离子交换法

离子交换法
离子交换法

离子交换法主要是基于一种合成的离子交换剂作为吸附剂,以吸附溶液中需要分离的离子。生物工业中最常用的交换剂为离子交换树脂,广泛用于提取氨基酸、有机酸、抗生素等小分子生物制品。在提取过程中,生物制品从发酵液中吸附在离子交换树脂上,然后在适宜的条件下用洗脱剂将吸附物从树脂上洗脱下来,达到分离、浓缩、提纯的目的。

离子交换法的特点是树脂无毒性且可反复再生使用,少用或不用有机溶剂,因而成本低,设备简单,操作方便。目前已成为生物制品提纯分离的主要方法之一。但离子交换法也有生产周期长,PH变化范围大,甚至影响成品质量等缺点。此外,离子交换树脂法还广泛用于脱色、硬水软化及制备无盐水等。

图1 离子交换车间

一、离子交换树脂及其分离原理

离子交换树脂是一种具有网状立体结构、且不溶于酸、碱和有机溶剂的固体高分子化合物.离子交换树脂的单元结构由两部分组成。一部分是不可移动且具有立体结构的网络骨架,另一部分是可移动的活性离子。活性离子可在网络骨架和溶液间自由迁移,当树脂处在溶液中时,其上的活性离子可与溶液中的同性离子产生交换过程。这种交换是等当量进行的。如果树脂释放的是活性阳离子,它就能和溶液中的阳离子发生交换,称阳离子交换树脂;如果释放的是活性阴离子,它就能交换溶液中的阴离子,称阴离子交换树脂。

(一)离子交换树脂的分类

离子交换树脂通常有4种分类方法,一是按树脂骨架的主要成分将树脂分为聚苯乙烯型树脂,聚丙烯酸型树脂、酚-醛型树脂等;二是按聚合的化学反应分为共聚型树脂和缩聚型树脂;三是按树脂骨架的物理结构分为凝胶型树脂(亦称微孔树脂)、大网络树脂(亦称大孔树脂)及均孔树脂。由于活性基团的电离程度决定了树脂酸性或碱性的强弱,所以又将树脂分为强酸性、弱酸性阳离子交换树脂、强碱性、弱碱性阴离子交换树脂。活性基团决定着树脂的主要交换性能。

强酸性阳离子交换树脂

这类树脂的活性基团有磺酸基团(-SO3H)和次甲基磺酸基团(-CH2SO3H)。它们都是强酸性基团,电离程度大且不受溶液pH变化的影响,在pH1~14范围内均能进行离子交换反应,以磺酸型树脂与NaCl作用为例,交换反应为:

RSO3H+NaCl=RSO3Na+HCI

此外,以磷酸基团-PO(OH)2和次磷酸基团-PO(OH)作为活性基团的树脂具有中等强度的酸性。最多的为732#

弱酸性阳离子交换树脂

这类树脂的活性基团有羧基-COOH,酚羟基-OH等,它们的电离程度小,交换性能受溶液pH的影响很大,其交换能力随溶液pH的增加而提高。在酸性溶液中,这类树脂几乎不发生交换反应、对于羧基树脂,应该在pH>7的溶液中操作,而对于酚羟基树脂,应使溶液的pH>9。

和强酸树脂不同,弱酸树脂和氢离子结合能力很强,故再生成氢型较容易,耗酸量少。强碱性阴离子交换树脂

这类树脂有两种,一种含三甲胺基称为强碱I型,另一种含二甲基- 羟基-乙基胺基团,为强碱型。和强酸离子交换相似,活性基团电离程度较强且不受pH变化的影响,在pH1~14范围内均可使用。这类树脂成氯型时较羟型稳定,耐热性也较好,因此,商品大多以氯型出售。I型的碱性比对Ⅱ型强,但再生较困难,Ⅱ型树脂的稳定性较差。典型的交换反应为

RN(CH3)3CI+NaOH—→RN(CH3)3OH+NaCl

弱碱性阴离子交换树脂

这类树脂的活性基团有伯胺基团-NH2、仲胺基=NH、叔胺基≡N和吡啶基等。与弱酸阳离子树脂一样,交换能力受溶液pH的影响很大,pH越小交换能力越强。故在pH<7的溶液中使用。这类树脂和OH-结合能力较强,再生成羟型较容易,耗碱量少。

第二节离子交换分离原理及设备 1 2345678910

离子交换树脂的原理及应用总结归纳(重点阅读)

精心整理如何筛分混合的阴阳离子交换树脂? 离子交换树脂的工作原理及优缺点分析 将离子性官能基结合在树脂(有机高分子)上的材料,称之为“离子交换树脂”。树脂表面带有磺酸(sulfonic acid) 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂。由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中。(见下图) 离子交换树脂上的官能基虽可去除原水(Feed water) (Fouling)。方。 原理 软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。

由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般 需要5-15分钟左右。 吸盐(再生) (只要进水有一定的压力即可) 慢冲洗(置换) 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

离子交换树脂原理

离子交换树脂原理 离子交换树脂是一种聚合物,带有相应的功能基团。一般情况下,常规的钠离子交换树脂带有大量的钠离子。当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。硬水就变为软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。 由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般需要5-15分钟左右。 吸盐(再生):即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入(只要进水有一定的压力即可)。在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响。 慢冲洗(置换):在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换。这个过程一般与吸盐的时间相同,即30分钟左右。 快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水。一般情况下,快冲洗过程为5-15分钟。 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。 2)食品工业 离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。 3)制药行业 制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。 4)合成化学和石油化学工业 在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染

离子交换柱层析原理

离子交换层析介质的应用 离子交换层析分离纯化生物大分子的过程,主要是利用各种分子的可离解性、离子的净电荷、表面电荷分布的电性差异而进行选择分离的。现已成为分离纯化生化制品、蛋白质、多肽等物质中使用最频繁的纯化技术之一。 子交换层析(Ion Exchange Chromatography 简称为IEC)是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法。离子交换层析是目前生物化学领域中常用的一种层析方法,广泛的应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等的分离纯化。 1.离子交换层析的基本原理: 离子交换层析是通过带电的溶质分子与离子交换层析介质中可交换离子进行交换而达到分离纯化的方法,也可以认为是蛋白质分子中带电的氨基酸与带相反电荷的介质的骨架相互作用而达到分离纯化的方法。 离子交换层析法主要依赖电荷间的相互作用,利用带电分子中电荷的微小差异而进行分离,具有较高的分离容量。几乎所有的生物大分子都是极性的,都可使其带电,所以离子交换层析法已广泛用于生物大分子的分离、中等纯化及精制的各个步骤中。 由于离子交换层析法分辨率高,工作容量大,并容易操作,因此它不但在医药、化工、食品等领域成为独立的操作单元,也已成为蛋白质、多肽、核酸及大部分发酵产物分离纯化的一种重要的方法。目前,在生化分离中约有75%的工艺采用离子交换层析法。 2.离子交换层析介质: 离子交换层析的固定相是离子交换剂,它是由一类不溶于水的惰性高分子聚合物基质通过一定的化学反应共价结合上某种电荷基团形成的。离子交换剂可以分为三部分:高分子聚合物基质、电荷基团和平衡离子。电荷基团与高分子聚合物共价结合,形成一个带电的可进行离子交换的基团。平衡离子是结合于电荷基团上的相反离子,它能与溶液中其它的离子基团发生可逆的交换反应。平衡离子带正电的离子交换剂能与带正电的离子基团发生交换作用,称为阳离子交换剂;平衡离子带负电的离子交换剂与带负电的离子基团发生交换作用,称为阴离子交换剂。在一定条件下,溶液中的某种离子基团可以把平衡离子置换出来,并通过电荷基团结合到固定相上,而平衡离子则进入流动相,这就是离子交换层析的基本置换反应。通过在不同条件下的多次置换反应,就可以对溶液中不同的离子基团进行分离。下面以阴离子交换剂为例简单介绍离子交换层析的基本分离过程。 阴离子交换剂的电荷基团带正电,装柱平衡后,与缓冲溶液中的带负电的平衡离子结合。待分离溶液中可能有正电基团、负电基团和中性基团。加样后,负电基团可以与平衡离子进行可逆的置换反应,而结合到离子交换剂上。而正电基团和中性基团则不能与离子交换剂结合,随流动相流出而被去除。通过选择合适的洗脱方式和洗脱液,如增加离子强度的梯度洗脱。随着洗脱液离子强度的增加,洗脱液中的离子可

离子交换法制备纯水

实验二离子交换法制备纯水 一、实验目的 1.了解离子交换法制纯水的基本原理,掌握其操作方法; 2.掌握水质检验的原理和方法; 二、实验原理 离子交换法是目前广泛采用的制备纯水的方法之一。水的净化过程是在离子交换树脂上进行的。离子交换树脂是有机高分子聚合物,它是由交换剂本体和交换基团两部分组成的。例如,聚苯乙烯磺酸型强酸性阳离子交换树脂就是苯乙烯和一定量的二乙烯苯的共聚物,经过浓硫酸处理,在共聚物的苯环上引入磺酸基(–SO3H)而成。其中的H+可以在溶液中游离,并与金属离子进行交换。 R–SO3H + M+R–SO3M + H+ R:聚合物的本体;–SO3:与本体联结的固定部分,不能游离和交换;M+:代表一价金属离子。阳离子交换树脂可表示为: 如果在共聚物的本体上引入各种胺基,就成为阴离子交换树脂。例如,季胺型强碱性阴离子交换树R–N+(CH3)3OH–,其中OH–在溶液中可以游离,并与阴离子交换。 离子交换法制纯水的原理就是基于树脂和天然水中各种离子间的可交换性。例如,R–SO3H 型阳离子交换树脂,交换基团中的H+可与天然水中的各种阳离子进行交换,使天然水中的Ca2+、Mg2+、Na+、K+等离子结合到树脂上,而H+进入水中,于是就除去了水中的金属阳离子杂质。水通过阴离子交换树脂时,交换基团中的OH–具有可交换性,将HCO3–、Cl–、SO42–等离子除去,而交换出来的OH–与H+发生中和反应,这样就得到了高纯水。 交换反应可简单表示为: 2R–SO3H + Ca(HCO3)2→ (R–SO3)2Ca + 2H2CO3 R–SO3H + NaCl → R–SO3Na + HCl R–N(CH)3OH + NaHCO3→ R–N(CH)3HCO3 + NaOH R–N(CH)3OH + H2CO3→ R–N(CH)3HCO3 + H2O HCl + NaOH → H2O + NaCl 本实验用自来水通过混合阳、阴离子交换树脂来制备纯水。 [实验用品] 仪器:离子交换柱(也可用碱式滴定管代替)。 材料:玻璃纤维(棉花)、乳胶管、螺旋夹、pH试纸。 固体药品:717强碱性阴离子交换树脂、732强酸性阳离子交换树脂。 液体药品:NaOH(2mol·L-1)、HCl(2mol·L-1)、AgNO3(0.1mol·L-1)、NH3–NH4Cl缓冲溶液(pH=10)、铬黑T指示剂。 三、实验步骤 1.树脂的预处理 将717(201×7)强碱性阴离子交换树脂用NaOH(2mol·L-1)浸泡24小时,使其充分转为OH-型(由教师处理)。取OH-型阴离子交换树脂10mL,放入烧杯中,待树脂沉降后倾去碱液。加20mL 蒸馏水搅拌、洗涤、待树脂沉降后,倾去上层溶液,将水尽量倒净,重复洗涤至接近中性(用pH 试纸检验,pH=7~8)。 将732(001×7)强酸性阳离子交换树脂用HCl(2mol·L-1)浸泡24小时,使其充分转为H+型(由教师处理)。取H+型阳离子交换树脂5mL,于烧杯中,待树脂沉降后倾去上层酸液,用蒸馏水洗涤树脂,每次大约20mL,洗至接近中性(用pH试纸检验pH=5~6)。 最后,把已处理好的阳、阴离子交换树脂混合均匀。 2.装柱

离子交换树脂的种类和性能

离子交换树脂的种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl

蛋白纯化离子交换层析法

蛋白纯化离子交换层析 研究生的生活,单调的科研,重复的脚印,匆匆的轨迹,踩着早上的时光一如往常的走进实验室,摊开实验记录本,写上日期,就像每天写日记一样开始计划今天的实验日记,用笔似乎要绘制一副有关实验的画面。 如果你处在这样的科研氛围里,慢慢的就会体味到科学本身就像窗外的大自然一样的美,绿色撩人,诗意陶醉…… 今天,我们写下的实验日记——蛋白纯化离子交换层析法,文章详细的总结了离子交换层析的定义、离子交换层析的原理、离子交换剂的种类,似乎要提醒一下脑子要保持清醒了,不然,看完之后,你能分清楚阴阳离子交换剂的概念,熟知它们的区别么? ————你会创造规律科研生活的美 我,生在春天里,刚发芽的地方是实验室 知了也睡了,而我刷夜实验室 因为我在等待秋天收获的季节 虽然有可能错过成功的喜悦,却收获心灵上的成长

离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静

离子交换树脂及其目前的应用领域及发展前景

离子交换树脂及其目前的应用领域及发展前景 摘要:本文主要针对离子交换树脂及其目前的应用领域和基本情况进行简要介绍,着重对离子交换树脂在一些方面的应用做了综述,在医药卫生、水处理、食品工业、冶金工业、催化领域、化学化工等几个方面各举了一些简单的例子简述了离子交换树脂在该领域的基本应用的操作方法、操作条件和分离效果。最后通过这些重要应用,对离子交换树脂未来的发展前景提出了展望。 关键词:离子交换树脂;应用;发展前景 1 引言 离子交换树脂是一类带有功能基的网状结构的高分子化合物,它由两部分构成:一是由不溶性的三维空间网状结构组成的骨架。骨架部分一般与酸、碱和一般的溶剂都不起作用,化学性质非常稳定;二是连接在骨架上可以电离的、可被交换的活性基团(交换基团)[1]。活性基团对离子交换剂的交换性质起着决定性作用,可与溶液中的离子进行离子交换反应。 离子交换树脂用途非常广泛,很多方面都能用到离子交换树脂,如分析化学中的富集、纯化,工业中的回收、分离、纯化和催化等等。近年来,我国平均每年生产离子交换树脂的量约为27.0万吨,约占世界总产量的三分之一,且产量还在逐年增加[2]。其应用方面也有很大发展,2016年,我国离子交换树脂的表观消费量达19.2万吨,主要应用于水处理、吸附工艺、催化剂这三个领域,消费结构占比见图1[2]。 2 离子交换树脂在化学分离中的应用 2.1 离子交换树脂在水处理中的应用 从上一节中对离子交换树脂的应用基本情况的阐述中可见,离子交换树脂的众多应用中,水处理方面的应用是我国离子交换树脂消费结构中最多的部分。其中水处理方面的应用又可细分为三个重要领域:给水处理、废水处理和废液中某些物质的提取、分离和回收。在给水处理这个领域中,离子交换树脂可用于制备软化水、纯水和超纯水,尤其超纯水在微电子工业、半导体工业以及原子能工业、医疗卫生等方面有着重要的作用。在废水处理中,可用于去除废水中的某些如汞等有害物质,回收有价值的化学品等。

离子交换层析柱的装填及处理

离子交换层析柱的装填及处理 一、原理: 有些高分子物质含有一些可以分离的基因,例如-SO3H,-COOH等,因此可以和溶液中的离子产生交换反应。如:R-SO3H+M+ R-S3M+H+ 或R-NH3OH+CL-— R-NH3CL+OH -这类高分子物质通称离子交换剂,其中使用最普遍的是离子交换树脂。由于一定的离子交换剂对不同离子的亲和力不同,因此在洗提过程中,不同的离子在离子交换柱上的迁移速度也不同,最后得到分离。 二、目的与要求: 本实验是采用Zerolit225型阳离子交换树脂所装的柱,选以特定的PH缓冲洗脱液来分离含有两个性质不同的氨基酸溶液。通过实验要求掌握装柱、上样、洗脱、收集等离子交换柱层析技术的要点。 三、仪器与装置: 玻璃层析柱:长19cm,内径1、2cm,3# 砂芯。H L-2型恒流泵。H D-4型电脑核酸蛋白检测仪。B S-100A自动部份收集器。 250ml烧杯。 1ml吸管。 水浴锅。 72型(或721型)分光光度计。

四、试剂与药品: 树脂:Zerolit225型阳离子交换树脂。 洗脱液:0、45N,PH5、3柠檬酸缓冲液,取285g柠檬酸 (C6O7H8?H2O);186g97℅NaOH;105ml浓硫酸溶于水中稀释至10升。 样品液:0、005M ASP和LYs的0、02N HCL混合溶液。 显色剂:显色剂列出两种可任选一种。 显色剂(Ⅰ)茚三酮-TiCL3溶液。 10g茚三酮溶于500ml乙二醇甲醚,再加入0、85 ml TiCL3(15%)显色剂(Ⅱ):茚三酮-KCN溶液。 0、1M KCN:0、1628g KCN溶于水中稀释至250ml A、将1、25g茚三酮溶于25ml乙二醇甲醚,配成5%(W/V)浓度的溶液。B 、将2、5ml 0、01M KCN溶液与125ml乙醇甲醚混合。将A和B合并置棕色瓶中过夜即可使用。此溶剂用时, A、B两溶液在前一天合并,配好的溶液仅能在1-2天内使用,过时失效须重配。 五、方法与步骤: 1、树脂的处理: 关于市售新树脂的处理见 7、,本实验采用处理好的树脂。 2、装柱:将层析柱垂直装好,关闭柱底出口,在柱内注入约1cm高的柠檬酸缓冲液。

离子交换法应用总结

离子交换法的发展趋势及应用 1、离子交换分离法的发展 离子交换技术有相当长的历史,早在1850 年就发现了土壤吸收铵盐时的离子交换现象,但离子交换作为一种现代分离手段,是在20 世纪40 年代人工合成了离子交换树脂以后的事。而某些经过磺化制得的天然产物都可用作离子交换剂。随着技术的发展研究制成了许多种性能优良的离子交换树脂,离子交换树脂是应用最广泛的离子交换剂。离子交换的选择性较高,适用于高纯度的分离和净化。 70 多年来离子交换分离法取得了突飞猛进的进展,随着近现代有机合成工业技术的迅速发展,开发了多种新的应用方法,应用范围日益扩大,已经由最初的水处理工业发展到当前的化工、电力、环境科学、食品加工和医疗药物等领域,特别是高新科技产业和科研领域中应用更加广泛。 2、离子交换分离法的应用 1)重金属污水处理工业 近年来,一种将传统的离子交换与电渗析有机结合的技术——电去离子技术引起了人们的注意。电去离子技术是在电场的作用下将离子交换膜和离子交换树脂相结合,实现离子的深度脱除与浓缩的新型离子分离过程。将离子交换与电渗析有机的结合起来,具有离子交换深度除盐和电渗析连续除盐的优点,同时弥补了电渗析的浓差极化所造成的不良影响,而且避免了离子交换树脂酸碱再生所造成的二次污染。此外,在超纯水生产领域,目前将电去离子技术置于反渗透之后以取代传统的离子交换混床,已成为新一代清洁生产工艺的核心技术。随着研究的不断深入,电去离子技术将成为具有很大发展潜力的重金属废水处理技术,实现废水“零排放”。 2)食品工业 离子交换树脂是食品和发酵工业产物中提纯、分离、浓缩、催化的良好材料。它广泛的应用于糖液的脱色、脱盐、软化,副产物的回收、分离、异构体拆分和 ,调节pH,葡萄糖与果糖的分离等。(1)在制酒工业中对酒类的去浊去酸去碱去SO 2 提取酒糟中的柠檬酸以及调节控制酿酒用水的水质;(2)在乳制品工业中提高乳制品的稳定性,调整乳制品中钙的含量,去除乳清中盐的含量;(3)其他方面的应用如油脂中脱酸脱咖啡因去金属离子;(4)食品添加剂的纯化、食品调味剂如

混床离子交换器的优点和工作原理

混床离子交换器就是阳、阴两种离子交换树脂,互相充分地混合在一个离子交换器内,同时进行阳、阴离子交换的设备。简称混床。所谓混床,就是把一定比例的阳、阴离子交换树脂混合装填于同一交换装置中,对流体中的离子进行交换、脱除。由于阳树脂的比重比阴树脂大,所以在混床内阴树脂在上阳树脂在下。一般阳、阴树脂装填的比例为1:2,也有装 填比例为1:1.5的,可按不同树脂酌情考虑选择。混床也分为体内同步再生式混床和体外再生式混床。同步再生式混床在运行及整个再生过程均在混床内进行,再生时树脂不移出设备以外,且阳、阴树脂同时再生,因此所需附属设备少,操作简便。 一、混床离子交换器的优点 (1)出水水质优良,出水pH值接近中性。 (2)出水水质稳定,短时间运行条件变化(如进水水质或组分、运行流速等)对混床出水水质影响不大。 (3)间断运行对出水水质的影响小,恢复到停运前水质所需的时间比较短。 混床设备比较好用一点的还是有机玻璃柱的那种,因为分层的时候比较容易看得清楚。 操作起来,再生效果好。以前我用的那种A3钢的,有个视孔,操作起来真的好麻烦,分层都看不到。 二、混床离子交换器的工作原理 混床床离子交换法,就是把阴、阳离子交换树脂放置在同一个交换器中,在运行前将它们均匀混合,所以可看着是由无数阴、阳交换树脂交错排列的多级式复床,水中所含盐类的阴、阳离子通过该项交换器,则被树脂交换,而得到高度纯水。在混合床中,由于阴、阳树脂是相互混匀的,所以其阴、阳离子交换反应几乎同时进行,或者说,水的阳离子交换和阴离子交换是多次交错进行的,经H型交换所产生的H+和经过OH型交换所产生的OH-都不能积累起来,基本上消除反离子的影响,交换进行得比较彻底。由于进入混合床的初级纯水质较好,交换器的负载较轻,树脂的交换能力很长时间才被子耗竭。本混合床采用体内再生法,再生时首先利用两种树脂的比重不同,用反洗使用权阴、阳离子交换树脂完全分离,阳树脂沉积在下,阴树脂浮在上面,然后阳树脂用盐酸(或硫酸)再生,阴树脂用烧碱再生。 三、混床离子交换器的结构 1、再生装置:阴离子交换树脂再生碱液在高于阴离子交换树脂面300毫米处母管进液(Φ400、500、600采用单母管进液,Φ800、2500采用双母管进液),管上小孔布液,管外采用塑料窗纱60目尼龙网布包覆。阳离子交换树脂再生酸性由底部排水装置的多孔板上排水帽进入。 2、中排装置:中排装置设置在阴、阳树脂的分界面上,用于再生排泄酸、碱还原液和冲洗型,型式分为双母管或支母管式,管子小孔外包覆塑料窗纱及60目尼龙网各一层。 3、排水装置:采用多孔板上装设PB2-500型叠片式排水帽,或宝塔式ABS型排水帽,多孔板材质按设备规格不同而异。(Φ400、500、600型采用硬聚氯乙烯多孔,Φ800、2500型采用钢衬胶多孔板)。

钠离子交换器工作原理说明

钠离子交换器工作原理说明 一般而言,化学除盐过程就是原水通过H+型阳离子交换器(也称阳床)和OH-型阴离子交换器(也称阴床),经过离子交换反应,将水中的阴、阳离子去除,从而制得高纯水。当原水经阳床发生交换反应之后,出水呈酸性,即水中的阳离子几乎都等当量的转变成氢离子,此时H++HC03-?C02?+H2O,所以在阳床之后端要设置除二氧化碳器。 钠离子交换器工作原理 水的硬度主要有其中的阳离子:钙(Ca2+)、镁(Mg2+)离子构成。当含有硬度的原水通过交换器的树脂层时,水中的钙、镁离子被树脂吸附,同时释放出钠离子。这样从交换器内流出的水就是去掉了硬度离子的软化水,当吸附钙、镁离子的树脂达到一定程度后,出水硬度增大,此时软水器按照预定的程序自动进行失效树脂的再生工作,利用较高浓度的氯化钠溶液通过树脂,使失效的树脂重新恢复至钠型树脂。

钠离子交换器产品结构 沈阳软化水装置主要有三部分组成: 1、自动控制装置:根据用户需要,可配置时间控制、流量控制两种控制方式的全自动控制器,并可选配润新、富莱克等控制阀,也可选用液动、气动、电动多阀控制系统。 2、罐体部分:根据用户要求,交换罐、盐罐可采用玻璃钢、碳钢衬胶、不锈钢等材质。 3、配件部分:包括布水装置、吸盐装置、管路配件等。 天然水中含有的钙(Ca2+)、镁(Mg2+)离子在加热蒸发浓缩过程中生成危害锅炉安全运行的水垢,这种天然水叫硬水。当这种硬水通过离子交换剂(NaS)时,与吸附在交换剂上的Na+离子发生交换反应,被置换于水中,转化成钠的盐类。由于钠的盐类溶解度大,且在温度升高时溶解度进一步增加,所以不会生成水垢。这个过程称为软化。但水中的钙、镁离子置换到交换剂上,使钠型交换剂(NaR)变成钙型(CaR),因而失去了与钙、镁离子再进行交换反应的能力,这一现象称之为钠离子交换失效。将失效的交换剂用食盐(NaCl)溶液使之还原成钠型交换剂,以便继续生产软水,这种现象称之为再生。钠离子交换器通过软化——失效——再生还原——软化的循环过程,使原水得到软化,供给锅炉合格的软化水。

离子交换树脂应用进展

离子交换树脂应用进展 廖庄华 (化学与生物工程系应化091班学号0906********) 摘要:介绍了离子交换树脂在药学、天然产物提取分离有机催化剂的应用进展。 关键词:离子交换树脂口服药物树脂液体缓控释给药系统催化剂废水处理 离子交换树脂是一类带有功能基团的可以再生、反复使用且不溶性惰性高分子材料,不为生物体吸收。整个分子由三部分组成[1]:具有三维空间立体结构的网状骨架;与网状骨架载体以共价键连接不能移动的活性基团,亦称功能基团;与活性基团以离子 键结合,电荷与活性基团相反的活性离子,亦称平衡离 子。如聚苯乙烯磺酸型树脂,其骨架是聚苯乙烯高分子, 活性基团是磺酸基,平衡离子是钠离子。如图1所示。 根据可交换离子的不同,离子交换树脂分为阳离子 交换树脂和阴离子交换树脂两大类,由于酸碱性强弱不 同又可分强酸性和弱酸性阳离子交换树脂及强碱性和弱 碱性阴离子交换树脂。在水介质中,离子与树脂间发生 液固两相间的传质与化学反应过程,它们的结合是可逆 的,即在一定条件下能够结合,条件改变后也可以被释 放出来。 离子交换反应进行的速度与程度受到其结构参数, 如酸(碱)性、交换容量、交联度、粒径等的影响。 1.离子交换树脂在药学方面的应用 1.1 药物树脂缓控释给药系统 离子交换树脂的控释应用主要是在胃肠道中控制药物释放(口服药物树脂缓控释系统)和作为载体用于靶向释放系统。由于离子交换的可逆性,药物树脂口服进入胃肠道后,与胃肠道中的生理性离子发生反向离子交换反应而持续释放药物,发挥疗效。由于胃肠液中的离子种类及其强度相对恒定,故药物释放特性可精确服从为目标制剂所设计的控释标准,而不依赖于胃肠道的pH 值、酶活性及胃肠液的体积等生理因素。但鉴于药物从药树脂复合物中释放较快,因此采取了微囊化技术进一步控制药物的释放,从而形成了第一代的口服药树脂控释系统。同时为避免贮存期及在胃肠道内因树脂膨胀而引发的控释膜破裂,造成药物“突释”,美国Pennwalt 公司对第一代离子交换胃肠道控释给药系统进行了改进,即将药树脂用浸渍剂(impregnating agent)如PEG4000 和甘油处理,阻止了树脂在水性介质中的膨胀,最后采用空气沸腾床包衣等技术用水不溶性但可渗透的聚合物,如乙基纤维素对药树脂包衣作为速率控制屏障来调节药物释放,由此得到第二代口服药树脂控释系统,即Pennkinetic?系统。 与其他给药系统相比,口服药物树脂缓控释制剂具有如下特点:1)药物的释放不依赖于胃肠道内的pH 值、酶活性、温度以及胃肠道液的体积。另外,由于胃肠道液中的离子种类及其强度维持相对恒定,因此药物在体内可以恒定速率释放;2)制剂中含有大量的药树脂微囊,服用时可消除胃排空的

离子交换层析

实验二离子交换层析纯化兔血清IgG 【原理】 DEAE-Sephadex A-50 (二乙氨基- 乙基- 葡萄糖凝胶A-50 )为弱碱性阴离子交换剂。用NaOH 将Cl - 型转变为OH - 型后,可吸附酸性蛋白。血清中的γ 球蛋白属于中性蛋白(等电点为pH6.85 ~7.5 ),其余均属酸性蛋白。pH7.2 ~7.4 的环境中。酸性蛋白均被DEAE-Sephadex A-50 吸附,只有γ 球蛋白便可在洗脱液中先流出,而其他蛋白则被吸附在柱上,从而便可分离获得纯化的IgG 。 【试剂与器材】 1. DEAE-Sephadex A-50 2.0.5mol/L HCl 和NaOH 3.0.1mol/L pH7.4 PBS 4.0.1mol/L Tris-HCl(pH7.4)

5.0.02 %NaN 3 6.PEG 7. 无水乙醇 8. 紫外分光光度计 9.1cm×20cm 玻璃层析柱 10. 自动部分收集器 【操作步骤】 1 .DEAE-Sephadex A-50 预处理称DEAE-Sephadex A-50 (下称A-50 )5g ,悬于500ml 蒸馏水内,1h 后倾去上层细粒。按每克A-50 加0.5mol/L NaOH 15ml 的比例,将浸泡于0.5mol/L NaOH 液中,搅匀,静置30min ,装入布氏漏斗(垫有 2 层滤纸)中抽滤,并反复用蒸馏水抽洗至pH 呈中性;再以0.5mol/L HCl 同上操作过程处理,最后以0.5mol/L NaOH 再处理一次,处理完后,将A-50 浸泡于0.1mol/L pH7.4 PBS 中过夜。

2 .装柱 ( 1 )将层析柱垂直固定于滴定架上,柱底垫一圆形尼龙纱,出水口接一乳胶或塑料管并关闭开关。 (2 )将0.1mol/L Tris-HCl(pH7.4) 沿玻璃棒倒入柱中至1/4 高度,再倒入经预处理并以同上缓冲液调成稀糊状的A-50 。待A-50 凝胶沉降2 ~3cm 高时,开启出水口螺旋夹,控制流速1ml/min ,同时连续倒入糊状A-50 凝胶至所需高度。 ( 3 )关闭出水口,待A-50 凝胶完全沉降后,柱面放一圆形滤纸片,以橡皮塞塞紧柱上口,通过插入橡皮塞之针头及所连接的乳胶或塑料管与洗脱液瓶相连接。 3 .平衡启开出水口螺旋夹,控制流速 4 滴/min ,使约2 倍床体积的洗脱液流出。并以pH 计与电导仪分别测定洗脱液及流出液之PH 值与离子强度,两者达到一致时关闭出水口,停止平衡。 4 .加样及洗脱启开上口橡皮塞及下口螺旋夹,使柱中液体缓慢滴出,当柱面液体与柱面相切时,立即关闭出水口,以毛细滴管沿柱壁加入样品(0.5ml 血清,体积应小于床体积的2% ,蛋白浓度以<100mg 为宜)。松开出水口螺旋夹使面样品缓慢进入柱内,至与柱面

离子交换器工作原理

工作原理就是离子的交换。 运行时:阳树脂(H-R)+(M+)-->:(M-R)+(H+) 阴树脂(OH-R)+(X-)-->:(X-R)+(OH-) 其中M+为金属离子,X-为阴离子。 再生过程为其逆过程。 离子交换器的失效控制 离子交换除盐水处理最简单的流程为阳床-阴床组成的一级复床除盐系统。有的一级复床除盐系统采用单元制,即每套一级复床除盐系统包括阳床、(除碳器)、阴床各一台,在离子交换除盐运行过程中,无论是阳床还是阴床先失效,都是同时再生;还有的一级复床除盐系统采用母管制,即阳床与阳床或阴床与阴床是并联运行的,哪一台交换器失效就再生哪一台。 1 检测和控制原理 强酸性阳树脂对水中各种阳离子的吸附顺序为:Fe3+>Al3+>Ca2+>Mg2+>Na+>H+. ;由此可知,水中金属离子Na+被吸附的能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,H+.最后被其他阳离子置换下来,当保护层穿透时,首先泄漏的是最下层的Na+;因此监督阳离子交换器失效是以漏钠为标准的;其反应方程为(A代表金属阳离子,R 为树脂基团): An+ +nRH=RnA+n H+ HCO3- + H+ =H2O+CO2↑ 强碱性阴树脂对水中各种阴离子的吸附顺序为: SO42->NO3->Cl->OH->HCO3->HSiO3- 。由此可知,HSiO3-的吸附能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,OH-.被其他阴离子置换下来,当保护层穿透时,首先泄漏的是最下层的HSiO3-;因此监督阴离子交换器失效是以漏硅为标准的;其反应方程为(B代表酸根阴离子,R为树脂基团): Bm- +mROH=RmB+mOH- 2 控制点和控制方法 由于母管制系统包含了单元制系统,而且它具有能充分使用树脂、提高交换器的出水能力、降低酸碱消耗等优点,我们在研究中主要讨论以这种结构为基础的离子交换除盐水处理系统。 以成都生物制品研究所蛋白分离车间纯水站为例,该系统为母管制水处理系统,系统的结构为:砂滤-活性炭过滤-粗滤-阳床- 一阴-二阴-混床-精滤-纯水罐,系统产水能力为5 t/h,在系统的失效控制研究中,我们提出单元失效控制概念,也就是充分利用了母管制制水系统的优点对系统进行失效控制。 (1)RO对各有机溶质的去除率大于NF膜。(2)不同有机溶质的去除率不相同,有的甚至相差很大(例如,RO和NF膜对乙酸的吸光度去除率分别为95.34%、81.45%,而对苯胺的吸光度去除率则分别为61.50%、46.82%)。 3 出水水质 原水经一级复床除盐后,电导率(25℃)低于10μS/cm,水中硅含量低于100μg/

离子交换的应用领域

离子交换的应用领域 1水处理 水处理领域的离子交换树脂需求量很大,约占离子交换树脂产量的90%,用于去除水中的各种阴、阳离子。特别地,离子交换树脂的最大消耗环节是火力发电厂的纯水处理工艺,其次是原子能、半导体和电子工业等,尤其以水的软化为核心功能。水的软化处理是指利用阳离子交换树脂中可交换的阳离子(如、)把水中所含钙、镁离子交换出来的过程。 1.1钠离子交换软化法 钠离子交换软化法是最简单、最常见的一种软化方法,可以去除水中的暂时硬度和永久硬度。适用于原水碱度低,只须进行软化的场合,可用作低压锅炉的给水处理系统。特点包括处理过程中不会产生酸性水、再生剂一般为已获得的食盐、设备和防腐设施简单、水中碱度基本不改变等,但交换水中含盐量会略有增加。 1.2氢离子交换软化法 H型强酸阳离子交换树脂的软化反应式: 由上述反应式可以看出,原水中碳酸盐硬度(暂时硬度)在交换过程中会形成碳酸,因此在软化水的同时能去除碱度;非碳酸盐硬度(永久硬度)在交换过程中除软化外还生成了相应的酸。由于出水为酸性,一般总是与钠离子交换器联合使用,或采取其他措施中和。 1.3氢-钠离子交换脱碱软化法 因强酸性氢-钠离子交换法中氢离子交换器出水含有游离酸,呈酸性;而钠离子交换器出水含碱。这两部分水混合后发生中和反应,产生的可用除二氧化碳器去除。进而既降低了碱度,又除去了硬度。该方法适用于原水硬度高且碱度大的情况,分并联和串联两类。 并联形式是指需要保证最后的出水不呈酸性同时又保留一定的残留碱度时采取的连接方式。这就要求我们必须根据进水水质,适当地调整流经两个不同离子交换器的水量比例。并联形式的氢-钠离子交换脱碱软化法应运而生。其中,氢离子交换器以控制出水漏钠为运行终点。它的优点有出水碱度小、设备费用低且投资少。缺点是再生剂耗量大、对运行控制的精度要求高和酸水系统需要进行

离子交换法的工作原理及软水器的工作过程

离子交换法的工作原理及软水器的工作过程 离子交换树脂是一种聚合物,带有相应的功能基团。一般情况下,常规的钠离子交换树脂带有大量的钠离子。 当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。硬水就变为软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。 由于实际工作的需要,软化水设备的标准工作流程主要包括: 工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般需要5-15分钟左右。 吸盐(再生):即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入(只要进水有一定的压力即可)。在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响。 慢冲洗(置换):在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换。这个过程一般与吸盐的时间相同,即30分钟左右。 快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水。一般情况下,快冲洗过程为5-15分钟。 离子交换法---软水器的工作原理 时间:2010-09-11 09:46来源:未知作者:阿青点击:34次 离子交换法---软水器的工作原理离子交换树脂是一种聚合物,带有相应的功能基团。一般情况下,常规的钠离子交换树脂带有大量的钠离子。当水中的钙镁离子含量高时,离子交

离子交换层析

离子交换层析 1、定义 2、发展 1848年,Thompson等人在研究土壤碱性物质交换过程中发现离子交换现象。本世纪40年代,出现了具有稳定交换特性的聚苯乙烯离子交换树脂。50年代,离子交换层析进入生物化学领域,应用于氨基酸的分析。目前离子交换层析仍是生物化学领域中常用的一种层析方法,广泛的应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等的分离纯化。常用的离子交换剂有:离子交换纤维素、离子交换葡聚糖和离子交换树脂。 3、基本信息 离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阳离子交换树脂;而带有负电荷的称之阴离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。 4、具体操作 预处理和装柱 对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤。溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带H+或OH-的交换剂型。阴离子交换剂常用“碱-酸-碱”处理,使最终转为-OH-型或盐型交换剂;对于阳离子交换剂则用“酸-碱-酸”处理,使最终转为-H-型交换剂。 洗涤好的纤维素使用前必须平衡至所需的pH和离子强度。已平衡的交换剂在装柱前还要减压除气泡。为了避免颗粒大小不等的交换剂在自然沉降时分层,要适当加压装柱,同时使柱床压紧,减少死体积,有利于分辨率的提高。

离子交换树脂的使用说明

离子交换树脂的使用说明 一、贮存与运输 离子交换树脂一般是在充分膨胀、湿润的球粒状态下供应,在贮存、运输过程中要保持包装完好无损,避免树脂脱水、冻裂及污染。不能露天存放,存放处的温度为0—40℃,当存放处温度稍低于0℃时,应向包装内加入澄清的饱和食盐水,浸泡树脂。此外,当存放处温度过高时,不但使树脂易于脱水,还会加速阴树脂的降解。一旦树脂失水,使用时不能直接加水,可用澄清的饱和食盐水浸泡,然后再逐步加水稀释,洗去盐分,贮存期间应使其保持湿润。 二、脱水树脂复苏 树脂干燥失水是最大危险之一,失水树脂用10%食盐水浸泡1—2小时,然后稀释,再投入使用,以防止树脂水合急剧膨胀而破损。 三、树脂鉴别 使用单位存放树脂和填装时发生混淆,必须鉴别,确认后,投入装置,以充分发挥树脂的工作性能。 1、鉴别001×7和201×7两种树脂,可以利用湿真密度不同而区别,取一点树脂放入饱和食盐盐水中,浮在上面的是201×7阴树脂,下沉的则是001×7阳树脂。 2、鉴别强弱型阳树脂,一是外观,强酸性阳树脂为棕黄色,弱酸性阳树脂为乳白色或淡黄色,二是用转型膨胀率判断,阳树脂用盐酸转为H型,再用烧碱转为Na型,是其体积膨胀,弱酸性树脂明显大于强酸性树脂。 3、鉴别强弱型阴树脂,可以利用加酚酞的氢氧化钠浸泡10min,用无离子水洗净后,强型阴树脂呈紫色,大孔强型阴树脂呈粉红色,弱型阴树脂不变色。 四、树脂预处理 将准备装柱使用的新树脂,先用热水(清洁的自来水也可)反复清洗,阳离子交换树脂可用70—80℃的热水,阴离子交换树脂的而热性能较差一些,可用50—60℃热水。开始浸洗时,每隔15分钟换水一次,浸洗时要不时搅动,换水4—5次后,可隔约30分钟换水一次,总共换水7—8次,浸洗至浸洗水不带褐色,泡沫很少时为止。 水洗后,再经酸碱处理,阳离子交换树脂可按下述步骤处理: 1、用1N盐酸缓慢流过树脂,用量约为强酸阳树脂体积的2—3倍,弱酸阳树脂体积的3—5倍,每小时1.5倍床层体积流过。 2、用水冲洗,出水PH为5左右,用3倍树脂体积5%的NaCl溶液流过树脂,流速与1相同。 3、用1NNaOH流过树脂,用量及流速与1相同。 4、用水冲洗至出水PH为9左右。 5、用1N盐酸或硫酸,将树脂转成H-型,用量为树脂体积的3—5倍,流速与1相同。 6、酸流完后,用去离子水冲洗至出水PH值为6以上时,即可投入使用。 对于阴离子交换树脂水洗后的酸、碱处理次序,可采用碱→酸→碱次序,酸、碱用量及流速,与阳树脂相对应,弱碱阴树脂与弱酸阳树脂相对应。 五、离子交换树脂的复活处理 1、铁污染:树脂被铁污染后,颜色变深甚至发黑,可以用二倍树脂体积10%的盐酸,以约0.6m/h流速通过树脂层,然后用同样流速40℃的清水清洗,最后用过量的NaOH再生(阳树脂)。 2、硅污染:被树脂吸附的硅酸,在低PH的条件下,容易聚合为高聚物沉淀于树脂中,可用40—50℃,6%—8%NaOH溶液浸泡,再用清水洗,为避免硅污染,应适当提高再生剂的浓度和温度。

相关文档
最新文档