ω的最小值为13C.若函数()y f x =在区间()0,π上恰有三个极值点,则91344ω<≤ D.关于x 的方程()22f x A B=+在()0,π上有两个不同的解,则522ω<≤11.已知()f x 是定义在R 上连续的奇函数,其导函数为()g x ,()()424f x f x =-,当[]2,1x ∈--时,()0g x '>,则()A.()g x 为偶函数B.()f x 的图象关于直线12x =对称C.4为()g x 的周期D.()g x 在2026x =处取得极小值第II 卷三、填空题:本题共3小题,每小题5分.12.已知向量()1,2a =-,()1,b λ= ,若a 与b 的夹角为锐角,则实数λ的取值范围是________.13.设实数x 、y 、z 、t 满足不等式1100x y z t ≤≤≤≤≤,则x zy t+的最小值为______.14.若存在正实数x ,使得不等式()2ln 2ln 00axa x a ⋅⋅-≤>成立,则a 的最大值为______.四、解答题:解答应写出文字说明、证明过程或演算步骤.15.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,5c 5c s os o a CA cb -=.(1)求c ;(2)若7b =,π3B =,点M 在线段BC 上,5AM =,求MAC ∠的余弦值.16.已知函数()()212ln 0af x x a x=-->.(1)当4a =时,求函数()f x 在点()()1,1f 处的切线方程;(2)设函数()f x 的极大值为()M a ,求证:()11M a a+≤.17.已知函数()()2ln 2f x x a x a x =+-+,()ln 1g x x x x a =--+,a ∈R .(1)讨论()f x 的单调性;(2)若()()1ln f x g x a x +≥+对任意1x ≥恒成立,求实数a 的取值范围.18.已知数列{}n a 满足递推关系,()2*1231n n n n a a ma n N a +++=∈+,又1=1a .(1)当1m =时,求数列{}n a 的通项公式;(2)若数列{}n a 满足不等式1n n a a +≥恒成立,求m 的取值范围;(3)当31m -≤<时,证明12111111112nn a a a +++≥-+++ .19.对于数列{}n a ,如果存在等差数列{}n b 和等比数列{}n c ,使得()n n n a b c n *=+∈N ,则称数列{}na 是“优分解”的.(1)证明:如果{}n a 是等差数列,则{}n a 是“优分解”的.(2)记()2*11ΔΔΔΔn n n n n n a a a a a a n ++=-=-∈N,,证明:如果数列{}na 是“优分解”的,则()2*Δ0n a n =∈N 或数列{}2Δn a 是等比数列.(3)设数列{}n a 的前n 项和为n S ,如果{}n a 和{}n S 都是“优分解”的,并且123346a a a ===,,,求{}n a 的通项公式.2024-2025学年度上学期高三年级期中I考试数学科试卷命题人:第I卷一、单选题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】A【4题答案】【答案】A【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ACD【10题答案】【答案】CD【11题答案】【答案】ACD第II卷三、填空题:本题共3小题,每小题5分.【12题答案】【答案】1(,2)(2,)2∞--⋃-【13题答案】【答案】15##0.2【14题答案】【答案】1e ln 2四、解答题:解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)5;(2)1314.【16题答案】【答案】(1)690x y --=(2)证明见解析【17题答案】【答案】(1)答案见解析;(2)(,0]-∞.【18题答案】【答案】(1)21nn a =-;(2)3m ≥-;(3)证明见解析.【19题答案】【答案】(1)证明见解析(2)证明见解析(3)122n n a -=+。
大连市数学高三上期中经典题

一、选择题1.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形2.已知函数22()()()n n f n n n 为奇数时为偶数时⎧=⎨-⎩,若()(1)n a f n f n =++,则123100a a a a ++++=A .0B .100C .100-D .102003.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-4.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④5.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1226.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-37.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-8.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞C .()2,4-D .(][),24,-∞-⋃+∞9.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .510.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .4037202011.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92 C .143D .512.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9B .27C .54D .8113.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或714.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-15.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c,若sin 2sin 0b A B +=,b =,则ca的值为( )A .1B.3CD二、填空题16.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知274sincos 222A B C +-=,且5,7a b c +==,则ab 为 .17.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且对于任意1n >,*n N ∈,满足11n n S S +-+=2(1)n S +,则10S 的值为__________18.已知数列{}n a 中,11a =,且1113()n nn N a a *+=+∈,则10a =__________.(用数字作答) 19.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.20.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.21.设数列{a n }的首项a 1=32,前n 项和为S n ,且满足2a n +1+S n =3(n ∈N *),则满足2188177n n S S <<的所有n 的和为________. 22.设0x >,则231x x x +++的最小值为______.23.在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC=__________. 24.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.25.正项等比数列{}n a 满足2418-=a a ,6290-=a a ,则{}n a 前5项和为________.三、解答题26.在平面四边形ABCD 中,已知34ABC π∠=,AB AD ⊥,1AB =.(1)若5AC =ABC ∆的面积;(2)若sin 5CAD ∠=,4=AD ,求CD 的长. 27.在等比数列{}n b 中,公比为()01q q <<,13511111,,,,,,50322082b b b ∈⎧⎫⎨⎬⎩⎭.(1)求数列{}n b 的通项公式;(2)设()31n n c n b =-,求数列{}n c 的前n 项和n T .28.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S . 29.等差数列{}n a 中,24a =,4715a a +=. (1)求数列{}n a 的通项公式; (2)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.30.已知函数()cos f x x x =-. (1)求函数()f x 在,2x ππ⎡⎤∈⎢⎥⎣⎦的值域; (2)在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若78663f A f B ππ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭,求a b 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.D 2.B 3.C 4.C5.B6.D7.D8.A9.A10.B11.B12.B13.B14.C15.D二、填空题16.6【解析】试题分析:即解得所以在中考点:1诱导公式余弦二倍角公式;2余弦定理17.91【解析】【分析】由Sn+1+Sn﹣1=2(Sn+1)可得Sn+1﹣Sn=Sn﹣Sn﹣1+2可得an+1﹣an=2利用等差数列的通项公式与求和公式即可得出【详解】∵对于任意n>1n∈N*满足Sn+18.【解析】【分析】由得为等差数列求得通项公式则可求【详解】则为以首项为1公差为3的等差数列则故答案为:【点睛】本题考查等差数列的定义及通项公式意在考查计算能力是基础题19.【解析】【分析】利用余弦定理得到进而得到结合正弦定理得到结果【详解】由正弦定理得【点睛】本题考查解三角形的有关知识涉及到余弦定理正弦定理及同角基本关系式考查恒等变形能力属于基础题20.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC构成其中作出直线显然点A到直线的距离最近由其几何意义知区域内的点最短距离为点A到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区21.7【解析】由2an+1+Sn=3得2an+Sn-1=3(n≥2)两式相减得2an+1-2an+an=0化简得2an+1=an(n≥2)即=(n≥2)由已知求出a2=易得=所以数列{an}是首项为a122.【解析】【分析】利用换元法令将所给的代数式进行变形然后利用均值不等式即可求得最小值【详解】由可得可令即则当且仅当时等号成立故答案为:【点睛】本题主要考查基本不等式求最值的方法换元法及其应用等知识意在23.【解析】【分析】【详解】试题分析:考点:正余弦定理解三角形24.-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC 当直线经过点A(03)时直线的纵截距最大z 最小所以故填-625.93【解析】【分析】运用等比数列通项公式基本量的计算先求出首项和公比然后再运用等比数列前项和公式求出前项和【详解】正项等比数列满足即则有代入有又因为则故答案为【点睛】本题考查了求等比数列前项和等比数三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.2.B解析:B 【解析】试题分析:由题意可得,当n 为奇数时,()22()(1)121;n a f n f n n n n =++=-+=--当n 为偶数时,()22()(1)121;n a f n f n n n n =++=-++=+所以()1231001399a a a a a a a ++++=+++()()()2410021359999224610099100a a a ++++=-++++-++++++=,故选B.考点:数列的递推公式与数列求和.【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与运算能力,属于中档题.本题解答的关键是根据给出的函数()22(){()n n f n n n =-当为奇数时当为偶数时及()(1)n a f n f n =++分别写出n 为奇数和偶数时数列{}n a 的通项公式,然后再通过分组求和的方法得到数列{}n a 前100项的和.3.C解析:C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,数列{}n a 是等比数列, 则11a =,故412λ+=, 解得2λ=-, 故选C .【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础.4.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.5.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=,∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.6.D解析:D 【解析】作出不等式对应的平面区域, 由z=x+y,得y=−x+z,平移直线y=−x+z ,由图象可知当直线y=−x+z 经过点A 时,直线y=−x+z 的截距最大, 此时z 最大为6.即x+y=6.经过点B 时,直线y=−x+z 的截距最小,此时z 最小.由6{0x y x y +=-=得A(3,3), ∵直线y=k 过A , ∴k=3. 由3{20y k x y ==+=,解得B(−6,3).此时z 的最小值为z=−6+3=−3, 本题选择D 选项.点睛:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:b zy x a b =-+,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得.7.D解析:D 【解析】【分析】由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解.【详解】56474747822,4a a a a a a a a ==-+=∴=-=或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====-1107a a ∴+=-故选D. 【点睛】本题主要考查了等比数列的下标的性质,属于中档题.8.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >, 所以()2142224448x y x y x y y x ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.9.A解析:A 【解析】 【分析】先画不等式组表示的平面区域,由图可得目标函数(0,0)z ax by a b =+>>何时取最大值,进而找到a b ,之间的关系式236,a b +=然后可得23123()(23)6a b a b a b+=++,化简变形用基本不等式即可求解。
大连理工大学高数期中2012(2)

A 卷答案一、填空题 (共30分,每填对一空得3分) (1) 123lim ()5n n n n →+∞+=; 222321lim sin x x x x x →∞++=+. (2) 曲线()n y x n N +=∈在点(1,1)处的切线方程为_,记该切线与x 轴的交点为(,0)n ξ,则lim nnn ξ→+∞=. (3) 设22ln(1)x t t y t ⎧=+⎨=+⎩,则d d y x =___,22d d y x =____ (4) cos 2x 的Maclaurin (麦克劳林)公式为 cos 2x =_5o()x +,设2()cos 2g x x x =,则(4)(0)g =___.(5) 当0x →时,22()f x tan x x =-是x 的__阶无穷小(写出阶数),(0)f '''=__. 二、选择题 (每题4分,共20分)(1) 以下极限计算中正确的是 .A .01lim sin 1x x x →=;B .1lim sin 0x x x →∞=;C .011lim sin x x x→=∞; D .1lim sin 1x x x →∞=. (2) 函数2sin(2)()(1)(2)x x f x x x x ⋅-=--在下列哪一个区间内有界? A .(1,0)-;B .(0,1);C .(1,2); D .(2,3).(3) 对于定义在(1,1)-上的函数()f x ,下列命题中正确的是 .A .如果当0x <时()0f x '<,当0x >时()0f x '>,则(0)f 为()f x 的极小值;B .如果(0)f 为()f x 的极大值,则存在01δ<≤,使得()f x 在(,0)δ-内单调增加,在(0,)δ内单调减少;C .如果()f x 为偶函数,则(0)f 为()f x 的极值;D .如果()f x 为偶函数且可导,则(0)0f '=.(4) 若220ln(1)()lim 2x x ax bx x →+-+=,则 .A .51,2a b ==-; B .51,2a b ==;C .1,2a b ==-; D .0,2a b ==.(5) 设函数()f x 在点0x =的某邻域内三阶可导,且0()lim 11cos x f x x→'=--,则 . A .(0)f 为()f x 的一个极大值; B .(0)f 为()f x 的一个极小值;C .(0)f '为()f x '的一个极大值;D .(0)f '为()f x '的一个极小值.三、(10分)已知函数()y y x =由方程221(0)x y y y +=>确定,求d d y x,并求()y y x =的极值. 四、(10分) 求极限 sin 260lim ln(1)sin x x x e e x x x x →-+-+.五、(10分) 已知函数,0()cos ,0x x f x a b x x x ≤⎧⎪=+⎨>⎪⎩在点 0x = 处可导,求常数a 和b . 六、(10分)(1)证明:111ln(1)()1n N n n n +<+<∈+;(2)设 111ln ()2n u n n N n+=+++-∈ ,证明数列{}n u 收敛.七、(10分) 设函数()f x 在[0,]π上连续,在(0,)π内可导,(0)0f =.证明:至少存在一点(0,)ξπ∈,使 2()tan ()2f f ξξξ'=⋅.B 卷答案一、填空题 (共30分,每填对一空得3分)(1) 6; 6. (2) 1(1)y n x -=-,1e -. (3)212(1)t -,412(1)t --. (4) 35(2)(2)23!5!x x x -+,160-. (5) 4,0.二、选择题 (每题4分,共20分) (1) D . (2) B . (3) D . (4) A . (5) D . A 卷解答一、(1)n n n n n n n n e 5ln )32ln(1lim 532lim -+∞→∞→=⎪⎪⎭⎫ ⎝⎛+3ln 1323ln 2ln 32lim 323ln 32ln 2lim 5ln )32ln(lim =+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++=-++∞→+∞→+∞→x x x x x x x x x x x x 原极限3=3sin 1123lim sin 123lim 222222=+++=+++∞→∞→x x x x x x x x x x(2)1-='n nx y ,n k =,从而切线)1(1-=-x n y ,与x 轴的交点nn 11-=ξ 从而111lim lim -∞→∞→=⎪⎭⎫ ⎝⎛-=e n n n n n n ξ (3)2)1(21t dx dy += 422)1(21t dx y d +-= (4)cos 2x =24(2)(2)12!4!x x -+5o()x +,)(322)(7642x o x x x x g ++-=)(!4)0()0()0(44)4(x o x g x g g +++'+= 48!42)0()4(-=⨯-=g(5)32cos 3lim 2cos 3cos 1lim 231sec lim 2tan tan lim )(lim 222022202203040==-=-=-⋅+=→→→→→x x x x x x x x x x x x x x x x f x x x x x x x x x f 2sec tan 2)(2-=',2sec tan 4sec 2)(222-+=''x x x x fx x x x x x x f 2342sec tan 8sec tan 8tan sec 4)(++=''',0)0(='''f或者因为)(x f 是x 的4阶无穷小,所以)(x f 的泰勒展开式,3x 以前的系数都为零,故0)0(='''f二、(1)利用有界变量与无穷小的乘积仍是无穷小选(B )(2)∞=---=---→→2121)2)(1()2sin(lim )2)(1()2sin(||lim x x x x x x x x x x ∞=--=---=---→→→)2)(1(1lim )2)(1(2lim )2)(1()2sin(||lim 22222x x x x x x x x x x x x x⎪⎪⎩⎪⎪⎨⎧<->=---→0,42sin 0,42sin )2)(1()2sin(||lim 20x x x x x x x x (A ) (3)(A )⎩⎨⎧=≠=0,10,2x x x y (B )⎩⎨⎧=无理数有理数x x y ,0,1(C )1=y (D )x f x f x x x f x f f x f x f x x x ----=-'=-+-+→→→)0()(lim )0()(lim ),0()0()(lim 000 )0()0()(lim 0f xf x f x '-=--=+→,由于可导,从而)0()0(f f '-=',故0)0(='f (4))()21()1()1ln(222x x b x a bx ax x o ++--=--+,从而01=-a 221=--b ,从而25,1-==b a )1(2)1)(2(1lim )()1ln(lim 0220x x x bx a x bx ax x x x +++-=+-+→→ 2242lim 2221lim 020=---=----=→→bx b a x bx bx ax a x x 01=-a ,42=--b a(5)1cos 1)(lim 0-=-'→xx f x ,由于0cos 1>-x ,故0)(<'x f ,所以)0(f 不是极值,1sin )(lim cos 1)(lim 00-=''=-'→→xx f x x f x x ,0)(,0<''>x f x ,)(x f '单减 0)(,0>''<x f x ,)(x f '单增。
辽宁省大连市高二上期中数学试卷(含答案)

2022-2023辽宁省大连市高二(上)期中数学试卷一、选择题(本题共12小题,每小题5分,共60分,其中1~10小题为单选题,每小题只有一个选项符合题意;11~12为多选题,每小题有两个选项符合题意,选对一个得3分,两个都选对得5分,选错或选错一个得0分.)1.(5分)直线2x+4y+3=0的斜率是()A.﹣2B.﹣C.D.22.(5分)若圆C与圆(x+2)2+(y﹣1)2=1关于原点对称,则圆C的方程为()A.(x﹣2)2+(y+1)2=1B.(x+1)2+(y﹣1)2=1C.(x﹣1)2+(y+2)2=1D.(x+1)2+(y﹣2)2=13.(5分)如图,在三棱锥O﹣ABC中,点D是棱AC的中点,若=,=,=,则等于()A.﹣B.C.﹣+D.﹣﹣﹣4.(5分)直线y=k(x﹣1)(k∈R)是()A.过点(﹣1,0)的一切直线B.过点(1,0)的一切直线C.过点(1,0)且除直线x=1外的一切直线D.过点(1,0)且除x轴外的一切直线5.(5分)如果存在三个不全为0的实数x、y、z,使得向量,则关于叙述正确的是()A.两两互相垂直B.中只有两个向量互相垂直C.共面D.中有两个向量互相平行6.(5分)已知点A(2,﹣1,2)在平面α内,=(3,1,2)是平面α的一个法向量,则下列点P中,在平面α内的是()A.P(1,﹣1,1)B.P(1,3,)C.P(1,﹣3,)D.P(﹣1,3,﹣)7.(5分)若直线y=2x与直线(a2﹣a)x﹣y+a+1=0平行,则a=()A.a=﹣1B.a=2C.a=﹣1或2D.a=1或﹣28.(5分)设A,B是椭圆C:=1长轴的两个端点,若C上存在点P满足∠APB=120°,则k的取值范围是()A.(0,]∪[12,+∞)B.(0,]∪[6,+∞)C.(0,]∪[12,+∞)D.(0,]∪[6,+∞)9.(5分)如图,正方体ABCD﹣A1B1C1D1的棱AB和A1D1的中点分别为E,F,则直线EF 与平面AA1D1D所成角的正弦值为()A.B.C.D.10.(5分)已知椭圆的左焦点为F1,有一质点A从F1处以速度v开始沿直线运动,经椭圆内壁反射(无论经过几次反射速率始终保持不变),若质点第一次回到F1时,它所用的最长时间是最短时间的7倍,则椭圆的离心率e为()A.B.C.D.11.(5分)若方程所表示的曲线为C,则下面四个命题中错误的是()A.若C为椭圆,则1<t<3B.若C为双曲线,则t>3或t<1C.曲线C可能是圆D.若C为椭圆,且长轴在y轴上,则1<t<212.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取可以是()A.1B.2C.3D.4二、填空题(本题共4小题,每小题5分,共20分.)13.(5分)在平面直角坐标系xOy中,双曲线的虚轴的一个端点到一条渐近线的距离为.14.(5分)已知圆x2+y2=m与圆x2+y2+6x﹣8y﹣11=0相交,则实数m的取值范围为.15.(5分)已知双曲线:=1,(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c,直线y=(x+c)与双曲线的一个交点M满足∠MF1F2=2∠MF2F1,则双曲线的离心率为.16.(5分)某隧道的拱线设计半个椭圆的形状,最大拱高h为6米(如图所示),路面设计是双向车道,车道总宽为米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽d至少应是米.三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤.)17.(10分)(1)求与双曲线有相同焦点,且经过点的双曲线的标准方程;(2)已知椭圆x2+(m+3)y2=m(m>0)的离心率,求m的值.18.(12分)已知圆C:x2+y2=1与直线l:x﹣y+m=0相交于不同的A、B两点,O为坐标原点.(1)求实数m的取值范围;(2)若|AB|=,求实数m的值.19.(12分)底面为菱形的直棱柱ABCD﹣A1B1C1D1中,E、F分别为棱A1B1、A1D1的中点.(Ⅰ)在图中作一个平面α,使得BD⊂α,且平面AEF∥α,(不必给出证明过程,只要求作出α与直棱柱ABCD﹣A1B1C1D1的截面.)(Ⅱ)若AB=AA1=2,∠BAD=60°,求平面AEF与平面α的距离d.20.(12分)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=|PD|.(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程(Ⅱ)求过点(3,0)且斜率的直线被C所截线段的长度.21.(12分)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,AD⊥CD,AD∥BC,P A=AD =CD=2,BC=3.E为PD的中点,点F在PC上,且=.(Ⅰ)求证:CD⊥平面P AD;(Ⅱ)求二面角F﹣AE﹣P的余弦值;(Ⅲ)设点G在PB上,且=.判断直线AG是否在平面AEF内,说明理由.22.(12分)已知椭圆C:=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为4.(1)求椭圆C的方程;(2)P是椭圆C上一点,直线P A与y轴交于点M,直线PB与x轴交于点N.求证:|AN|•|BM|为定值.2022-2023辽宁省大连市高二(上)期中数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分,其中1~10小题为单选题,每小题只有一个选项符合题意;11~12为多选题,每小题有两个选项符合题意,选对一个得3分,两个都选对得5分,选错或选错一个得0分.)1.(5分)直线2x+4y+3=0的斜率是()A.﹣2B.﹣C.D.2【分析】把直线2x+4y+3=0化为斜截式方程,即可写出斜率的值.【解答】解:直线2x+4y+3=0可化为y=﹣x﹣,它的斜率是﹣.故选:B.【点评】本题考查了根据直线的一般式方程求斜率问题,是基础题.2.(5分)若圆C与圆(x+2)2+(y﹣1)2=1关于原点对称,则圆C的方程为()A.(x﹣2)2+(y+1)2=1B.(x+1)2+(y﹣1)2=1C.(x﹣1)2+(y+2)2=1D.(x+1)2+(y﹣2)2=1【分析】圆C与圆(x+2)2+(y﹣1)2=1关于原点对称,先求圆C的圆心坐标,再求半径即可.【解答】解:由题意可知圆(x+2)2+(y﹣1)2=1的圆心(﹣2,1),半径为1,关于原点对称的圆心(2,﹣1),半径也是1,所求对称圆的方程:(x﹣2)2+(y+1)2=1故选:A.【点评】本题考查关于点对称的圆的方程,是基础题.3.(5分)如图,在三棱锥O﹣ABC中,点D是棱AC的中点,若=,=,=,则等于()A.﹣B.C.﹣+D.﹣﹣﹣【分析】利用向量的三角形法则,表示所求向量,化简求解即可.【解答】解:由题意在三棱锥O﹣ABC中,点D是棱AC的中点,若=,=,=,可知:=+,=,==,=﹣+.故选:C.【点评】本题考查向量的三角形法则,空间向量与平面向量的转化,是基础题.4.(5分)直线y=k(x﹣1)(k∈R)是()A.过点(﹣1,0)的一切直线B.过点(1,0)的一切直线C.过点(1,0)且除直线x=1外的一切直线D.过点(1,0)且除x轴外的一切直线【分析】方程y=k(x﹣1)(k∈R)表示经过点(1,0)且不垂直于x轴的一切直线.即可得出.【解答】解:方程y=k(x﹣1)(k∈R)表示经过点(1,0)且不垂直于x轴的一切直线.故选:C.【点评】本题考查了点斜式、直线系的应用,考查了推理能力与计算能力,属于中档题.5.(5分)如果存在三个不全为0的实数x、y、z,使得向量,则关于叙述正确的是()A.两两互相垂直B.中只有两个向量互相垂直C.共面D.中有两个向量互相平行【分析】运用平面向量基本定理可解决此问题.【解答】解:根据题意得,x,y,z不全为零,由平面向量基本定理知,,共面,故选:C.【点评】本题考查平面向量基本定理的简单应用.6.(5分)已知点A(2,﹣1,2)在平面α内,=(3,1,2)是平面α的一个法向量,则下列点P中,在平面α内的是()A.P(1,﹣1,1)B.P(1,3,)C.P(1,﹣3,)D.P(﹣1,3,﹣)【分析】设P(x,y,z),计算,由⊥得•=0;得出3x+y+2z=9,再验证四个选项是否满足上式即可.【解答】解:设P(x,y,z),则=(x﹣2,y+1,z﹣2);由题意知,⊥,则•=0;∴3(x﹣2)+(y+1)+2(z﹣2)=0,化简得3x+y+2z=9.验证得,在A中,3×1﹣1+2×1=4,不满足条件;在B中,3×1+3+2×=9,满足条件;同理验证C、D不满足条件.故选:B.【点评】本题考查了空间向量的数量积与坐标运算问题,是基础题.7.(5分)若直线y=2x与直线(a2﹣a)x﹣y+a+1=0平行,则a=()A.a=﹣1B.a=2C.a=﹣1或2D.a=1或﹣2【分析】利用直线与直线平行的性质直接求解.【解答】解:∵直线y=2x与直线(a2﹣a)x﹣y+a+1=0平行,∴a2﹣a=2,解得a=﹣1或a=2,当a=﹣1时,两直线重合,∴a=2.故选:B.【点评】本题考查实数值的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.8.(5分)设A,B是椭圆C:=1长轴的两个端点,若C上存在点P满足∠APB =120°,则k的取值范围是()A.(0,]∪[12,+∞)B.(0,]∪[6,+∞)C.(0,]∪[12,+∞)D.(0,]∪[6,+∞)【分析】:①0<k<4时,C上存在点P满足∠APB=120°,假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO ≥60°,tan∠AMO=≥tan60°,解得k.②当椭圆的焦点在y轴上时,k>4,同理可得k范围.【解答】解:①0<k<4时,C上存在点P满足∠APB=120°,假设M位于短轴的端点时,∠AMB取最大值,要使椭圆C上存在点M满足∠AMB=120°,∠AMB≥120°,∠AMO≥60°,tan∠AMO=≥tan60°,解得:0<k≤.②当椭圆的焦点在y轴上时,k>4,同理可得:k≥12,∴m的取值范围是(0,]∪[12,+∞)故选:A.【点评】本题考查了椭圆的标准方程及其性质、三角函数的单调性、分类讨论方法,考查了推理能力与计算能力,属于中档题.9.(5分)如图,正方体ABCD﹣A1B1C1D1的棱AB和A1D1的中点分别为E,F,则直线EF 与平面AA1D1D所成角的正弦值为()A.B.C.D.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法求出直线EF与平面AA1D1D所成角的正弦值.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则E(2,1,0),F(1,0,2),=(﹣1,﹣1,2),平面AA1D1D的法向量=(0,1,0),设直线EF与平面AA1D1D所成角为θ,则sinθ===.∴直线EF与平面AA1D1D所成角的正弦值为.故选:C.【点评】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是中档题.10.(5分)已知椭圆的左焦点为F1,有一质点A从F1处以速度v开始沿直线运动,经椭圆内壁反射(无论经过几次反射速率始终保持不变),若质点第一次回到F1时,它所用的最长时间是最短时间的7倍,则椭圆的离心率e为()A.B.C.D.【分析】利用椭圆的性质可得4a=7×2(a﹣c),由此即可求得椭圆的离心率.【解答】解:假设长轴在x轴,短轴在y轴,以下分为三种情况:(1)球从F1沿x轴向左直线运动,碰到左顶点必然原路反弹,这时第一次回到F1路程是2(a﹣c);(2 )球从F1沿x轴向右直线运动,碰到右顶点必然原路反弹,这时第一次回到F1路程是2(a+c);(3)球从F1沿x轴斜向上(或向下)运动,碰到椭圆上的点A,反弹后经过椭圆的另一个焦点F2,再弹到椭圆上一点B,经F1反弹后经过点F1,此时小球经过的路程是4a.综上所述,从点F1沿直线出发,经椭圆壁反射后第一次回到点F1时,小球经过的最大路程是4a,最小路程是2(a﹣c).∴由题意可得4a=7×2(a﹣c),即5a=7c,得=.∴椭圆的离心率为.故选:D.【点评】本题考查了椭圆的定义及其性质、分类讨论方法,考查了推理能力与计算能力,属于中档题.11.(5分)若方程所表示的曲线为C,则下面四个命题中错误的是()A.若C为椭圆,则1<t<3B.若C为双曲线,则t>3或t<1C.曲线C可能是圆D.若C为椭圆,且长轴在y轴上,则1<t<2【分析】利用椭圆的性质判断选项A、D的正误;双曲线的性质判断B的正误;圆的方程判断C的正误;【解答】解:方程所表示的曲线为C,则当t=2时,方程表示圆,所以C 是真命题;A是假命题;若C为椭圆,且长轴在y轴上,则2<t<3,所以D是假命题;若C为双曲线,可得(3﹣t)(t﹣1)<0解得t>3或t<1,所以B是真命题;故选:AD.【点评】本题考查命题的真假的判断,二次曲线与方程的关系,是基本知识的考查.12.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取可以是()A.1B.2C.3D.4【分析】由题意可得圆心为C(2,0),半径R=2,设两个切点分别为A、B,则由题意可得四边形P ACB为正方形,圆心到直线y=k(x+1)的距离小于或等于PC=2,即≤2,由此求得k的范围.【解答】解:圆C的方程为x2+y2﹣4x=0,则圆心为C(2,0),半径R=2.设两个切点分别为A、B,则由题意可得四边形P ACB为正方形,故有PC=R=2,∴圆心到直线y=k(x+1)的距离小于或等于PC=2,即≤2,解得k2≤8,可得﹣2≤k≤2,∴实数k的取可以是1,2.故选:AB.【点评】本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.二、填空题(本题共4小题,每小题5分,共20分.)13.(5分)在平面直角坐标系xOy中,双曲线的虚轴的一个端点到一条渐近线的距离为.【分析】求出双曲线的渐近线方程,虚轴的一个端点,然后利用点到直线的距离求解即可.【解答】解:双曲线的虚轴的一个端点(0,1),一条渐近线方程为:x+2y =0,由题意可得:=.双曲线的虚轴的一个端点到一条渐近线的距离为:.故答案为:.【点评】本题考查双曲线的简单性质的应用,是基本知识的考查,是基础题.14.(5分)已知圆x2+y2=m与圆x2+y2+6x﹣8y﹣11=0相交,则实数m的取值范围为1<m<121.【分析】求出两个圆的圆心坐标和半径,利用两个圆的圆心距大于半径差,小于半径和,即可求出m的范围.【解答】解:x2+y2=m是以(0,0)为圆心,为半径的圆,x2+y2+6x﹣8y﹣11=0,(x+3)2+(y﹣4)2=36,是以(﹣3,4)为圆心,6为半径的圆,两圆相交,则|半径差|<圆心距离<半径和,|6﹣|<<6+,|6﹣|<5<6+,5<6+且|6﹣|<5,>﹣1 且﹣5<6﹣<5,>﹣1 且1<<11,所以1<<11,那么1<m<121,另,定义域m>0,所以,1<m<121时,两圆相交.故答案为:1<m<121【点评】本题是基础题,考查两个圆的位置关系,注意两个圆的位置关系的各种形式,圆心距与半径和与差的大小比较,考查计算能力,转化思想.15.(5分)已知双曲线:=1,(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c,直线y=(x+c)与双曲线的一个交点M满足∠MF1F2=2∠MF2F1,则双曲线的离心率为1.【分析】由已知直线过左焦点F1,且其倾斜角为60°,∠MF1F2=2∠MF2F1,可得∠MF1F2=60°,∠MF2F1=30°,即F1M⊥F2M,运用直角三角形的性质和双曲线的定义,由离心率公式计算即可得到所求值.【解答】解:∵直线y=(x+c)过左焦点F1,且其倾斜角为60°,∠MF1F2=2∠MF2F1,∴∠MF1F2=60°,∠MF2F1=30°.∴∠F1MF2=90°,即F1M⊥F2M.∴|MF1|=|F1F2|=c,|MF2|=|F1F2|sin60°=c,由双曲线的定义有:|MF2|﹣|MF1|=c﹣c=2a,∴离心率e===+1.故答案为:1.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和直角三角形的锐角三角函数的定义,考查运算能力,属于中档题.16.(5分)某隧道的拱线设计半个椭圆的形状,最大拱高h为6米(如图所示),路面设计是双向车道,车道总宽为米,如果限制通行车辆的高度不超过4.5米,那么隧道设计的拱宽d至少应是32米.【分析】由已知可得椭圆短半轴长,设出椭圆方程,求得x=4时的y值,由y≤4.5求得a的最大值,即可得到隧道设计的拱宽d的最小值.【解答】解:由题意可知,b=6,设椭圆方程为,则当x=4时,,∵车辆的高度不超过4.5米,∴y≤4.5.∴,得a≤16.∴隧道设计的拱宽d至少应是2a=32(米).故答案为:32.【点评】本题考查椭圆的性质,关键是对题意的理解,是基础题.三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤.)17.(10分)(1)求与双曲线有相同焦点,且经过点的双曲线的标准方程;(2)已知椭圆x2+(m+3)y2=m(m>0)的离心率,求m的值.【分析】(1)求出双曲线的焦点坐标,利用双曲线方程求出a,b即可得到双曲线方程.(2)判断椭圆的焦点坐标所在轴,利用椭圆的离心率,列出方程求解即可.【解答】解:(1)双曲线的焦点(±2,0),设所求的双曲线方程为:,可得:,解得a2=12,b2=8,所求的双曲线方程为:.(2)椭圆x2+(m+3)y2=m(m>0)的离心率,可知椭圆的焦点坐标在x轴上,所以=,解得m=1.【点评】本题考查椭圆的简单性质以及双曲线的简单性质的应用,是基本知识的考查.18.(12分)已知圆C:x2+y2=1与直线l:x﹣y+m=0相交于不同的A、B两点,O为坐标原点.(1)求实数m的取值范围;(2)若|AB|=,求实数m的值.【分析】(1)直线与圆的方程联立,利用判别式大于0,即可求实数m的取值范围;(2)求出圆心C(0,0)到直线的距离,利用|AB|=,求实数m的值.【解答】解:(1)由消去y得,由已知得,得m2﹣4<0,得实数m的取值范围是(﹣2,2);(2)因为圆心C(0,0)到直线的距离为,所以由已知得,解得m=±1.【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生分析解决问题的能力,属于中档题.19.(12分)底面为菱形的直棱柱ABCD﹣A1B1C1D1中,E、F分别为棱A1B1、A1D1的中点.(Ⅰ)在图中作一个平面α,使得BD⊂α,且平面AEF∥α,(不必给出证明过程,只要求作出α与直棱柱ABCD﹣A1B1C1D1的截面.)(Ⅱ)若AB=AA1=2,∠BAD=60°,求平面AEF与平面α的距离d.【分析】(Ⅰ)取B1C1的中点H,C1D1的中点G,平面BHGD就是所求平面α.(Ⅱ)取BC中点M,以D为原点,DA为x轴,DM为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出平面AEF与平面α的距离.【解答】解:(Ⅰ)取B1C1的中点H,C1D1的中点G,连结BH、GH、DH,则平面BHGD就是所求平面α,α与直棱柱ABCD﹣A1B1C1D1的截面为平面BHGD.(Ⅱ)∵菱形的直棱柱ABCD﹣A1B1C1D1中,AB=AA1=2,∠BAD=60°,∴取BC中点M,以D为原点,DA为x轴,DM为y轴,DD1为z轴,建立空间直角坐标系,A(2,0,0),D(0,0,0),B(1,,0),H(0,,2),=(2,0,0),=(1,,0),=(0,,2),设平面α(即平面BHGD)的法向量=(x,y,z),则,取y=2,得=(﹣2,2,﹣),∴平面AEF与平面α的距离d===.【点评】本题考查满足面面平行的平面的作法,考查两平面间的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD上一点,且|MD|=|PD|.(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程(Ⅱ)求过点(3,0)且斜率的直线被C所截线段的长度.【分析】(Ⅰ)由题意P是圆x2+y2=25上的动点,点D是P在x轴上的射影,M为PD 上一点,且|MD|=|PD|,利用相关点法即可求轨迹;(Ⅱ)由题意写出直线方程与曲线C的方程进行联立,利用根与系数的关系得到线段长度.【解答】解:(Ⅰ)设M的坐标为(x,y)P的坐标为(x p,y p)由已知得:∵P在圆上,∴,即C的方程为.(Ⅱ)过点(3,0)且斜率为的直线方程为:,设直线与C的交点为A(x1,y1)B(x2,y2),将直线方程即:,∴线段AB的长度为|AB|===.【点评】此题重点考查了利用相关点法求动点的轨迹方程,还考查了联立直线方程与曲线方程进行整体代入,还有两点间的距离公式.21.(12分)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,AD⊥CD,AD∥BC,P A=AD =CD=2,BC=3.E为PD的中点,点F在PC上,且=.(Ⅰ)求证:CD⊥平面P AD;(Ⅱ)求二面角F﹣AE﹣P的余弦值;(Ⅲ)设点G在PB上,且=.判断直线AG是否在平面AEF内,说明理由.【分析】(Ⅰ)推导出P A⊥CD,AD⊥CD,由此能证明CD⊥平面P AD.(Ⅱ)以A为原点,在平面ABCD内过A作CD的平行线为x轴,AD为y轴,AP为z 轴,建立空间直角坐标系,利用向量法能求出二面角F﹣AE﹣P的余弦值.(Ⅲ)求出=(,0,),平面AEF的法向量=(1,1,﹣1),=0,从而直线AG在平面AEF内.【解答】证明:(Ⅰ)∵P A⊥平面ABCD,∴P A⊥CD,∵AD⊥CD,P A∩AD=A,∴CD⊥平面P AD.解:(Ⅱ)以A为原点,在平面ABCD内过A作CD的平行线为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,A(0,0,0),E(0,1,1),F(,,),P(0,0,2),B(2,﹣1,0),=(0,1,1),=(),平面AEP的法向量=(1,0,0),设平面AEF的法向量=(x,y,z),则,取x=1,得=(1,1,﹣1),设二面角F﹣AE﹣P的平面角为θ,则cosθ===.∴二面角F﹣AE﹣P的余弦值为.(Ⅲ)直线AG在平面AEF内,理由如下:∵点G在PB上,且=.∴G(,﹣,),∴=(,﹣,),∵平面AEF的法向量=(1,1,﹣1),=﹣=0,故直线AG在平面AEF内.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查直线是否在已知平面内的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题.22.(12分)已知椭圆C:=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为4.(1)求椭圆C的方程;(2)P是椭圆C上一点,直线P A与y轴交于点M,直线PB与x轴交于点N.求证:|AN|•|BM|为定值.【分析】(1)运用椭圆的离心率公式和三角形的面积公式,结合a,b,c的关系,求得a 和b的值,进而得到椭圆方程;(2)方法一、设椭圆上点P(x0,y0),可得x02+4y02=16,求出直线P A的方程,令x =0,求得y,|BM|;求出直线PB的方程,令y=0,可得x,|AN|,化简整理,即可得到|AN|•|BM|为定值.方法二、设P(4cosθ,2sinθ),(0≤θ<2π),求出直线P A的方程,令x=0,求得y,|BM|;求出直线PB的方程,令y=0,可得x,|AN|,运用同角的平方关系,化简整理,即可得到|AN|•|BM|为定值.【解答】解:(1)由题意可得e==,又△OAB的面积为4,可得ab=4,即ab=8,且a2﹣b2=c2,解得a=4,b=2,c=2,可得椭圆C的方程:;(2)证法一:设椭圆上点P(x0,y0),可得x02+4y02=16,当x0=0时,可得P(0,﹣2),即有M(0,﹣2),N(0,0),可得|AN|•|BM|为定值16;直线P A:y=(x﹣4),令x=0,可得y=﹣,则|BM|=|2+|;直线PB:y=x+2,令y=0,可得x=﹣,则|AN|=|4+|.可得|AN|•|BM|=|4+|•|2+|,|AN|•|BM|=|4+|•|2+|=||=||=||=16,即有|AN|•|BM|为定值16.证法二:设P(4cosθ,2sinθ),(0≤θ<2π),直线P A:y=(x﹣4),令x=0,可得y=﹣,则|BM|=2||;直线PB:y=x+2,令y=0,可得x=﹣,则|AN|=4||.即有|AN|•|BM|=2||•4||,=8||,=8||=16.则|AN|•|BM|为定值16.【点评】本题考查椭圆的方程的求法,注意运用椭圆的离心率和基本量的关系,椭圆的参数方程,考查线段积的定值的求法,注意运用直线方程和点满足椭圆方程,考查化解在合理的运算能力,属于中档题.。
辽宁省大连市2019-2020学年高一数学上学期期中试题(含解析)

【详解】
1 x
1 x
,函数为奇函数.
当
x
0
时:
f
x
2x 1 x
2 2 1 x
,函数单调递增,且
f
(0)
0
f x 2x
故函数
1 x 在 R 上单调递增.
f x 1 f x 0 f x 1 f x x 1 x x 1
2
故选: C
【点睛】本题考查了利用函数性质解不等式,意在考查学生对于函数性质的应用能力.
4,1
x
y
x
y
1 x
1 y
y x
x y
2
22
4x
,当
y
1 2
时等号成立
故 4 m2 3m4 m 1 ,正确;
D.
已知
f
x
a x
x2 ax
x 1
5
x
1
在
,
上是增函数,则
a
的取值范围是
3,
2
f
x
x2
ax
a x
x
1
5x
1
在 , 上是增函数,满足:
a
a 1 2 a0
故 f x
x2
2x
3
的值域为
0,
2 ,在
1,1上单调递增,在
(1,
3]
上单调递减
故选: C, D
【点睛】本题考查了函数的单调性,定义域,值域,意在考查学生对于复合函数性质的灵活
运用. 12.(多选)下列判断不正确的是( )
f x 1
A. 函数
x 在定义域内是减函数
B. g x奇函数,则一定有 g 0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名:__________ 大 连 理 工 大 学 盘锦校区期中试题 学号:__________ 任课教师:________
课 程 名 称: 高等数学A(1) 试卷: A 考试形式:闭卷
学院(系):_______ 授课院(系):基础教学部_ 考试日期:2016年11月19日 试卷共 6页 _____ 级_____ 班
装
一. 填空题(每题6分,共计30分)
1. 12011lim 1cos _____;lim ______.1x
n x x n n x →∞→+⎛⎫⎛⎫
-== ⎪ ⎪-⎝⎭⎝⎭
2. )lim 0,_____,____._x ax b a b →-∞
-===则
3. 2,1;
()1____,____., 1.
x x f x x a b ax b x ⎧≤====⎨
+>⎩设在点处可导,则
224sin d 4.(),.
sin cos d t x t y
t y t t t
x π==⎧⎨=+⎩设为参数则=___________
25.____,ln ,____.
a y ax y x === 当时曲线和相切切点为
二. 选择题(每题4分,共计20分)
1
()
()()()0()()().
()0,()()()0,()()1.()()0()0.lim(1()),f x x A f x g x x B f x g x C x f x g x D x g x f x f x g x x f x g x e →→=→→→≠+=和是时的等价无穷小. 当时是比是更高阶的无穷小.当时是比是更高阶的无穷小.
设函数和是时的无穷小量 且若则(
).
2. 设}{},{},{n n n c b a 均为非负数列,且0lim =∞
→n n a ,1lim =∞→n n b ,∞=∞
→n n c lim ,
则必有( )
(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立. (C) 极限n n n c a ∞
→lim 不存在. (D) 极限n n n c b ∞
→lim 不存在.
3. 111()()( )111x x f x f x x x
-
+=+-设,则函数恰有个间断点.
.1;.2;.3;. 4.A B C D
420(1cos )ln(1)sin ,sin n n x x x x x x x →-+.当时,
是比高阶的无穷小而 ()2
1,( ).1;
.2;
.3;..
x e n A B C D -=是比高阶的无穷小则正整数等于
4
53
6(2016).(),(0)( ).x f x x e f ==设函数则
2016!2016!
2016!
2016!
.
;.
;.
;.
.669!
670!
671!
672!
A B C D
1111.(10) 0,0,,,1,2,.22n n n b b a b a a a a n a a +⎫⎫
⎛⎛>>=+=+= ⎪⎪ ⎝⎭⎝⎭
L 三分设
证明数列{}n a 有极限,并求其极限值.
四.(10分) 设()x ϕ在a 点连续,()()f x x a x ϕ=-.证明: ()f a '存在的充
分必要条件是()0.a ϕ=
五.(10分) 1. 试给出函数()y f x =在0x 处可微的定义;
2.:cos cos 2sin sin
22
αβαβ
αβ+--=-已知。
试用微分的定义证明:cos y x =可微。
六.(10分) 设12,,,n a a a L 为n 个正实数,且11
2
().x x x x
n
a a a f x n ⎫
⎛+++= ⎪⎝⎭
L
证明: (1) 0
lim ()x f x →= (2) {}12lim ()max ,,,.n x f x a a a →∞
=L
000()[0,1],0,1),(0)0,(1) 1. :(1)(0,1)()1.
(2) ,(0,1)'()'() 1.
f x f f x f x x f f ξηξη==∈=-∈=七.(10分)设在上连续在(内可导证明存在使存在两个不同的点使。