母函数
母函数

母函数(生成函数)(发生函数)(发生函数)英文:generating function我们已知道了解决组合的计数问题的几种方法,从基本的加法原理和乘法原理开始,导出了排列与组合的各种公式,证明了容斥原理,并且已用它来解决某些计数问题。
这里将论证一种方法是属于Eular 的生成函数法。
(对工程师来说,数列的母函数通称为z-变换)§1 母函数利用生成函数可以说是研究计数问题的一个最主要的一般方法:其基本思想很简单:为了获得一个数列{} 210,,0:a a a k a k=≥的知识,我们用一个母函数+++=∑=≥22100)(x a x a a xa x g kk k这里x k 是指数函数来整体地表示这个数列,称g (x )是数列{}0:kx a k 的普通母函数,这样原数列就转记为成函数。
假如能求得这个函数,则不仅原则上已确定了原数列,还可以通过对函数的运算和分析得到这个数列的许多性质。
这里如果把x k 提成)(x k μ亦称普通母函数指数函数通常选来使得没有两个不同的序列令产生同一个母函数,故序列的母函数仅只是序列的另一种表示。
如1,cos x ,cos2x ,…为指数函数,序列{}2,,1ωω的母函数为+++++=rx x x x F rcos 2cos cos1)(2ωωω另一方面,用,1,1+x ,1-x ,1+x 2,1-x 2,…,1+x r ,1-x r …作为指数函数,序列(3,2,6,0,0)的普通母函数是3+2(1+x )+6(1-x )=11-4x ,而序列(1,3,7,6,0)和(1,2,6,1,1)会产生同一母函数即,1+3(1+x )+7(1-x )=11-4x ,xx x x x 411)1()1()1(6)1(2122-=-+++-+++故函数 ,1,1,1,1,122x x x x -+-+不应做为指数函数,)(x r μ的最近常用的是r x ,以下我们仅讨论这种情况的指数函数。
母函数(生成函数)

母函数(⽣成函数)介绍母函数是组合数学中相当重要的⼀个知识点,可以⽤来解决⼀些排列组合问题,还有所有的常系数线性齐次递推问题。
如果系数不是常数,需要根据具体情况进⾏处理。
具体的内容可以看组合数学相关书籍或者,由于⼤佬总是想当然地把别⼈当成⼤佬,⼀些内容对(像我这种)蒟蒻来说不是很友好,在这⾥讲⼀下母函数的基础。
(研究母函数时,钦定|x|<1),这样,由等⽐数列求和公式有:11−x=∑∞i=0x i=1+x+ (x)11−kx=∑∞i=0k i x i=1+kx+...+k∞x∞1.普通型母函数。
假设有⼀个数列a,那么它的母函数其实就是⼀个关于x的多项式,x n的系数为a n,对于已知通项的数列,其母函数可以直接写出来。
⽽对于未知的数列,主要分为两类:递推型和组合型。
递推型就是利⽤错位相消,举个栗⼦:a n=3a n−1+10a n−2,a0=1,a1=2移项,得a n−3a n−1−10a n−2=0,设a n的母函数为G(x)G(x)=a0+a1x+a2x2+a3x3...−3xG(x)=−3a0x+(−3)a1x2+(−3)a2x3...−10x2G(x)=−10a0x2+(−10)a1x3三⾏相加,可以发现等式右侧除了第⼀⾏的第1,2项和第⼆⾏的第1项外全消掉了。
所以我们可以得到(1−3x−10x2)G(x)=a0+a1x−3a0x=1−x,即G(x)=1−x1−3x−10x2,⽣成函数就求出来了,那如果我们还要求an的通项呢?对于这种东西,我们可以把他化成k1x−A+k2x−B这种形式,其中A和B由分母的因式分解唯⼀确定,然后k1,k2可由待定系数法解得。
然后对于kx−A,总可以化成k′∗11−Nx,就是k′∑∞i=0N i x i,找出x k的系数就是a n,如果母函数拆开成多个该类分式的话各部分相加就好。
具体计算就不算了。
PS:⼀部分⾮齐次线性递推其实也可以这样解,⽐如a n−3a n−1−10a n−2=f(n),按照上述⽅法错项后会剩下⼀个等⽐数列和前⼏项余项。
母函数与指数型母函数

比较等式两端的常数项,可以得到恒等式:
C(m n, m) C (n, 0)C (m, 0) C (n,1)C (m,1) C(n, m)C(m, m).
又如在等式 (1 x)n C(n,0) C(n,1)x C(n, n)xn
注意到,出现1,5有两种选法,出现2,4也有两 种选法,而出现3,3只有一种选法,按加法法则, 共有2+2+1=5种不同选法。
或者,第一个骰子除了6以外都可选,有5种选法, 一旦第一个选定,第二个骰子就只有一种可能的选 法,按乘法法则有5×1=5种。
但碰到用三个或四个骰子掷出n点,上述两方法就 不胜其烦了。
a1 a3 a5 a7 0, a0 1, a2 C(8, 2) 28,
a4 C(8, 4) 70, a6 C(8, 6) 28, a8 1. 因此序列a1,a2,…,a8对应的母函数为:
A( x) 1 28x2 70x4 28x6 x8 .
类似可得女同志的允许组合数对应的母函数为
1: b0 a0 x: b1 a0 a1 x2: b2 a0 a1 a2
__+_)___x_k:_b_k _a_0 __a1__a_2 ____ak________
B( x) a0 /(1 x) a1 x /(1 x) a2 x2 /(1 x)
[a0 a1 x a2 x2 ] /(1 x) A( x) /(1 x).
中令x=1 可得 C(n, 0) C(n,1) C(n, 2) C(n, n) 2n.
两端对x求导可得:
n(1 x)n1 C(n,1) 2C(n,2)x nC(n,n)xn1,
母函数

G ( x ) ( x )( x )( x )( x i ) x 8 1 4 0 x18 x 28
i i i i 1 i 1 i2 i 4
5
6
7
10
而x 18的 系 数 140就 是 所 求 的分配方案数。
15
例 从 n双 互 相 不 同 的 鞋 取 中 出 r只 ( r n) , 要 求 其 中 没 有 任 何 两 只成 是对 的 , 问 共 有 多 少不 种同 的 取法?
于是本题相当于 分 析 : 令 S {5 e1 ,6 e 2 ,7 e 3 ,10 e 4 }, 多 重 集 S的 18可 重 组 合 问 题 。 其中e 1至 少 出 现 1次 , 最 多 出 现 5次 ;2e 至 少 出 现 1次 , 最 多 现 出 6次 ; e 3至 少 出 现 2次 , 最 多 出 现 7次 ;4e 至 少 出 现 4次 , 最 多 现 出 10次 。 由 推 论 6, 相 应 的 母 函 数为
2 4 2r
1 ) n ( 1 x 2 )
n
1 2 n 证 G(x) ( 1 x ) 2 n ( 1 x )
n n k 1 2k k 2k ( 1) k x k x k 0 k 0
8
如果多重集 S { n1 e 1, n 2 e 2 ,, n m e m }, 则S的 r可 重 组 合 数 相 当 于 方 程 x 1 x 2 x n r x 1 n1, x 2 n 2 ,, x m n m 的 非负 整 数解 的 个 数相 。应的母函数为 G ( x ) ( 1 x x 2 x n1 ) ( 1 x x 2 x n2 ) ( 1 x x 2 x nm )
5.5母函数法

于是有
x1 5 x2 5 F x x1 1 x1 x 1 x2 x x
n 0
5
x x x
n n 0 1
2
5
x x
n 0 2
n
n 1 1
5x
n 1 2
5
n
xn
n 1 因此 Fn x1n 1 x2
F
n2 n2
n F x n 1 n2
F0 F1 x x Fn 1 x
n 1
x Fn 2 x n 2
2 n2
2 n F0 F1 x x Fn x F0 x Fn x n n 0 n 0 1 xF x x 2 F x
n2 n
n 1
2x
2
2
n2 n 1 x n2
ห้องสมุดไป่ตู้
2 x x an x 2 x
n 1
n 1 x
n 0
n
2 x xf x
2x2
2 (由式(1.22)) 1 x
解 f x 得
由式(1.22)知
而
2 x f x 2an x
2 n 0
n2
2an 2 x n
n2
将以上三个式子的两边分别相加并由式(5.28)有
x x f x 1 x 2 x f x n 1 a n 2 a
2
又由式(1.21)知
在上式中令 z 4 x 有
【工程数学课件】4.3 母函数

或取两次,L ,或取r次,L ,是用如下形式表示:
1 x x2 L xr +L
2!
r!
例5 证明从n个不同的物体中允许重复地选取r个物体 的排列数为nr。
解:设ar为所求的排列数,则序列(a0 ,a1,a2,L ,ar ,L )的 指数母函数为:
fe(x) 1
x
x2 2!
L
xr r!
每个物体出现偶数次的方式数。 解:设a2r为所求的方式数,则序列(a0 ,a1,L ,ar ,L )的普 通母函数为:
f
(x)
(1
x2
x4
L
)n
1
1 x2
n
r 0
n
r r
1
x2r
故有:a2r
n
r r
1
六、指数母函数在排列中的应用
与组合不同的是,某个物体在排列中不取,或取一次,
n n
x
n
1
xn
二、指数母函数
定义 fe ( x
)给 定 a0 一 a个1 1无 x! 穷a序2 x2列2! (aL0,
a1 ,L an
,xann n!
,L ),称函数
L
ai i0
xi i!
为序列(a0 ,a1,L ,an ,L )的指数母函数。
例5 容易得到序列(p(n,0), p(n,1),L , p(n, n))的指数母
x4)(142x4)L4(14 3x)
n
(1
x)n
n r 0
n
r
xr
x
r
的系数
n r
为从n个不同的物体选取r个的方法数.
(1 x x2L ) 表示某一物体可以不选,或选一次, 或选二次,…
组合数学 第四章2母函数的性质

§4.3 在选优法上的应用
可见做两次试验,至少可把区间缩至原来区
间的2/3,比如
f (,x1)进一f 步(x2在)
(a, x区2 ) 间上找极值点。若继续用三等分法,
将面对着这一实事即其中 点的x1 试验没发挥其
作用。为此设想在 区间(0的,1)两个对称点
分别x做,l 试 x验。
0 lx x 1
§4.3 在选优法上的应用
__________ __________ ____ ) Fn2 Fn(Fn1 Fn1) FnFn1 Fn1Fn
F12 F 22 Fn2 Fn Fn1
§4.3 在选优法上的应用
设函数 y f (x) 在区间 (a,b) 上有一单峰
极值点,假定为极大点。
所谓单峰极值,即只有一个极值点 ,而且
设保留(0, x) 区间,继续在 (0, x) 区间的下面 两个点 x2, (1 x)x 处做试验,若
x2 1 x
则前一次1 x 的点的试验,这一次可继续使
用可节省一次试验。
x2 x 1 0
x 1 5 0.618 2
0 0.382 (0.618)2 0.618
1
§4.3 在选优法上的应用
______________
F2n F2n2
F1 F3 F5 F2n1 F2n
§4.3 若干等式
3) 证明:
F12
F
2 2
F12 F2F1
Fn2 Fn Fn1
F22 F2 (F3 F1) F2F3 F2F1
F32 F3 (F4 F2 ) F3F4 F2F3
§4.2 母函数的性质
例. A(x) sin x x x3 x5 3! 5!
组合数学(第二版)母函数及其应用

考虑座位号),其中,甲、乙两 班最少1张,甲班最多5张,乙班最
多6张;丙班最少2张,最多7张;丁班最少4张,最 多10张.可有多
少种不同的分配方案?
母函数及其应用
母函数及其应用
【例 2.1.5】 从n 双互相不同的鞋中取出r 只(r≤n),要求
其中没有任何两只是成对 的,共有多少种不同的取法?
母函数及其应用
(1+x)n .
【例 2.1.2】 无限数列{1,1,…,1,…}的普母函数是
母函数及其应用
说明
(1)an 的非零值可以为有限个或无限个;
(2)数列{an}与母函数一一对应,即给定数列便得知它的
母函数;反之,求得母函数则数列也随之而定;
(3)这里将母函数只看作一个形式函数,目的是利用其有
关运算性质完成计数问题, 故不考虑“收敛问题”,即始终认
红红、黄黄、蓝蓝、红黄、黄红、红蓝、蓝红、黄蓝、 蓝
黄.其它情形依此类推.
母函数及其应用
这里需要说明的是:
(1)在例2.1.3中,利用普母函数可以将组合的每一种情况
都枚举出来,但是对排列问 题,指母函数却做不到,只能对排列
进行分类枚举.正如例2.3.1这样,项ryb 的系数6说 明红、蓝、
黄球各取一个时,有6种排列方案,但每一种方案具体是什么,
(每个数字可重复出现), 要求其中3,7出现的次数为偶数,1,5,9
出现的次数不加限制.
母函数及其应用
【例 2.3.4】 把上例的条件改为要求1、3、7出现的次数
一样多,5和9出现的次数不 加限制.求这样的n 位数的个数.
解 设满足条件的数有bn 个,与例2.1.6的分配问题类似,即
将n 个不同的球放入标号 为1、3、5、7、9的5个盒子,其中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
母函数
定义对给定序列构造一个函数,称为序列的母函数。
其中,序列只作为标志用,称为标志函数。
派生1:普通型母函数
当标志函数为时,即母函数为,称这类母函数为普通型母函数,可记作。
定理1:
设从元集合中取个元素组合,若限定元素出现次数的集合为,则该组合数序列的母函数为:
常用到的普通型母函数有:
例题:求位十进制正数中出现偶数个的数的个数
设表示位十进制正数中出现偶数个的数的个数,表示位十进制正数中出现奇数个的数的个数,不难得出:设序列,的母函数分别为:
由得:
再由得:
由、可得:
更进一步的,
即:
派生2:指数型母函数
当标志函数为时,即母函数为,称此类母函数为指数型母函数,可记作。
定理2:
从多重集中选区个元素排列,若元素出现的次数集合为,则该排列数序列的母函数为:
所谓多重集(multiset)之于集合(set),英文写出来差不多就懂了。
函数中,除以是因为排列中这个相同元素的先后是不考虑的。
常见的指数型母函数(的Tylor展开式):
例题:求由这个数字组成的位数字的个数(每个数字出现次数可以为,且出现的次数为偶数)。
设满足条件的位数字的数目为(特别地,规定),则序列的母函数为:
故。
附录:
推荐的文档组合数学--母函数与递推朱全民。