母函数与指数型母函数

合集下载

母函数与指数型母函数

母函数与指数型母函数

性质5:若bk=kak,则
B( x ) xA '( x ).
性质6:若bk=ak/(1+k),则 1 x B ( x ) A( x )dx. x 0 例7 已知 A( x ) 1 x x 2 x n 则
1 , 1 x
B( x) x 2 x 3 x
若信号输入的序列u0,u1,…的母函数为U(x),输出的 信号序列v0,v1,…的母函数为V(x),则
V ( x ) (1 x x 3 )U ( x ) P ( x )U ( x ),
其中
P ( x) 1 x x 3 被装置的特性所确定,称为该装置的传递函数。
例2 有红球两个,白球、黄球各一个,试求有多少种 不同的组合方案。 设r,w,y 分别代表红球,白球,黄球。
性质4:若bk=ak+ak+1+…,则 A(1) xA( x ) B( x) . 1 x 1: b0 a0 a1 a2 A(1) x: b1 a1 a2 a3 A(1) a0 x2: b2 a2 a3 a4 A(1) a0 a1 +)
类似还可以得到 2 C (n,1) 2 C(n, 2)
n C(n, n) n(n 1)2
2
n 2
.
还可以类似地推出一些等式,但通过上面一些例子 已可见函数(1+x)n在研究序列 C(n,0),C(n,1),…,C(n,n)的关系时所起的作用。 定义:对于序列a0,a1,a2,…,函数
a1 a3 a5 a7 0, a0 1, a2 C (8, 2) 28,
a4 C (8,4) 70, a6 C (8,6) 28, a8 1.

母函数(生成函数)

母函数(生成函数)

母函数(⽣成函数)介绍母函数是组合数学中相当重要的⼀个知识点,可以⽤来解决⼀些排列组合问题,还有所有的常系数线性齐次递推问题。

如果系数不是常数,需要根据具体情况进⾏处理。

具体的内容可以看组合数学相关书籍或者,由于⼤佬总是想当然地把别⼈当成⼤佬,⼀些内容对(像我这种)蒟蒻来说不是很友好,在这⾥讲⼀下母函数的基础。

(研究母函数时,钦定|x|<1),这样,由等⽐数列求和公式有:11−x=∑∞i=0x i=1+x+ (x)11−kx=∑∞i=0k i x i=1+kx+...+k∞x∞1.普通型母函数。

假设有⼀个数列a,那么它的母函数其实就是⼀个关于x的多项式,x n的系数为a n,对于已知通项的数列,其母函数可以直接写出来。

⽽对于未知的数列,主要分为两类:递推型和组合型。

递推型就是利⽤错位相消,举个栗⼦:a n=3a n−1+10a n−2,a0=1,a1=2移项,得a n−3a n−1−10a n−2=0,设a n的母函数为G(x)G(x)=a0+a1x+a2x2+a3x3...−3xG(x)=−3a0x+(−3)a1x2+(−3)a2x3...−10x2G(x)=−10a0x2+(−10)a1x3三⾏相加,可以发现等式右侧除了第⼀⾏的第1,2项和第⼆⾏的第1项外全消掉了。

所以我们可以得到(1−3x−10x2)G(x)=a0+a1x−3a0x=1−x,即G(x)=1−x1−3x−10x2,⽣成函数就求出来了,那如果我们还要求an的通项呢?对于这种东西,我们可以把他化成k1x−A+k2x−B这种形式,其中A和B由分母的因式分解唯⼀确定,然后k1,k2可由待定系数法解得。

然后对于kx−A,总可以化成k′∗11−Nx,就是k′∑∞i=0N i x i,找出x k的系数就是a n,如果母函数拆开成多个该类分式的话各部分相加就好。

具体计算就不算了。

PS:⼀部分⾮齐次线性递推其实也可以这样解,⽐如a n−3a n−1−10a n−2=f(n),按照上述⽅法错项后会剩下⼀个等⽐数列和前⼏项余项。

高考数学冲刺复习母函数考点速查

高考数学冲刺复习母函数考点速查

高考数学冲刺复习母函数考点速查高考对于每一位学子来说都是人生中的一次重要挑战,而数学作为其中的关键学科,更是备受关注。

在高考数学的众多考点中,母函数是一个较为复杂但又十分重要的知识点。

在冲刺复习阶段,对母函数考点进行速查和强化,能够帮助我们在考试中更加从容应对。

一、什么是母函数母函数,简单来说,就是一种将数列与多项式联系起来的工具。

通过母函数,我们可以将一个数列的各项用一个多项式的系数来表示。

例如,对于数列 1,2,3,4,5,其对应的母函数可以表示为 G(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 。

母函数的作用在于它能够将一些离散的数量关系转化为连续的函数形式,从而便于我们进行分析和计算。

二、常见的母函数类型1、普通型母函数普通型母函数主要用于解决组合计数问题。

比如,从 n 个不同元素中选取 r 个元素的组合数,可以通过普通型母函数来表示和计算。

2、指数型母函数指数型母函数通常用于解决排列计数问题。

在涉及到具有重复元素的排列时,指数型母函数能够发挥重要作用。

三、母函数的基本运算1、加法运算两个母函数相加,就是将它们对应的多项式的系数相加。

例如,G1(x) = 1 + 2x + 3x^2 ,G2(x) = 2 + 3x + 4x^2 ,则 G1(x) + G2(x) = 3 + 5x + 7x^2 。

2、乘法运算母函数的乘法运算对应着组合问题中的分步计数原理。

例如,G1(x) = 1 + 2x ,G2(x) = 1 + 3x ,则 G1(x)×G2(x) = 1 + 5x + 6x^2 。

四、母函数在解题中的应用1、求解组合数通过构造合适的母函数,可以方便地求出特定条件下的组合数。

例如,求从 5 个不同的球中选取 2 个球的组合数。

我们可以设母函数 G(x) =(1 + x)^5 ,展开后 x^2 的系数即为所求组合数。

2、解决分配问题在将一定数量的物品分配到不同的容器或分组的问题中,母函数能够清晰地展现各种可能的分配情况。

母函数

母函数

G ( x ) ( x )( x )( x )( x i ) x 8 1 4 0 x18 x 28
i i i i 1 i 1 i2 i 4
5
6
7
10
而x 18的 系 数 140就 是 所 求 的分配方案数。
15
例 从 n双 互 相 不 同 的 鞋 取 中 出 r只 ( r n) , 要 求 其 中 没 有 任 何 两 只成 是对 的 , 问 共 有 多 少不 种同 的 取法?
于是本题相当于 分 析 : 令 S {5 e1 ,6 e 2 ,7 e 3 ,10 e 4 }, 多 重 集 S的 18可 重 组 合 问 题 。 其中e 1至 少 出 现 1次 , 最 多 出 现 5次 ;2e 至 少 出 现 1次 , 最 多 现 出 6次 ; e 3至 少 出 现 2次 , 最 多 出 现 7次 ;4e 至 少 出 现 4次 , 最 多 现 出 10次 。 由 推 论 6, 相 应 的 母 函 数为
2 4 2r
1 ) n ( 1 x 2 )
n
1 2 n 证 G(x) ( 1 x ) 2 n ( 1 x )
n n k 1 2k k 2k ( 1) k x k x k 0 k 0
8
如果多重集 S { n1 e 1, n 2 e 2 ,, n m e m }, 则S的 r可 重 组 合 数 相 当 于 方 程 x 1 x 2 x n r x 1 n1, x 2 n 2 ,, x m n m 的 非负 整 数解 的 个 数相 。应的母函数为 G ( x ) ( 1 x x 2 x n1 ) ( 1 x x 2 x n2 ) ( 1 x x 2 x nm )

母函数

母函数

母函数
定义对给定序列构造一个函数,称为序列的母函数。

其中,序列只作为标志用,称为标志函数。

派生1:普通型母函数
当标志函数为时,即母函数为,称这类母函数为普通型母函数,可记作。

定理1:
设从元集合中取个元素组合,若限定元素出现次数的集合为,则该组合数序列的母函数为:
常用到的普通型母函数有:
例题:求位十进制正数中出现偶数个的数的个数
设表示位十进制正数中出现偶数个的数的个数,表示位十进制正数中出现奇数个的数的个数,不难得出:设序列,的母函数分别为:
由得:
再由得:
由、可得:
更进一步的,
即:
派生2:指数型母函数
当标志函数为时,即母函数为,称此类母函数为指数型母函数,可记作。

定理2:
从多重集中选区个元素排列,若元素出现的次数集合为,则该排列数序列的母函数为:
所谓多重集(multiset)之于集合(set),英文写出来差不多就懂了。

函数中,除以是因为排列中这个相同元素的先后是不考虑的。

常见的指数型母函数(的Tylor展开式):
例题:求由这个数字组成的位数字的个数(每个数字出现次数可以为,且出现的次数为偶数)。

设满足条件的位数字的数目为(特别地,规定),则序列的母函数为:
故。

附录:
推荐的文档组合数学--母函数与递推朱全民。

【工程数学课件】4.3 母函数

【工程数学课件】4.3 母函数

或取两次,L ,或取r次,L ,是用如下形式表示:
1 x x2 L xr +L
2!
r!
例5 证明从n个不同的物体中允许重复地选取r个物体 的排列数为nr。
解:设ar为所求的排列数,则序列(a0 ,a1,a2,L ,ar ,L )的 指数母函数为:
fe(x) 1
x
x2 2!
L
xr r!
每个物体出现偶数次的方式数。 解:设a2r为所求的方式数,则序列(a0 ,a1,L ,ar ,L )的普 通母函数为:
f
(x)
(1
x2
x4
L
)n
1
1 x2
n
r 0
n
r r
1
x2r
故有:a2r
n
r r
1
六、指数母函数在排列中的应用
与组合不同的是,某个物体在排列中不取,或取一次,
n n
x
n
1
xn
二、指数母函数
定义 fe ( x
)给 定 a0 一 a个1 1无 x! 穷a序2 x2列2! (aL0,
a1 ,L an
,xann n!
,L ),称函数
L
ai i0
xi i!
为序列(a0 ,a1,L ,an ,L )的指数母函数。
例5 容易得到序列(p(n,0), p(n,1),L , p(n, n))的指数母
x4)(142x4)L4(14 3x)
n
(1
x)n
n r 0
n
r
xr
x
r
的系数
n r
为从n个不同的物体选取r个的方法数.
(1 x x2L ) 表示某一物体可以不选,或选一次, 或选二次,…

算法合集之《母函数的性质及应用》

算法合集之《母函数的性质及应用》

x 取 f ( x ) e , x 0 0 ,得 e x 1 x
x 2 x3 x 4 G ( x) , 2! 3! 4!
也就是说序列 1,1,1,1, 的指数型母函数的闭形式为 e x 。 同样运用 Taylor 公式,我们可以得到: 序列 1,1,1,1,1,1, 的指数型母函数为 e x 。 序列 0,1,0,1,0,1, 的指数型母函数为
m1 学归纳法同样可以得到结果 g n Cm n1 。
1 1 1 ,之后运用数 m 1 x (1 x) m1 (1 x)
那么闭形式
1 m1 m1 m1 对应的序列为 1, Cm , Cm 1 , Cm 2 , 。 (1 x) m
1 1 , 我们可以把 x 看成一个整体后来展开, 参考 的 1 x 1 x
关键字
母函数 递推 排列组合
§1.母函数的性质
§1.1. 定义
母函数是用于对应一个无穷序列的幂级数,一般来说母函数有形式:
G ( x) g 0 g1 x g 2 x 2 g n x n
n0
我们称 G( x) 是序列 g 0 , g1 , g 2 , 的母函数,下文表示为:
(1 x) m
§1.4. 指数型母函数
有时候序列 g n 所具有的母函数的性质十分复杂, 而序列
gn 所具有的母函数的 n!
性质十分简单,那我们宁愿选择
gn 来研究,然后再乘以 n! 。 n!
我们称:
G ( x) g n
n0
xn 为序列 g 0 , g1 , g 2 , 的指数型母函数。 n!
G( x) g 0 , g1 , g 2 ,

组合数学(第二版)母函数及其应用

组合数学(第二版)母函数及其应用

考虑座位号),其中,甲、乙两 班最少1张,甲班最多5张,乙班最
多6张;丙班最少2张,最多7张;丁班最少4张,最 多10张.可有多
少种不同的分配方案?
母函数及其应用
母函数及其应用
【例 2.1.5】 从n 双互相不同的鞋中取出r 只(r≤n),要求
其中没有任何两只是成对 的,共有多少种不同的取法?
母函数及其应用
(1+x)n .
【例 2.1.2】 无限数列{1,1,…,1,…}的普母函数是
母函数及其应用
说明
(1)an 的非零值可以为有限个或无限个;
(2)数列{an}与母函数一一对应,即给定数列便得知它的
母函数;反之,求得母函数则数列也随之而定;
(3)这里将母函数只看作一个形式函数,目的是利用其有
关运算性质完成计数问题, 故不考虑“收敛问题”,即始终认
红红、黄黄、蓝蓝、红黄、黄红、红蓝、蓝红、黄蓝、 蓝
黄.其它情形依此类推.
母函数及其应用
这里需要说明的是:
(1)在例2.1.3中,利用普母函数可以将组合的每一种情况
都枚举出来,但是对排列问 题,指母函数却做不到,只能对排列
进行分类枚举.正如例2.3.1这样,项ryb 的系数6说 明红、蓝、
黄球各取一个时,有6种排列方案,但每一种方案具体是什么,
(每个数字可重复出现), 要求其中3,7出现的次数为偶数,1,5,9
出现的次数不加限制.
母函数及其应用
【例 2.3.4】 把上例的条件改为要求1、3、7出现的次数
一样多,5和9出现的次数不 加限制.求这样的n 位数的个数.
解 设满足条件的数有bn 个,与例2.1.6的分配问题类似,即
将n 个不同的球放入标号 为1、3、5、7、9的5个盒子,其中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类似还可以得到 C(n,1) 22C(n, 2) L n2C(n, n) n(n 1)2n2.
还可以类似地推出一些等式,但通过上面一些例子 已可见函数(1+x)n在研究序列 C(n,0),C(n,1),…,C(n,n)的关系时所起的作用。
定义:对于序列a0,a1,a2,…,函数 G( x) a0 a1x a2 x2 L
xm [C(m n, 0) C(m n,1) x C(m n, 2) x2 L C(m n, m n) xmn
比较等式两端的常数项,可以得到恒等式:
C(m n, m) C(n, 0)C(m, 0) C(n,1)C(m,1) L C(n, m)C(m, m).
又如在等式 (1 x)n C(n,0) C(n,1)x L C(n, n)xn
这就是二项式展开定理。
(1 x)m (1 x)n (1 x)mn
[C(n,0) C(n,1)x L C(n,n)xn] [C(m,0) C(m,1) x L C(m, m) x m ]
C(m n,0) C(m n,1)x L C(m n,m n)xmn
比较等号两端项对应系数,可以得到恒等式:
V ( x) (1 x x3 )U( x) P( x)U(x),
其中
P(x) 1 x x3
被装置的特性所确定,称为该装置的传递函数。
例2 有红球两个,白球、黄球各一个,试求有多少种 不同的组合方案。
设r,w,y 分别代表红球,白球,黄球。
(1 r r2 )(1 w)(1 y) 1 (r y w) (r2 ry rw yw)
母函数方法是一套非常有用的方法,应用极广。 这套方法的系统叙述,最早见于Laplace在1812年 的名著—概率解析理论。
我们来看如下的例子:两个骰子掷出6点,有多少 种选法?
注意到,出现1,5有两种选法,出现2,4也有两 种选法,而出现3,3只有一种选法,按加法法则, 共有2+2+1=5种不同选法。
C(m n, r) C(m, 0)C(n, r) C(m,1)C(n, r 1) L C(m, r)C(n, 0).
(1 x)n (1 1/ x)m xm (1 x)mn
[C(n, 0) C(n,1) x L C(n, n) xn ] [C(m, 0) C(m,1) x1 L C(m, m) x m ]
故使两个骰子掷出n点的方法数等价于求
f (t) (t t2 ... t6)2
中tn的系数。
这个函数f(t)称为母函数。
母函数方法的基本思想: 把离散数列和幂级数一一对应起来,把离散数列间 的相互结合关系对应成为幂级数间的运算关系,最 后由幂级数形式来确定离散数列的构造。
再来看下面的例子:
或者,第一个骰子除了6以外都可选,有5种选法, 一旦第一个选定,第二个骰子就只有一种可能的选 法,按乘法法则有5×1=5种。
但碰到用三个或四个骰子掷出n点,上述两方法就 不胜其烦了。
设想把骰子出现的点数1,2,…,6和t,t2,…,t6对应起来, 则每个骰子可能出现的点数与(t+t2+…+t6)中t的各次 幂一一对应。
(r 2 y r 2w ryw) r 2 yw.
(1) 取一个球的组合数为3,即分别取红,白,黄。 (2) 取两个球的组合数为4,即两个红的,一红一黄, 一红一白,一白一黄。
(3) 取三个球的组合数为3,即两红一黄,两红一白, 一红一黄一白。
(4) 取四个球的组合数为1,即两红一黄一白。
若有两个骰子,则
(t t2 ... t6)(t t2 ... t6) t2 2t3 3t4 4t5 5t6 ....
其中t6的系数为5,显然来自于 t1 t5 t6, t2 t4 t6, t3 t3 t6, t4 t2 t6, t5 t1 t6.
这表明,掷出6点的方法一一对应于得到t6的方法。
称为序列a0,a1,a2,…的母函数。
例如函数(1+x)n就是序列C(n,0),C(n,1),…,C(n,n)的 母函数。
如若已知序列,则对应的母函数可根据定义给出。 反之,如果已经求出序列的母函数G(x),则该序列 也随之确定。
例1 下图是一逻辑回路,符号D是一延迟装置,即 在时间t输入一个信号给延迟装置D,在t+1时刻D将 输出同样的信号,符号表示加法装置。
第二章 母函数与递推关系
2.1 母函数与指数型母函数 2.2 递推关系与Fibonacci数列 2.3 线性常系数递推关系 2.4 非线性递推关系举例 2.5 应用举例
2.1 母函数与指数型母函数
1. 母函数 2. 母函数的性质 3. 整数的拆分 4. Ferrers 图像 5. 指数型母函数
1. 母函数
输入u
D
D
D
输出v
若在t=0,1,2,…时刻的输入为u0,u1,u2,…求在这些时 刻的输出v0,v1,v2,…
显然,
v0 u0 , v1 u1 u0 , v2 u2 u1,
v3 u3 u2 u0 , 。
一般的有序列u0,u1,…的母函数为U(x),输出的 信号序列v0,v1,…的母函数为V(x),则
中令x=1 可得 C(n, 0) C(n,1) C(n, 2) L C(n, n) 2n.
两端对x求导可得:
n(1 x)n1 C(n,1) 2C(n,2)x L nC(n,n)xn1,
再令x=1 可得 C(n,1) 2C(n, 2) 3C(n, 3) L nC(n, n) n2n1.
(1 a1 x)(1 a2 x) (1 an x) 1 (a1 a2 an )x
(a1a2 a1a3 an1an )x2 a1a2 an xn ,
若令a1=a2= …=an=1,则有 (1 x)n 1 C(n,1) x C(n, 2) x2 L C(n, n) xn.
相关文档
最新文档