穆斯堡尔效应
穆斯堡尔效应

主要内容:
1
2
穆斯堡尔效应 穆斯堡尔谱学 穆斯堡尔实验技术
3
4 5
穆斯堡尔谱学的应用
穆斯堡尔谱学的发展
1.穆斯堡尔效应
have discovered an unexpected effect which now bears your name. You have explained this effect experimentally and theoretically, and thereby created a device which is of fundamental importance in numerous realms of physics, and which is nowadays being investigated and put to use in a large number of physical laboratories. By your discovery it has become possible to examine precisely, numerous important phenomena formerly beyond or at the limit of attainable accuracy of measurement.
引力红移是三个验证爱因斯坦 广义相对论的基本效应之一(光 线在太阳附近的偏折、行星近日 点的进动)。
穆斯堡尔学与核物理
(2ቤተ መጻሕፍቲ ባይዱ利用超精细相互作用测量相关系数
超 精 细 相 互 作 用
Ⅰ.电单极相互作用
同质异能移
Ⅱ.电四极相互作用
四极分裂
Ⅲ.磁偶极相互作用
磁超精细分裂
穆斯堡尔

穆斯堡尔当一种原子核发射的电磁辐射(g辐射)作用于同一种原子核上时,一般不会发生共振吸收,这是因为原子核要受到反冲,g辐射的能量和频率将会减少在穆思堡尔效应被发现以前,一般采用补偿反冲能量损失的办法来研究g辐射的共振吸收,但是,这样观察到的共振谱线的宽度远大于核谱线的自然宽度,共振吸收的信号太弱,本底太强,使得核谱线共振吸收技术的应用受到很大限制。
1958年,穆思堡尔在研究铱低温g辐射共振吸收实验时发现:如果发射或吸收g辐射的原子核束缚在晶体的晶格中,便可以消除原子核反冲及其对波长的影响。
这种无反冲的g辐射共振吸收效应就被称为穆思堡尔效应。
1960年,人们利用穆思堡尔效应成功地验证了爱因斯坦在相对论中预言的引力红移。
现在,穆思堡尔效应应用十分广泛,除了是研究固态物理微观结构的一种有力工具外,它的应用几乎遍及物理学的各个部门,甚至在化学、分子生物学、地质学和医学等方面也都起着广泛和重要的作用。
穆斯堡尔谱学给出的信息:穆斯堡尔谱学主要论述的是具有一定体积的原子核与其周围环境电或磁的相互作用。
这种相互作用的一方是原子核,它具有电荷、电四极距和磁偶极距,相互作用的另一方面是环境在核处形成的电荷分布、电场梯度和磁场。
所谓环境通常是指原子核的核外电子、近邻原子的电荷和磁距。
穆斯堡尔仪器的基本构成和原理。
穆斯堡尔效应是一种无反冲的γ射线的共振吸收或共振散射效应。
当穆斯堡尔放射源在振子中获得多普勒速度补偿时,它就有可能和吸收体(样品)产生共振吸收。
在共振吸收时,探测器探测到的γ射线强度明显下降,从而可得到样品的共振吸收谱线。
如典型的α-Fe样品谱线共有六个峰,对应于不同的速度值,即不同的补偿能量值。
通用接口送出步进信号给函数产生器。
函数产生器将此序列脉冲分频,获得对称的方波信号,经积分后得到三角波信号,并作为基准信号被送入功率放大器。
同时,对应于三角波的谷点输出正同步信号给通用接口。
振动子处拾波线圈感应的信号也加入到功率放大器,功率放大器放大基准信号和感应信号的差值,将其送入到振动子的驱动线圈上。
第7章穆斯堡尔效应剖析

E E0 ER
E0为激发态和基态的能量差。
6
核分析基础及应用
第一节 穆斯堡尔效应及穆斯堡尔谱
一、穆斯堡尔效应
同理,自由的、静止的原子核在吸收γ射线时,原子核也受 到反冲,因此光子的能量不是全部被用来激发原子核,有 一部分提供为核的反冲能ER,即要将吸收和从基态激发到 激发态所需的γ射线能量为:
14
核分析基础及应用
第一节 穆斯堡尔效应及穆斯堡尔谱
二、基本原理
➢穆斯堡尔谱学的特点: ①穆斯堡尔谱具有极高的能量分辨本领,很容易探测出原子 核能级的变化。 ②利用穆斯堡尔谱可以方便地研究原子核与其周围环境间的 超精细相互作用,可以灵敏地获得原子核周围的物理和化学 环境的信息。
15
核分析基础及应用
34
核分析基础及应用
第三节 穆斯堡尔实验装置
5.其它附属设备 ➢为使共振吸收效应显著,有时需在低温条件下实验,因此 要有附属的低温装置来冷却源和吸收体(或只冷却其中之一)。 ➢为研究穆斯堡尔参数随温度的变化关系,又常需要附属的 加温设备。
35
核分析基础及应用
第三节 穆斯堡尔实验装置
6.样品(吸收体)的制备 ➢对金属和合金材料,先要经锻造或轧制后制成较小的棒状、
20
核分析基础及应用
第二节 穆斯堡尔参数
2.四极矩分裂 ②四极矩分裂是穆斯堡尔谱的一个重要参数,通过分裂谱 可以了解原子核的对称性,即电子云分布情况和电子云的 分布梯度。如表面原子相对本体原子有较低的对称性,根 据这个差别可以区分这两种不同原子。 表面化学吸附物质的存在可以改变电场 梯度,而这又与化学吸附键的强度以及 化学吸附物质相对于表面原子的位置有 关。因此,测量四极矩分裂的大小变化, 可以提供表面状况的信息。
第七篇 穆斯堡尔效应及应用

( 14.413 × 10 MeV ) ≈ 1.96 × 10 -9 MeV E ER = = ≈ 2 2M R 2M RC 2 ( 57 × 938.8MeV )
p
2 γ 2 0 -3 2
Eγ = E0 - ER ≈ 14.4 KeV - 1.96 × 10 -6 KeV Eγ ≈ 14.4 KeV
E * = Eγ
Δx
探测器 移动辐射源
' Eγ = Eγ + E D
吸收体
E*
0.0
E*
0.0
Eγ = E *
v E D ≈ Eγ c
19
发射体对吸收体作相离运动, 发射光子能量小于吸收体跃迁能量,无共振吸收
20
发射体对吸收体相离速度变小, 发射光谱向吸收光谱靠拢,无重叠,无共振吸收
21
发射体对吸收体相离速度继续变小, 发射光谱与吸收光谱出现部分重叠,有共振吸收
四级分裂
1
ΔEQ
−ν
0
核能级和四级分裂
δ
相 对 透 射 率
2
+ν
速度(mm/s)
42
H ≠ 0 , V zz
0
6 5 4
3
3/2
1
2
1/2
同质异能位移 率 相 对 透 射 磁偶极分裂 1 2 3 4 5 6
速度(mm/s)
57Fe能级的磁分裂及相应的穆斯堡尔谱
43
红移效应 • 假设有个光源每隔时间T发出一个波列,即光源的 周期为T。当它静止时相邻两个波列时间间隔为 T, 距离间隔为 λ=cT • 当光源以速度V离开观察者时,在每两个相邻的波 列之间的时间里光源移动的距离为VT,于是下一个 波峰到达观察者所需的时间便增加了VT/c,所以, 相邻的两个波峰到达观察者那里所需的时间就为: T’=T+VT/c>T 相对于观察者而言,光波的周期变长了,频率变 低了;
穆斯堡尔效应的应用

指一种原子核无反冲的γ射线共振散射或吸收的现象。
德国物理学家R.L.穆斯堡尔于 1957年~1958年间在观察19 1Ir(129keV)的γ射线共振本底时首先发现这种现象,并在理论上作了解释。
一个自由原子核发射或吸收γ光子时,原子核要受到反冲,反冲能量损失,发射谱或吸收谱便产生偏差,对大部分核辐射,难以实现共振吸收。
若原子核被束缚在晶体点阵上,晶体质量远大于一个原子核的质量,发射或吸收γ光子时,整个晶体反冲,反冲能量将显著减小,容易观察到共振吸收现象。
这就是所谓无反冲γ共振吸收。
但实际上点阵振动状态是量子化的,在反冲能量小于点阵振动的能级间隔时,它将被整个晶体吸收。
所以穆斯堡尔效应又称零声子发射和吸收。
迄今为止,已经观察到的穆斯堡尔效应有40多种元素,80多种核素,100多条穆斯堡尔跃迁线。
这些核素称为穆斯堡尔核。
其中最常用的是57Fe(14.4keV)和119Sn(23.8keV),括号内为γ光子的能量。
无反冲γ射线最主要特点是谱线的宽度接近于核能级宽度,这表明它具有极高的γ射线能量分辨率,因此能观察到原子核能级的超精细结构。
在共振实验中,由于源同吸收体的化学环境的差异,原子核外s电子电荷密度发生变化,它与原子核电荷的相互作用使跃迁能量相应变化,其差值表现为能量位移。
称为同质异能位移或化学位移。
自旋大于 1/2的核,电荷分布非球形对称,核具有电四极矩,它与核所处的电场梯度发生相互作用,核能级便产生四级分裂。
自旋大于零的核,具有核磁矩,它与核所处的内磁场相互作用,核能级就产生分裂。
在穆斯堡尔谱中可以清楚地分辨这些超精细相互作用引起的位移和分裂。
若已知核周围环境的电磁结构,则可以研究核的特性;反之,若核的性质已知,由测量结果可以推得核周围环境的电磁结构,即利用穆斯堡尔核,能探测物质的微观结构。
利用多普勒速度扫描可以实现共振吸收测量,这种装置称为穆斯堡尔谱仪。
由该仪器能获得穆斯堡尔谱——透过吸收体的γ射线光子数对多普勒速度的函数。
穆斯堡尔效应

2 2021/5/9
概述
1958年德国人R.L.Mössbauer首先在 实验中发现了Mössbauer效应——原 子核对射线的无反冲发射和共振吸 收,获1961年Nobel物理奖。
3 2021/5/9
概述
Mössbauer谱学: 研究具有一定体积的原子核与周围环
境电或磁的相互作用。
原子核:具有电荷、电四极矩和磁偶极矩; 环 境:在核处形成的电荷分布、电场梯度
2.1、获得Mö ssbauer核的方式
EC 、衰变 同质异能跃迁 库仑激发(带电粒子加速器)
38
2021/5/9
2.2、对放射源的要求
应有较窄的洛伦兹谱线 t120.1 1s
源中的Mössbauer核应有较大的无反冲因 子,这要求 E 5 160keV;
对基底材料要求化学性能稳定;
cs soddy
谱 同二
动
线 质次
态
的 异多
同
中 能普
质
心 移勒
异
移 位移
能
位
位
移
位
18
2021/5/9
对半径为R的原子核:
Ze
V
r
r Ze R
3 2
r2 2R2
rR rR
E Ze
R
R
0
3 2
r2 2R2
R r
4r2dr
2 Ze2R2 0 2
5
19
2021/5/9
E E eE g 2 5Z e 2 02R e 2 R g 2
42
2021/5/9
1.1、标准样品-Fe (bcc)
43
2021/5/9
1.2、Fe2O3
穆斯堡尔谱原理

穆斯堡尔谱原理
穆斯堡尔谱是利用穆斯堡尔效应进行的,穆斯堡尔效应是指当束缚在
晶体中的原子或离子受到高频谱线激发时,发出的谱线具有特殊的性质。
材料中的杂质在晶格内的运动会导致探测到的谱线发生频移,从而可以研
究杂质的振动、扩散、晶格位移等现象。
1.穆斯堡尔效应:当束缚在晶体中的原子或离子受到高频谱线激发时,其发出的谱线具有特殊的性质,包括能量、强度和频率等方面。
2.相对运动效应:杂质在晶体内的运动会导致探测到的谱线发生频移。
例如,晶体中的杂质原子因热运动而发生振动或扩散,导致谱线的频率发
生变化。
3.多晶样品效应:多晶样品中的不同晶粒方向相对于探测器的效应不同,可以通过分析谱线的形状和位置来研究晶格的位向。
穆斯堡尔谱原理的应用范围广泛。
在材料科学中,它可以用来研究晶
格缺陷、杂质扩散、相变、晶格位移等现象。
在物理化学中,穆斯堡尔谱
可以用来研究化学反应、催化剂的活性中心等。
在固态物理学中,它可以
用来研究磁性体的磁性行为、超导现象等。
总结起来,穆斯堡尔谱原理是一种重要的实验方法,通过研究杂质在
晶体中的运动特性,可以深入了解晶格的结构和性质,为材料科学、物理
化学和固态物理学等领域的研究提供了重要的实验手段。
穆斯堡尔效应

穆斯堡尔效应
穆斯堡尔效应(Moussoural Effect)是一种心理投射的观点,它是以俄国心理学家雅克·梅斯堡(JacovMossel)为代表的俄国末代心理学家们所提出的。
根据梅斯堡在19世纪30年代所研究的结果,他提出人们会借助字面意义上的蜂窝来映射自身的情绪反应到其它事物上,然后再进行咨询活动,有助于推断问题的解决方案。
另一方面,穆斯堡尔效应是一种可靠的机制,它可以有效的理解其它人的情绪反应和行为,并进行行动。
通过此种机制,人可以把每一种情绪反映到自身之上,以便更加理解和深入了解其它的想法和生活方式。
根据穆斯堡尔的研究以及其他有关研究,有一些心理技巧可以帮助人们更好的推断其他人的情绪反应和行为,从而有助于更加有效的沟通。
比如,通过反思,一个人可以更加清楚和有效的认识某人的情绪反应,以及如何更好地理解其中的机理。
2005年,穆斯堡效应的研究成果被发表到学术论文中,表明它可以帮助人们理解其它人的情绪反应,并且有助于有效的沟通和决策。
此外,穆斯堡尔效应可以应用于娱乐、消费产品设计等极具挑战性的方面,这可以帮助人们更好地理解消费者的情绪与行为。
此外,还可以应用于销售行业,帮助企业了解消费者的需求,从而使其能够有效的满足客户的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 4 以不同基态的穆斯堡尔谱源去测量同一
吸收体的穆斯堡尔谱时,所得化学位移不 同。所以通常需要说明这种化学位移是相 对于何种标准吸收体而言。 • 5 当穆斯堡尔谱原子处于不同价态和不同 自旋状态时,原则上有不同的化学位移。 6化学位移决定谱线中心的位置移动,但不是 唯一的决定因素,温度效应与化学位移叠 加在一起决定谱线中心的位置。
电作用引起的。
结论:
• 1 如果激发态核半径与基态核半径不等,则化学
位移可以不为零,而与这个穆斯堡尔原子核周围 电子配置情况有关,所以根据δ可以得到化学键性 质、价态、氧化态、配位基的电负性等化学信息。 • 2 如果放射源中穆斯堡尔原子所处的化学状态和 吸收体完全相同,则化学位移总是为零,所得谱 线共振吸收最大处即是谱仪零速度处。 • 3 δ可正可负。δ为正,说明从放射源到吸收体在 核处的电子电荷密度是增加的,原子核体积减小; δ为负,说明从放射源到吸收体在核处的电子电荷 密度是减小的,原子核体积增加。
第一节 原理 一 多卜勒效应:
如一个幅射源相对接收者运动, 则对接收者而 言, 幅射波长(频率、能量)随二者的相对 运动方向与速度而变化: ΔE=VE/C ΔE-射线能量的变化; E-射线能量 V-速度,
• 二 同质异能核 • 1电荷数与质量相同但能态不同的核,
如:Fe, Fe + Fe 2+, Fe 3+ , Fe 6+ 。 • 2如用放射性核57Fe为标样,它发出能 量为A=hv的γ射线;(γ射线是不稳定 的原子核从能量较高的激发态跃迁到能 量较低的能级或基态时,放出的电磁波) • 含铁样品中Fe 的能级差为B; • 设ΔE=A-B
三、四极矩分裂Qs
• 虽然原子核的形状接近球形,但多数核是
轴对称的椭球形。因此用电四极矩Q来表征 核电荷分布偏离球对称的程度。
四、磁超精细分裂 在原子核处常常存在有核外电子形成的磁场H,可使核 能级进一步分裂,又叫核塞曼效应。
• 3当标样相对含铁样品运动,则样品接受的
γ射线能量为hv+/- ΔE; • 4当速度达到某值, 使: • B= hv+/-ΔE=A+/-VE/C;则形成共振吸 收, 就得到Mossbauer谱。
穆斯堡尔谱学的特点:
1穆斯堡尔谱具有极高的能量分辨本领,很容易
探测出原子核能级的变化。
2利用穆斯堡尔谱可以方便地研究原子核与其周 围环境间的超精细相互作用,可以灵敏地获 得原子核周围的物理和化学环境的信息。
第二节 穆斯堡尔谱参数
一、 超精细相互作用 由于原子核存在于由原子的壳层电子和邻近配位体的电荷 所产生的电磁场中,原子核本身带正电荷和各种核矩,因 此核和核所处的电场和磁场之间存在着相互作用,这种作 用十分微弱,称为超精细相互作用。
二、同质异能位移(化学位移)
• 化学位移ቤተ መጻሕፍቲ ባይዱ由穆斯堡尔核电荷与核所在处电场之间的静