北师大版整式的除法

合集下载

(新)北师大版七年级数学下册1.7《整式的除法》课件(精品)

(新)北师大版七年级数学下册1.7《整式的除法》课件(精品)

Listen attentively
课堂精讲
【例2】计算(a4b)2÷a2的结果是( B) A.a2 b2 B.a6 b2 C.a7 b2 D.a8 b2 解:(a4b)2÷a2=a8b2÷a2=a6b2, 故选B
【类比精练】 2.(﹣6xy2)2÷(﹣3xy)的结果为( A) A.﹣12xy3 B.2y3 C.12xy D.2xy3 解:原式=36x2y4÷(﹣3xy)=﹣12xy3, 故选A
知识小测 2.(2016•黔南州)下列运算正确的是(D) A.a3•a=a3 B.(﹣2a2)3=﹣6a5 C.a5+a5=a10 D.8a5b2÷2a3b=4a2b
Listen attentively
课前小测
3.(2016•重庆模拟)计算8a3÷(﹣2a)的结果 D) 是( A.4a B.﹣4a C.4a2 D.﹣4a2 A) 4.若a=1.6×109,b=4×103,则a÷b等于( A.4×105 B.4×106 C.6.4×106 D.6.4×1012
Listen attentively
课堂精讲
【类比精练】 1.计算:(5x2+15x)÷5x= x+3 . 2.计算:(20x4+15x3y﹣25x2)÷5x2= 2+3xy﹣5 4x 解:原式=x+3. 故答案为:x+3. 解:(20x4+15x3y﹣25x2)÷5x2 =20x4÷5x2+15x3y÷5x2﹣25x2÷5x2 =4x2+3xy﹣5. 故答案为:4x2+3xy﹣5.
Listen attentively
课前小测
4.(2016春•东平县期中)一个长方形的面积是 A) xy2﹣x2y,且长为xy,则这个长方形的宽为( A.y﹣x B.x﹣y C.x+yD.﹣x﹣y 5.一个长方形的面积为a2﹣2ab+a,宽为a,则长 方形的长为 a﹣2b+1. 6.(2015•天河区一模)计算:(12a3﹣6a2)÷ (﹣2a)= ﹣6a2+3a . 7.(2015秋•丰润区期末)计算: (6x2﹣xy)÷2x= . 8.(2015春•蒙城县期末)计算: (14x3﹣21x2+7x)÷7x的结果是2x2﹣3x+1 .

北师大版数学七年级下册(课件+精练)1.7 整式的除法1.7 整式的除法

北师大版数学七年级下册(课件+精练)1.7 整式的除法1.7 整式的除法

7 整式的除法
栏目索引
例1 计算: (1)-3a7b4c÷(9a4b2); (2)28x4y2÷(7x3y); (3)4a3m+1b÷(-8a2m+1).
分析 根据单项式与单项式相除的法则解答即可.
解析 (1)原式=[(-3)÷9]a7-4b4-2c=- 1 a3b2c.
3
(2)原式=(28÷7)x4-3y2-1=4xy.
错因分析 错误的原因是运用法则不准确,漏掉了除式- 2 a2c的“-”.
3
正解
原式= 23 a2b2c2÷

2 3
a
2c

+

2 5
a
2bc

÷

2 3
a
2c

=-b2c+ 53 b.
7 整式的除法
栏目索引
阅读材料题中的数学运算 素养解读 数学运算是指在明晰运算对象的基础上,依据运算法则解决 数学问题的素养.主要包括:理解运算对象,掌握运算法则,探究运算思路, 选择运算方法,设计运算程序,求得运算结果等. 数学运算是解决数学问题的基本手段.数学运算是演绎推理,是计算机 解决问题的基础. 在数学运算核心素养的形成过程中,学生能进一步发展数学运算能力; 有效借助运算方法解决实际问题;通过运算促进数学思维发展,形成规 范化思考问题的品质,养成一丝不苟、严谨求实的科学精神.
=…=(22 048-1)×(22 048+1)=24 096-1.
回答下列问题:
(1)请借鉴该同学的经验,计算:
1
1 2

×1

1 22

×1
1 24
×1
1 28

七年级数学下册《..整式的除法》课件北师大版

七年级数学下册《..整式的除法》课件北师大版

(3)
3
观察 & 归纳
被除式
除式
商式
(1)
(x5y) ÷ x2
= x5 − 2 ·y
(2) (8m2n2) ÷ (2m2n) = (8÷2 )·m2 − 2·n2 − 1 ;
(3) (a4b2c) ÷ (3a2b) = (1÷3 )·a4 − 2·b2 −1·c .
仔细观察一下,并分析与思考下列几点: 单项式除以单项式,其结果(商式)仍是 一个单项式;
(4)
4 7
x
3 7
y
(5) a b 2 a b 2 2 ab 2
(6) x 2 y 2 x 2 y x 2 y 4 y x+2y
11
学以致用
月球距离地球大约 3.84×105千米, 一架飞机的速度约为 8×102 千米/时. 如果乘坐此飞机飞行这么远的距离, 大约需要 多少时间 ?
6
观察 & 思考
(1)(2)小题的结构一样, 说说可能用到 的有关幂的运算公式或法则.
☞ 三块之间是同级
运算, 只能从左到 右.
题(3)能这样解吗?
阅读
(2x2y)3 ·(−7xy2) ÷ (14x4y3) p40例1(3)解
=(2x2y)3·[(−7)÷14]·x1−4 y 2−由:
(1) (x5y) ÷x2 ; = x3y ; (2) (8m2n2) ÷(2m2n) ; (3) (a4b2c)÷(3a2b) .
可以用类似于 分数约分的方法
来计算。
解:(1) (x5y)6÷x2 = x30y6÷x2
= x 5 y = xx xxxxx y
x2
xx xx
你会计算吗?
12

北师大版七年级数学下册1.9.1 整式的除法

北师大版七年级数学下册1.9.1 整式的除法

整式的除法(一)【学习目标】1.经历探索整式除法法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,多项式除以单项式,并且结果都是整式).2.理解整式除法运算的算理,发展有条理的思考及表达能力.【主体知识归纳】单项式相除,其实质就是系数相除,除式和被除式都含有的字母的幂按同底数幂的除法去做,只在被除式中含有的字母及其指数作为单独因式直接写在商中,不要漏掉.【例题精讲】类型一单项式除以单项式的计算例1 计算:(1)(-x2y3)÷(3x2y);(2)(10a4b3c2)÷(5a3bc).变式练习:(1)(2a6b3)÷(a3b2);(2)(x3y2)÷(x2y).类型二 单项式除以单项式的综合应用例2 计算:(1)(2x 2y )3·(-7xy 2)÷(14x 4y 3); (2)(2a+b)4÷(2a+b)2.变式练习:(1)(x 2y 2n )÷(x 2)·x 3; (2)3a(a+5)4÷〔a(a+5)3〕·(a+5)-1类型三 单项式除以单项式在实际生活中的应用例3 月球距离地球大约3.84×105千米,一架飞机的速度约为8×102千米/时 如果乘坐此飞机飞行这么远的距离,大约需要多少时间?【当堂测评】1.填空:(1)6xy÷(-12x)= .(2)-12x 6y 5÷ =4x 3y2.(3)12(m -n)5÷4(n -m)3= (4)已知(-3x 4y 3)3÷(-32x n y 2)=-mx 8y 7,则m= ,n= .2.计算:(1) (x2y)(3x3y4)÷(9x4y5). (2)(3x n)3÷(2x n)2(4x2)2.3.已知实数a,b,c满足|a-1|+|b+3|+|3c-1|=0,求(abc)125÷(a9b3c2)的值4.若ax3m y12÷(3x3y2n)=4x6y8,求(2m+n-a)-n的值.整式的除法(二)【学习目标】1.经历探索整式除法法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,多项式除以单项式,并且结果都是整式).2.理解整式除法运算的算理,发展有条理的思考及表达能力.【主体知识归纳】单项式相除,其实质就是系数相除,除式和被除式都含有的字母的 幂按同底数幂的除法去做,只在被除式中含有的字母及其指数作为单独因式直接写 在商中,不要漏掉.类型一 多项式除以单项式的计算例1 计算:(1)(6ab+8b)÷2b ; (2)(27a 3-15a 2+6a)÷3a ;(3)(9x 2y -6xy 2)÷(3xy);(4)(3x 2y -xy 2+21xy)÷(-21xy).练习:计算:(1)(6a 3+5a 2)÷(-a 2); (2)(9x 2y -6xy 2-3xy)÷(-3xy);(3)(8a 2b 2-5a 2b+4ab)÷4ab.类型二多项式除以单项式的综合应用例2 (1)计算:〔(2x+y)2-y(y+4x)-8x〕÷(2x)(2)化简求值:〔(3x+2y)(3x-2y)-(x+2y)(5x-2y)〕÷(4x)其中x=2,y=1练习:(1)计算:〔(-2a2b)2(3b3)-2a2(3ab2)3〕÷(6a4b5).(2)如果2x-y=10,求〔(x2+y2)-(x-y)2+2y(x-y)〕÷(4y)的值【当堂测评】1.填空:(1)(a2-a)÷a= ;(2)(35a3+28a2+7a)÷(7a)= ;(3)( -23x 6y 3-56x 3y 5-43x 2y 4)÷(53xy 3)= . 2. 〔(a 2)4+a 3a -(ab)2〕÷a -1=( )A.a 9+a 5-a 3b 2B.a 7+a 3-ab 2C.a 9+a 4-a 2b 2D.a 9+a 2-a 2b 23.计算:(1)(3x 3y -18x 2y 2+x 2y)÷(-6x 2y);(2)〔(xy+2)(xy -2)-2x 2y 2+4〕÷(xy).4.探索与创新(1)化简 3422222++⨯⨯-n nn ;(2)若m 2-n 2=mn,求2222m n n m +的值.。

北师大版七年级数学下册1.7.1整式的除法(教案)

北师大版七年级数学下册1.7.1整式的除法(教案)
在教学过程中,教师要针对这些重点和难点进行有针对性的讲解和练习,确保学生能够透彻理解整式除法的核心知识,掌握解题方法,并能在实际应用中灵活运用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的除法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平均分配或计算比例的情况?”(如购物时计算单价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整式除法的奥秘。
1.理解整式除法的概念,掌握整式除法的运算规则,提高运算能力;
2.培养学生逻辑思维和分析问题的能力,通过整式除法解决实际问题;
3.增强学生数形结合意识,运用直观想象和数学建模的方法,将现实问题转化为数学问题;
4.培养学生合作交流的意识,学会在小组内分享解题思路和经验,提高团队协作能力。
这些核心素养目标与新教材要求相符,旨在帮助学生全面提升数学学科素养,为今后的学习和生活打下坚实基础。
北师大版七年级数学下册1.7.1整式的除法(教案)
一、教学内容
本节课选自北师大版七年级数学下册1.7.1节,主要内容为整式的除法。具体内容包括:
1.单项式除以单项式的法则;
2.多项式除以单项式的法则;
3.多项式除以多项式的法则;
4.整式的除法在生活中的应用实例。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
然而,我也注意到在学生小组讨论环节,部分学生过于依赖同组其他成员,缺乏独立思考和积极参与的意识。为了提高学生的主动性,我将在今后的教学中加强对学生的引导和鼓励,让他们更多地进行自主探究和合作交流。
在总结回顾环节,学生们对整式除法的掌握程度有了明显提高。但仍有个别学生对某些知识点存在疑问。针对这一情况,我将在课后及时关注这些学生,为他们提供个性化辅导,确保他们能够跟上教学进度。

【数学课件】整式的除法(北师大课标)

【数学课件】整式的除法(北师大课标)

ap

1 ap
(a 0) 负整数指数幂性质
复习: 2、整式的乘法运算
单项式与单项式相乘
(-a2c)(3ab2c3)
单项式与多项式相乘
2x2(-x2+2x+1)
多项式与多项式相乘 (-2m+1)(m-2)
3、多项式的乘法公式
两项:(a+b)(a-b)=a2-b2
平方差公式: 三项:(a+b+c)(a+b-c)=(a+b)2-c2
=a2+b2+2ab-c2 两项:(a+b)2=a2+2ab+b2
完全平方公式: 两项:(a-b)2=a2-2ab+b2
(a+b-c)2=a2+b2+c2+2ab-2ac-2bc
计算下列各题,并说说你的理由。
(1)(x5y) ÷x2 =x3y
用分数约分
的方法行吗?
(2)(8m2n2) ÷(2m2n) =4n
心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知
请做40页:随堂练习 1、计算(1)(2)(3)(4)
请做41页:习题1.15 1、计算(1)(2)(3)(4)
例2 月球距离地球大约3.48×105千米, 一架飞机的速度约为8 ×102千米/小时。如 果乘坐此飞机飞行这么远的距离,大约需要 多少时间?
解: (3.84×105) ÷(8 ×102)
好好学习,天天向上。 2、教育人就是要形成人的性格。——欧文
3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种

北师大版初一数学下《整式的除法》课件

北师大版初一数学下《整式的除法》课件
(6)a2 a3 a8
下雨时,常常是“先见闪电、后闻雷鸣”, 这是因为光速比声速快的缘故。已知光在空气 中的传播速度为3.0×108米/秒 ,而声音在空气 中的传播速度约为3.0×102米/秒 ,你知道光速 是声速的多少倍吗?
学习了今天的知识,我们就能解决这个问题了!
你能计算下列各题吗?如果能,说说你的理由。
答:光速大约是声速的 1000000倍,即100万倍。
8m3na 28mbn2 2 n2,则a 4 ,b 3 7
月球距离地球大约是3.84×105km, 一架飞机的速度约为8×102km/h。 如果乘坐此飞机飞行这么远的距离, 大约需要多少小时? 解:
答:如果乘坐此飞机飞行这么远的距离, 大约需要480小时。
底数不变, 指数相减。
保留在商里 作为因式。
第一步
单项式相乘 系数相乘
单项式相除 系数相除
第二步 同底数幂相乘
同底数幂相除
第三步
其余字母不变连同其 指数作为积的因式
只在被除式里含有 的字母连同其指数 一起作为商的因式
例题 计算:
解:
注意运算顺序: 先乘方,再乘除,
最后算加减
可以把 看成一个整体
答案
(2x2 y)3 (6x3 y2 )
下雨时,常常是“先见闪电、后闻雷鸣”,这是
因为光速比声速快的缘故。已知光在空气中的传播速 度为3.0×108m/s ,而声音在空气中的传播速度约 为 3.0×102 m/s ,你知道光速是声速的多少倍吗?
解: 3.0108 (3.0102 ) 3.0 3.0108-2 1.0106 1 000 000
第一章 整式的乘除
整式的除法
学习目标: 1、掌握单项式除以单项式的法则,会进 行简单的单项式除以单项式的除法运算。 2、经历探索单项式除以单项式的除法运 算法则的过程,理解单项式除以单项式 的除法运算的算理。

北师大版七年级下册数学说课稿:1.7.1《整式的除法》

北师大版七年级下册数学说课稿:1.7.1《整式的除法》

北师大版七年级下册数学说课稿:1.7.1《整式的除法》一. 教材分析《整式的除法》是北师大版七年级下册数学的一节重要内容。

本节课主要介绍了整式除法的基本概念和运算方法。

通过本节课的学习,学生能够理解整式除法的意义,掌握整式除法的运算规则,并能够运用整式除法解决实际问题。

在教材中,整式除法被安排在代数运算的章节中,与整式的加减乘法相互联系。

在学习本节课之前,学生已经掌握了整式的加减法和乘法运算,这为学习整式除法提供了基础。

整式除法不仅是代数运算的重要组成部分,也是后续学习更复杂代数运算的基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,对整式的加减法和乘法运算有一定的了解。

然而,学生在学习整式除法时可能会面临一些困难。

首先,整式除法与整式加减乘法的运算规则有所不同,学生需要理解和适应新的运算规则。

其次,整式除法涉及到了除数和商的运算,学生需要理解除数和商之间的关系。

因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,并给予学生足够的练习机会。

三. 说教学目标1.知识与技能目标:学生能够理解整式除法的意义,掌握整式除法的运算规则,并能够运用整式除法解决实际问题。

2.过程与方法目标:通过小组合作和探究活动,学生能够培养运算能力,提高解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生兴趣,培养坚持不懈的学习精神。

四. 说教学重难点1.教学重点:学生能够掌握整式除法的运算规则,并能够运用整式除法解决实际问题。

2.教学难点:学生能够理解除数和商之间的关系,并能够正确进行整式除法的运算。

五. 说教学方法与手段在本节课的教学中,我将采用问题驱动法和小组合作法进行教学。

首先,我会通过提问的方式引导学生思考整式除法的意义和运算规则。

然后,我会学生进行小组合作和探究活动,让学生通过讨论和实践来解决问题。

此外,我还会利用多媒体教学手段,如PPT和数学软件,来进行教学展示和解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最后算加减
可以把 2ab
看成一个整体
随堂练习
1、计算:
(1) (2a6b3)÷(a3b2) ;
(3) (3m2n3)÷(mn)2 ;
(2) ( 1 x3y2 ) ÷(1 x2y ) ;
48
16
(4) (2x2y)3÷(6x3y2) .
作业留置
1.必做题 详见课本29页知识技能1,2题
2.选做题 详见课本30页问题解决4,5题
2、计算:
• 2x²yz².3xy²=(6x³y³z²)
• a²b . ( 3ab )=3a³b²
做一做
探索
计算下列各题, 并说说你的理由:
(1) (x5y) ÷x2 ; = x3y ; (2) (8m2n2) ÷(2m2n) ; (3) (a4b2c)÷(3a2b) .
可以用类似于 分数约分的方法
(2) 10 a 4b 3c 2 5a 3bc (3) (2 x 2 y )3 (7 xy 2 ) 14 x 4 y 3 (4) (2a b)4 (2a b)2
解:
(1) 3x2y33x2y 5
(33)x22y31 5
1 y2 5
(2) 1a 04b3c25a3bc (10 5)a43b31c21
(3)
= (8÷2 )·(m2÷m2 )·(n2÷n )
=(8÷2 )·m 2 − 2·n2− 1
观察 & 归纳
被除式 除式
商式
(1)
(x5y) ÷ x2
= x5 − 2 ·y
(2) (8m2n2) ÷ (2m2n) = (8÷2 )·m2 − 2·n2 − 1 ;
(3) (a4b2c) ÷ (3a2b) = (1÷3 )·a4 − 2·b2 −1·c .
整式的除法(1)
单项式除以单项式
回顾 & 思考☞
1.经历探索单项式除以单项式的除法法则的过程, 会进行简单的单项式除以单项式除法运算.
2.理解整式除法运算的算理,发展有条理的思考及 表达能力.
回顾 & 思考☞
1、用字母表示幂的运算性质:
(1) aman =amn ; (2) (am )n= amn ; (3) (ab)n=a nb;n (4) aman amn (a ≠ 0)
2ab2c
(3 ) (2 x 2 y )3( 7 x2 ) y 1x 4 4 y 3
8x6y3( 7x2y ) 1x 4 4y3
56 x7y514 x4y3 4x3y2
(4 ) (2 a b )4 (2 a b )2 (2ab)42 (2ab)2
4a24a bb2
注意运算顺序: 先乘方,再乘除,
仔细观察一下,并分析与思考下列几点: 单项式除以单项式,其结果(商式)仍是 一个单项式;
商式=系数• 同底数的幂• 被除式里单独有的因式
被除式的系数 底数不变, 除式的系数 指数相减。
保留在商里 作为因式。
单项式的除法法则
议 一 议 如何进行单项式除以单项式的运算?
单项式相除, 把系数、同底数的幂分别相除 后,作为商的因式;对于只在被除式里含有的 字母,则连它的指数一起作为商的一个因式。
来计算。
解:(1) (x5y)÷x2
= x5y = x x x x x y
x2
xx xx
= x·x·x·y
把除法式子写成分数形式, 把幂写成乘积形式, 约分。
省略分数及其运算, 上述过程相当于:
ห้องสมุดไป่ตู้
(1)(x5y) ÷x2 =(x5÷x2 )·y
=x 5 − 2 ·y
(2) (8m2n2) ÷(2m2n)
对比学习
系数相乘
系数相除
同底数幂相乘
同底数幂相除
其余字母不变连同其 指数作为积的因式
只在被除式里含有 的字母连同其指数 一起作为商的因式
大家应该也有点累了,稍作休息 大家有疑问的,可以询
大家有疑问的,可以询问和交流 可以互相讨论下,但要小声
例1 计算:
(1) 3 x 2 y 3 3 x 2 y 5
相关文档
最新文档