因式分解---分组分解法 精品课件
精品 2014年八年级数学上册整式乘除与因式分解10 因式分解----分组分解法及复习

第10课 因式分解----分组分解法及复习知识点口诀:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.例1.用分组分解法对下列多项式进行分解因式:(1)bx by ay ax -+-5102 (2)bc ac ab a -+-2 (3)1+--y x xy(4)2222c b ab a -+- (5)y y x x 3922--- (6)yz z y x 2222---(7)3223y xy y x x --+ (8)b a ax bx bx ax -+-+-22 (9)181696222-+-++a a y xy x例2.若32=m ,62=n ,求n m +2和n m 232-的值。
例3.已知a +b=10,ab=24,求a 2+b 2的值。
例4.若x +y=8,x 2y 2=4,求x 2+y 2的值。
分组后能直接提公因式:bn bm an am +++=)()(bn bm an am +++ =)()(n m b n m a +++ =))((b a n m ++分组后能直接运用公式:ay ax y x ++-22=)()(22ay ax y x ++- =)())((y x a y x y x ++-+ =))((a y x y x +-+课堂练习:1.若n 为正整数,且n n n a a a 22232)(4)3(,7-=的值为( ) A.837B.2891C.3283D.12252.下列各式:①)23(2223ab a a -;②)3()2(223a b a --;③)2(3424b a a a -;④)64(24a b a --中相等的两个是( )A.①与②B.②与③C.③与④D.④与①3.下列各式可以用平方差公式计算的是( )A.))((y x y x -+B.)23)(32(y x y x +-C.))((y x y x +--D.)21)(21(b a b a -+-4.下列各式的分解因式:①)510)(510(2510022q q q p -+=-;②)2)(2(422n m n m n m -+-=--; ③)2)(3(62-+=-x x x ;④22)21(41--=+--x x x 其中正确的个数有( ) A.0 B.1 C.2 D.35.下列各式中,能用完全平方公式分解因式的是( )A.()()4x y y x xy +--B.2224a ab b -+C.2144m m -+D.()2221a b a b ---+ 6.设()()()()1112,1133M a a a N a a a =++=-+,那么M N -等于( )A.2a a +B.()()12a a ++C.21133a a + D.()()1123a a ++7.已知正方形的面积是()22168x x cm -+(x>4cm),则正方形的周长是( )A.()4x cm -B.()4x cm -C.()164x cm -D.()416x cm - 8.若023=-+b a ,则b a 273⋅= 9.已知3,5==n n y x ,则n xy 2)(=10.若252++ax x 为一元一次的完全平方式,则a=______ 11.分解因式:(1)49)23(2--x = ; (2)22)1()12(+--x x =________________ (3)2294b a -=__________________; (4))12(3)12(52---x x x =_______________ (5))1()12(2--+-a b a a =_________________; (6)81492-x =_________________;(7))5(10)5(8+-+x x x x =_________________; (8))2(4)2(72+-+x x =_________________;12.整式)5)(3(+-ax a x 的乘积中,2x 项系数为-12,求各项系数和为______13.已知)3)(3(22m x x nx x +-++的展开式中不含2x 和3x 项,则m= ,n= . 14.若()()2310x x x a x b --=++,则a =________,b =________。
《分组分解法》课件

分组分解法的原理
原理概述
分组分解法的原理基于代数的基本性 质,通过分组和因式分解,将复杂的 多项式简化为易于处理的形式。
原理应用
在数学中,分组分解法广泛应用于解 决代数方程、不等式和函数问题。通 过分组分解,可以简化多项式的计算 过程,提高解题效率。
分组分解法的应用场景
01
02
03
代数方程
在解代数方程时,分组分 解法可以用于简化方程左 侧的多项式,使其更容易 进行因式分解或化简。
要点一
总结词
分组分解法在求解矩阵的逆时也具有重要应用,能够帮助 我们快速找到矩阵的逆。
要点二
详细描述
矩阵的逆是线性代数中一个重要的概念,但在某些情况下 ,直接求逆的计算量非常大。分组分解法提供了一种有效 的替代方法,通过将原矩阵分解为若干个子矩阵,然后分 别求出这些子矩阵的逆,最后再组合起来得到原矩阵的逆 。这种方法在处理大型矩阵时特别有用,能够大大减少计 算时间和计算机存储空间的使用。
求解每个子问题,得到每个因式或公 因式的值。
合并子问题的解
将各个子问题的解合并起来,得到原多项式的分组分解结果 。
检查合并后的结果是否正确,确保所有项都已包含在内,且 没有重复或遗漏。
03 分组分解法的实例分析
实例一:求解线性方程组
总结词
分组分解法在求解线性方程组中具有广 泛应用,能够简化计算过程,提高解题 效率。
实例三:求解特征值和特征向量
总结词
分组分解法在求解特征值和特征向量时同样适用,能 够简化计算过程并提高准确性。
详细描述
特征值和特征向量是矩阵分析中的重要概念,它们在许 多实际问题中都有应用。然而,求解特征值和特征向量 有时会面临计算量大、精度要求高等挑战。分组分解法 提供了一种有效的解决方案,通过将原矩阵分解为若干 个子矩阵,然后分别求出这些子矩阵的特征值和特征向 量,最后再组合起来得到原矩阵的特征值和特征向量。 这种方法能够大大简化计算过程,提高求解的准确性和 效率。
因式分解-分组分解法

总结与归纳
(1) a2+2ab+b2-c2 (2) x2-y2+ax+ay
(2)利用分组分解法进行因式分解时,应该怎样 进行分解?
若多项式有四项,且不能直接提公因式时,可考虑用 分组分解法,常用分组方法有一、三分组,二、二分组; 一、三分组的前提是可以运用完全平方公式,然后再和 剩下的一项用平方差公式来分解;二、二分组的前提是 可以运用提公因式法或平方差公式,然后再用提公因式 法来分解.
②提取公因式后, 如果是三项的则考虑用完全平方 公式来分解因式如;果是二项的则考虑用平方差公式来分 解因式.
③最后检查式子是不是分解彻底了.
探究新知 例 把下列各式因式分解:
(1) a2+2ab+b2-c2 解:原式=( a2+2ab+b2 ) -c2
=(a+b)2-c2 =(a+b+c)(a+b-c)
同步练习 把下列各式因式分解:
(1) 4a2-b2+4a-2b
解:原式=(4a2-b2 ) +( 4a-2b) =[(2a)2-b2]+(4a-2b) =(2a+b)(2a-b)+2(2a-b) =(2a-b)(2a+b+2)
同步练习 把下列各式因式分解:
(2) x2-2xy+y2 Nhomakorabea1解:原式=( x2-2xy+y2 ) -1
拓展提升
已知a2+b2-6a+2b+10=0,求a,b的值.
解:因为 a2+b2-6a+2b+10=0 所以 a2-6a+9+b2+2b+1=0 所以 (a-3)2+(b+1)2=0 所以 a-3=0,b+1=0 解得 a=3,b=-1
【北师大版】初二八年级数学下册《4.3.3 分组分解法及分解因式的方法》课件PPT

知1-练
7 把下列各式分解因式:
(1)1+x+x2+x;
(2)xy2-2xy+2y-4;
(3)a2-b2+2a+1.
解: (1)原式=(1+x)+(x2+x) =(1+x)+x(x+1) =(1+x)(1+x) =(1+x)2.
(2)原式=(xy2-2xy)+(2y-4) =xy(y-2)+2(y-2) =(y-2)(xy+2).
x
骣 ççç桫x-
4 x
÷÷÷
2 【中考·宜宾】把代数式3x3-12x2+12x分解因式,
结果正确的是( D )
A.3x(x2-4x+4)
B.3x(x-4)2
C.3x(x+2)(x-2)
D.3x(x-2)2
知2-练
3 【2016·潍坊】将下列多项式因式分解,结果中 不含有因式a+1的是( C ) A.a2-1 B.a2+a C.a2+a-2 D.(a+2)2-2(a+2)+1
解:(1) m3-2m2-4m+8 =m2(m-2)-4(m-2) =(m-2)(m2-4) =(m-2)(m+2)(m-2) =(m+2)(m-2)2.
(2) x2-2xy+y2-9 =(x-y)2-32 =(x-y+3)(x-y-3).
知2-练
1 知识小结
分解因式时通常采用一“提”、二“公”、三 “分”、四“变”的步骤,即首先看有无公因式可 提,其次看能否直接利用乘法公式;如前两个步骤 不能实施,可用分组分解法,分组的目的是使得分 组后有公因式可提或可利用公式法继续分解,若上 述方法都行不通,则可以尝试用配方法、换元法、 待定系数法、试除法、拆项(添项)等方法.
知2-练
4 观察“探究性学习”小组的甲、乙两名同学进行因式 分解: 甲:x2-xy+4x-4y=(x2-xy)+(4x-4y)(分成两组) =x(x-y)+4(x-y)(分别提公因式) =(x-y)(x+4). 乙:a2-b2-c2+2bc=a2-(b2+c2-2bc)(分成两组) =a2-(b-c)2(直接运用公式) =(a+b-c)(a-b+c). 请你在他们解法的启发下,把下列各式分解因式: (1)m3-2m2-4m+8; (2)x2-2xy+y2-9.
因式分解(分组分解法)

(一)分组后能直接提公因式
复习提问
1.什么叫做因式分解? 把一个多项式化成几个整式的积的形式,这种 式子变形叫做把这个多项式因式分解,也叫做 把这个多项式分解因式。 2.回想我们已经学过那些分解因式的方法? 提供因式法,公式法——平方差公式, 完全平方公式
引例
(a+b)(m+n)
例2把2ax-10ay+5by-bx分解因式 分析:把这个多项式的四项按前两项与后两项分成
两组,并使两组的项都按x的降幂排列,然后从两
组分别提出公因式2a与-b,这时,另一个因式正好
都是x-5y,这样全式就可以提出公因式x-5y。
解: 2ax-10ay+5by-bx
=(2ax-10ay)+(5by-bx)
•
五、一个人要实现自己的梦想,最重要的是要具备以下两个条件:勇气和行动。——俞敏洪
•
六、将相本无主,男儿当自强。——汪洙
•
七、我们活着不能与草木同腐,不能醉生梦死,枉度人生,要有所作为。——方志敏
•
八、当我真心在追寻著我的梦想时,每一天都是缤纷的,因为我知道每一个小时都是在实现梦想的一部分。——佚名
=(2ax-10ay)+(-bx +5by)
=2a(x-5y)-b(x- 5y)
=(x-5y)(2a-b)
想一想
例1,例2种还有没有其他分组的方法;如果 有,因式分解的结果是不是一样。
例1解(2):a2-ab+ac-bc 例2解(2): 2ax-10ay+5by-bx
=(a2+ac)-(ab+bc)
整 am+an+bm+bn 因
因式分解(分组分解法)最新版

=(2ax-bx)+(5by-10ay)
=a(a+c)-b(a+c)
=(2ax-bx)+(-10ay +5by)
= (a+c)(a-b)
=x(2a-b)-5y(2a-b)
= (2a-b)(x-5y)
分组规律: 在有公因式的前提下,按对应项系数成
比例分组,或按对应项的次数成比例分组。
分解步骤: (1)分组; (2)在各组内提公因式; (3)在各组之间进行因式分解 (4)直至完全分解
因式分解 分组分解法
(一)分组后能直接提公因式
复习提问
1.什么叫做因式分解? 把一个多项式化成几个整式的积的形式,这种 式子变形叫做把这个多项式因式分解,也叫做 把这个多项式分解因式。 2.回想我们已经学过那些分解因式的方法? 提供因式法,公式法——平方差公式, 完全平方公式
引例
(a+b)(m+n)
整 am+an+bm+bn 因
=a(m+n)+b(m+n)
式 乘
=a(m+n)+b(Fra bibliotek+n)
式 分
=am+an+bm+bn 法 =(a+b)(m+n)
解
定义:
这种把多项式分成几组来分解因式的方法叫分组 分解法 注意:如果把一个多项式的项分组并提出公因式后, 它们的另一个因式正好相同,那么这个多项式就可 以用分组分解法来分解因式。
例1把a2-ab+ac-bc分解因式
分析:把这个多项式的四项按前两项与后两项分 成两组,分别提出公因式a与c后,另一个因式正 好都是a-b,这样就可以提出公因式a-b 。
因式分解(分组分解法)

=(2ax-bx)+(5by-10ay)
=a(a+c)-b(a+c)
=(2ax-bx)+(-10ay +5by)
= (a+c)(a-b)
=x(2a-b)-5y(2a-b)
= (2a-b)(x-5y)
分组规律: 在有公因式的前提下,按对应项系数成
比例分组,或按对应项的次数成比例分组。
解: 2ax-10ay+5by-bx
=(2ax-10ay)+(5by-bx)
=(2ax-10ay)+(-bx +5by)
=2a(x-5y)-b(x- 5y)
=(x-5y)(2a-b)
例1,例3种还有没有其他分组的方法;如果有, 因式分解的结果是不是一样。
例1解(2):a2-ab+ac-bc 例2解(2): 2ax-10ay+5by-bx
先提公因式;
2. 如果各项没有公因式,那么可以尝试运用 公式来分解;
3.如果用上述方法不能分解,那么可以尝试 用分组来分解;
4.分解因式,必须进行到每一个多项式都不 能再分解为止. 口诀: 一提 二套 三分 四彻底
教学重点:掌握分组分解法的 分组规律和步骤。 主要内容:
学习分组分解法的概念,用分组分解法分 组之后,可以用提公因式的多项式进行因式分 解。
例2把多项式 a2-2ab+b2-c2 分解因式.
【分析】观察多项式,前 三项符合完全平方公式.
例3把2ax-10ay+5by-bx分解因式 分析:把这个多项式的四项按前两项与后两项分成
两组,并使两组的项都按x的降幂排列,然后从两
组分别提出公因式2a与-b,这时,另一个因式正好
因式分解分组分解法

因式分解
练习3:
mx + mx2 - n - nx
解原式 = mx(x + 1) - n(x + 1)
= (x + 1)(mx - n)
因式分解
练习3:
mx + mx2 - n - nx
解原式 = mx(x + 1) - n(x + 1)
= (x + 1)(mx - n)
解原式 = (mx - n) + x(mx - n)
解原式 = a(x5 - x4 + x - 1) = a[x4(x - 1) + (x - 1)] = a(x - 1)(x4 + 1)
因式分解
练习9: ax2 - bx2 - bx + ax + b - a
解原式 = x2(a - b) + x(a - b) - (a - b)
= (a - b)(x2 + x - 1)
因式分解
练习9: ax2 - bx2 - bx + ax + b - a
解原式 = x2(a - b) + x(a - b) - (a - b)
= (a - b)(x2 + x - 1)
解原式= a(x2 + x - 1) - b(x2 + x - 1) = (x2 + x - 1)(a - b)
解原式 = (a + b )2 - (a + b) =(a + b)( a + b - 1)
因式分解
分组
找规律
ma - mb + m2 + mn + na - nb
解原式=(ma + na) - (mb + nb) + (m2 + mn) = a(m + n) - b(m + n) + m(m + n) = (m + n)(a - b + m)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解原式 = (6xy - 4yz) + (3x2 - 2xz) = 2y(3x - 2z) + x(3x - 2z) = (3x - 2z)(2y + x)
因式分解
-4yz + 3x2 - 2xz + 6xy
解原式 = (6xy - 4yz) + (3x2 - 2xz) = 2y(3x - 2z) + x(3x - 2z) = (3x - 2z)(2y + x)
= (m3 - 5)(1 + 4m)
因式分解
练习6:
m3 + 4m4 - 5 - 20m
解原式 = (m3 - 5) + 4m(m3 - 5)
= (m3 - 5)(1 + 4m)
解原式= m3(1 + 4m) - 5(1 + 4m) = (1+4m)(m3 - 5)
因式分解
练习7:
3x3 + 6x2y - 3x2z - 6xyz
“分组的目的是为了提取,提取的目 的是为了再提取”。
因式分解
将下列各式用分组分解法因式分解
练练习习11:: ccyy
aaxx ++ bbxx ++ ccxx ++ aayy ++ bbyy ++
解原式 = x(a + b + c) + y(a + b
+ c)
= (a + b + c)(x + y)
解原式 = (a + b )2 - (a + b) =(a + b)( a + b - 1)
因式分解
分组
找规律
ma - mb + m2 + mn + na - nb
解原式=(ma + na) - (mb + nb) + (m2 + mn) = a(m + n) - b(m + n) + m(m + n) = (m + n)(a - b + m)
解原式 = (6xy + 3x2) - (4yz + 2xz) = 3x(2y + x) - 2z(2y + x) = (2y + x)(3x - 2z)
因式分解
分 析
在用分组分解法因式分解时,要注意分组 不能使一个多项式变为乘积形式,分组的 目的是分好的各组能提取各自的公因式同 时使各组提取公因式后剩下的多项式又是 各组的公因式,可以再提取,从而使问题 得到解决,上述规律可以通俗的归纳成:
因式分解
将下列各式用分组分解法因式分解
练习1: cy
ax + bx + cx + ay + by +
解原式 = x(a + b + c) + y(a = a(=x +(ay)++bb+(xc+)(yx) ++ cy()x + y) = (x + y)(a + b + c)
= (b + 1)(a + 1)
因式分解
练习4:
ab + a + b + 1
解原式 = a(b + 1) + (b + 1)
= (b + 1)(a + 1)
解原式 = b(a + 1) + (a + 1) = (a + 1)(b + 1)
因式分解
练习5:
ab - 1 + a - b
解原式 = a(b + 1) - (b + 1)
因式分解
(3) -x3y3-x2y2+xy
(4) -12a2m+1bm+2+20am+1b2m+4
解原式=-xy(x2y2+xy-1) 解原式=-4am+1bm+2(3am5bm+2)
因式分解时,应首先考虑能否提取
公因式,能提取公因式的,要先提取公
因式而后考虑继续分解,公因式的符号
一般应与多项式的首项的符号相同。
因式分解
用两种分组方法将下列各式因式分解
2a2 - ab + 2ac - bc
解原式
解原式
=(2a2-ab)+(2ac-bc) =(2a2+2ac)-(ab+bc)
= a(2a-b)+ c(2a-b) = 2a(a+c)- b(a+c)
= (2a-b)(a+c)
= (a+c)(2a-b)
因式分解
因式分解
练习2:
ab + ac + 2a + bx + cx +
2解x 原式 = a(b + c + 2) + x(b + c + 2)
= (b + c + 2)(a + x)
因式分解
练习2: 2x
ab + ac + 2a + bx + cx +
解原式 = a(b + c + 2) + x(b + c + 2)
解原式
=
= (b +
b(a + x) +
c + 2)(a
c(a + x) +
+ x)
2(a +
x)
= (a + x)(b + c + 2)
因式分解
练习3:
mx + mx2 - n - nx
解原式 = mx(x + 1) - n(x + 1) = (x + 1)(mx - n)
因式分解
练习3:
因式分解
(3) -x3y3-x2y2+xy
解原式=-xy(x2y2+xy-1)
提取公因式后,括号内的项数同多 项式本身的项数必须相同,当公因式为 多项式的某一项时,则括号必有1这一 项,这个1不能漏掉。
因式分解
(5)
6ax-9ay+2bx-3by
解原式 = ?
因式分解 分组分解法
因式分解
将下列各式用分组分解法因式分解 (a + b )2 - a - b
mx + mx2 - n - nx
解原式 = mx(x + 1) - n(x + 1)
= (x + 1)(mx - n)
解原式 = (mx - n) + x(mx - n)
= (mx - n)(x + 1)
因式分解
练习4:
ab + a + b + 1
解原式 = a(b + 1) + (b + 1)
= (b + 1)(a - 1)
因式分解
练习5:
ab - 1 + a - b
解原式 = a(b + 1) - (b + 1)
= (b + 1)(a - 1)
解原式 = b(a - 1) + (a - 1) = (a - 1)(b + 1)
因式分解
练习6:
m3 + 4m4 - 5 - 20m
解原式 = (m3 - 5) + 4m(m3 - 5)
分组分解法
因式分解
复习
(1)6a3-8a2-4a
(2)
8 27
x3y2-
94xy3
解原式=2a(3a2-4a-2) 解原式=94xy2( 32x2-y)
(3) -x3y3-x2y2+xy
(4) -12a2m+1bm+2+20am+1b2m+4
解原式=-xy(x2y2+xy-1) 解原式=-4am+1bm+2(3am5bm+2)