老化试验公式

老化试验公式

载玻片加速老化试验设计方案

参考资料

ASTM F 1980-02

ASTM F 1980-07

YY/T 0681.1-2009

计算公式:

where T1=oven aging temperature, T RT=room temperature (ambient/ use/storage), and Q10= reaction-rate coefficient.

Or:

NOTE:55℃and Q10=2 are the most commonly used factors for medical devices and medical packaging components.

加速老化试验预测橡胶使用寿命(自己翻译过来的)

加速试验预测橡胶组件的使用寿命(翻译的) 摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用三元乙丙橡胶(EPDM),丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。为了预测EPDM,NBR的使用寿命,对这两种橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。 关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。 符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度 I 前言 橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。如何防止橡胶组件在使用过程中损坏是一个关键问题。橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。老化不光光影响了性能,同时也影响了组件的使用寿命。橡胶组件所处环境的不同,使得它们的降解方式也不一样。橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。广义上讲,橡胶的老化是这些因素的一个加和。这些因素具体起到了多大的作用,很难计算出来。它们的分类可以见表1。 表1 橡胶老化因素表 中,直到这些橡胶组件被替换下来之前,它们必须保持足够的物理机械性能,但是受到温度、湿度、紫外光、臭氧、化学物质、载荷的影响,它们的使用寿命又很难估算。所以找到橡胶的统一属性和它处于的环境影响,并预计它的寿命显得非常重要。通过对橡胶材料降解老化的研究,可以为提高使用寿命,增加可靠性提供必要的条件。 橡胶硫磺硫化体系形成的交联网络,随着热老化的不断进行而发生着改变。受到热老化后,高硫磺含量硫化体系形成的交联网络的变化要大于低硫磺含量硫化体系所形成的交联网络。 为了解决工程实践中的一些问题,橡胶材料物理性能受老化影响的程度,橡胶组件使用

EXCLE日期时间计算公式

(Excel)常用函数公式及操作技巧之三: 时间和日期应用 ——通过知识共享树立个人品牌。 自动显示当前日期公式 =YEAR(NOW()) 当前年 =MONTH(NOW()) 当前月 =DAY((NOW())) 当前日 如何在单元格中自动填入当前日期 Ctrl+; 如何判断某日是否星期天 =WEEKDAY(A2,2) =TEXT(A1,"aaaa") =MOD(A1,7)<2 某个日期是星期几 比如2007年2月9日,在一单元格内显示星期几。 =TEXT(A1,"aaa") (五) =TEXT(A1,"aaaa") (星期五) =TEXT(A1,"ddd") (Fri) =TEXT(A1,"dddd") (Friday) 什么函数可以显示当前星期 如:星期二10:41:56 =TEXT(NOW(),"aaaa hh:mm:ss") 求本月天数 设A1为2006-8-4 求本月天数 A1=DAY(DATE(YEAR(A1),MONTH(A1)+1,0)) 也有更簡便的公式:=DAY(EOMONTH(NOW(),0)) 需加載分析工具箱。

当前月天 数:=DATE(YEAR(TODAY()),MONTH(TODAY())+1,1)-DATE(YEAR(TO DAY()),MONTH(TODAY()),1) 用公式算出除去当月星期六、星期日以外的天数 =SUMPRODUCT(--(MOD(ROW(INDIRECT(DATE(YEAR(NOW() ),MONTH(NOW()),1)&":"&DATE(YEAR(NOW()),MONTH(NOW ())+1,0))),7)>1)) 显示昨天的日期 每天需要单元格内显示昨天的日期,但双休日除外。 例如,今天是7月3号的话,就显示7月2号,如果是7月9号,就显示7 月6号。 =IF(TEXT(TODAY(),"AAA")="一 ",TODAY()-3,IF(TEXT(TODAY(),"AAA")="日 ",TODAY()-2,TODAY()-1)) =IF(TEXT(TODAY(),"AAA")="一",TODAY()-3,TODAY()-1) 关于取日期 怎么设个公式使A1在年月日向后推5年,变成2011-7-15 =DATE(YEAR(A1)+5,MONTH(A1),DAY(A1)) =EDATE(A1,12*5) 如何对日期进行上、中、下旬区分 =LOOKUP(DAY(A1),{0,11,21,31},{"上旬","中旬","下旬","下旬"}) 如何获取一个月的最大天数 "=DAY(DATE(2002,3,1)-1)"或"=DAY(B1-1)",B1为"2001-03-01日期格式转换公式 将“01/12/2005”转换成“20050112”格式 =RIGHT(A1,4)&MID(A1,4,2)&LEFT(A1,2) = YEAR($A2)&TEXT(MONTH($A2),"00")&TEXT(DAY($A2),"00" ) 该公式不用设置数据有效性,但要设置储存格格式。 也可以用下列两方法: 1、先转换成文本, 然后再用字符处理函数。 2、[数据]-[分列] [日期]-[MDY] 将“2005年9月”转换成“200509”格式

NBR加速老化试验预测橡胶使用寿命

加速老化预测NBR橡胶的使用寿命 摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用,丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。为了预测NBR的使用寿命,对NBR橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。 关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。 符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度 k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度 I 前言 橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。如何防止橡胶组件在使用过程中损坏是一个关键问题。橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。老化不光光影响了性能,同时也影响了组件的使用寿命。橡胶组件所处环境的不同,使得它们的降解方式也不一样。橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。广义上讲,橡胶的老化是这些因素的一个加和。这些因素具体起到了多大的作用,很难计算出来。它们的分类可以见表1。 表1 橡胶老化因素表 冷冻机中空压机部分所使用的橡胶组件的使用寿命是它的一项关键指标。在使用过程中,直到这些橡胶组件被替换下来之前,它们必须保持足够的物理机械性能,但是受到温度、湿度、紫外光、臭氧、化学物质、载荷的影响,它们的使用寿命又很难估算。所以找到橡胶的统一属性和它处于的环境影响,并预计它的寿命显得非常重要。通过对橡胶材料降解老化的研究,可以为提高使用寿命,增加可靠性提供必要的条件。 橡胶硫磺硫化体系形成的交联网络,随着热老化的不断进行而发生着改变。受到热老化后,高硫磺含量硫化体系形成的交联网络的变化要大于低硫磺含量硫化体系所形成的交联网络。

可靠性测试产品高加速寿命试验方法指南解析

术语和定义 HALT(High Accelerated Life Test):高加速寿命试验,即试验中对试验对象施加的环境应力比试验对象整个生命周期内,包括运输、存储及运行环境内,可能受到的环境应力大得多,以此来加速暴露试验样品的缺陷和薄弱环节,而后对暴露的缺陷和故障从设计、工艺和用料等诸方面进行分析和改进,从而达到快速提升可靠性的目的。 运行限或操作限(Operation Limit):指产品某应力水平上失效(样品不工作或其工作指标超限),但当应力值略有降低或回复初始值时,试样又恢复正常工作,则样品能够恢复正常的最高应力水平值称为运行限。 破坏限(Destruct Limit):在某应力水平上升到某值时,样品失效,即使当应力回落到低于运行限时,试样仍然不能恢复正常工作,这时的应力水平值称为破坏限。 裕度(Margin):产品运行环境应力的设计限与运行限或破坏限的差值。产品的裕度越大,则其可靠性越高。 夹具(Fixture):在HALT试验的振动项目中固定试样的器具。振动试验必须使用夹具,使振台振动能量有效地传递给试样。 加速度传感器(Accelerometer):在某方向测量试样振动加速度大小的传感器。在HALT试验的振动项目中使用加速度传感器可以监视试验箱振动能量通过夹具有效传递给试样的效率。 振动功率谱密度(Vibrating Power Spectral Density):也称为加速谱密度,衡量振动在每个频率点的加速度大小,单位为(g2/Hz)。 Grms(Gs in a root mean square):振动中衡量振动强度大小的物理单位,与加速度单位相同,物理含义为对振动功率谱密度在频率上积分后的平方根。 热电偶(Thermocouple):利用“不同导体结合在一起产生与温度成比例的电压”这一物理规律制作的温度传感器。在HALT试验的热应力测试项目中,利用热电偶监视产品各点的温度分布。 功能测试(Functional Test):对试样的测试,用以判断试样能否在测试环境下完成规定的功能,性能是否下降。一般是通过测量试样的关键参数是否达到指标或利用诊断模式测试试样的内部性能。 摘要:本文围绕产品HALT试验,详细介绍HALT试验基本要求、总体过程及试验过程。 关键词:HALT试验、基本要求、试验过程 1、HALT试验基本要求 1.1对试验设备的要求 1.1.1对试验箱的要求 做HALT试验的设备必须能够提供振动应力和热应力,并满足下列指标: 振动应力:必须能够提供6个自由度的随机振动;振动能量带宽为2Hz~10000Hz;振台在无负载情况下至少能产生65Grms的振动输出。 热应力:目标是为产品创造快速温度变化的环境,要求至少45℃/min的温变率;温度许可范围至少为-90℃~+170℃。

迟到请假计算方法

3000月薪 薪资构成 1500块钱的基本工资+750块钱的岗位工资+750块钱的奖金 基本工资+岗位工资+活动奖金 这三个工资怎么来的?拿3000块钱月薪来说,3000*(1/4)=750,这个是每个月的活动奖金,剩下的2250是基本工资和岗位工资,如何区分基本工资和岗位工资,基本工资是合同中写的工资,2250减去基本工资就是岗位工资。假设你基本工资是1500,那么岗位工资就是750了。 下面称三者加起来称之为月薪,活动奖金简称为月奖金,基本工资加岗位工资加起来称为月工资 迟到 每个月的全勤,4次10分钟的缓冲时间。 1.如果你一个月内每天都在9点钟前到,并且没有请假早退旷工,ok,那么你将会得到100 元的全勤奖 2.如果你一个月内只有4天或者少于4天是在9:11分前到公司,其他都是9:01钟前到, 并且没有请假早退旷工,ok,那么还是可以得到100元的全勤奖 3.如果你一个月内只有一次9:11到达公司,其他都是9:01钟前到,那么这个也不能算为 全勤,只能算为迟到一次,也就是说宁愿4次9:10,也不要一次9:11. 4.如果你一个月内只要有请假(不管是事假还是病假,不管时间长短)早退旷工,其他时 间都是9:01之前到公司,那么你还是不能拿到全勤奖100元。 5.如果你这个月有带薪休假,或者调休,只要在当天之前申请并获批准的,并且你其他时 间都是9:01之前到公司,那么你还是可以拿到全勤奖100元。 6.上面的情况就说明了一个问题,也就是要么奖要么罚,如果你一个月月薪3000元,去 年的话,你可以稳稳当当拿到这个钱,但是从现在开始,要么你拿得比这个多,要么你拿得比这个少。 7.还有一个值得注意的是,10点前到达公司的还能称之为迟到,如果10点钟后到达的, 并且没有向相关人员请假的,就不能称之为迟到,而是称之为旷工,所对应的处罚要比迟到严厉得多,所以大家要注意这点,如果你不能保证在10点钟之前到达公司,请向相关人员请假一至两小时,比如你能在10:20前到达公司,你请假1小时,那么按照1小时算,如果超过10:20,比如你10:21到,那么按照请假两小时算。 8.考勤的计算方法:全勤的话,月薪+100,如果你月薪一万,那么你将拿到3100的薪水 如果缺勤的话,最小单位是半小时,如果你迟到,但在9:30之内,按照迟到半小时来算,如果迟到在9:30-10:00之间,那么按照迟到一个小时算 (月工资/(20.83*8))*n+(月奖金*2%)*m 按3000月薪来算的话,公式转换成以下的公式 (2250/(20.83*8))*n+(750*2%)*m 上面这个公式就是你本月迟到被扣的工资,比如你迟到5次,3次是9:30前到的公司,2次是9:30-10:00到的公司,这种情况下,m为迟到次数,那么m就等于5,如果n=3/2+2=3.5 咱们把m,n的数字代入上面的公式,就会得出以下的公式,我们来算一下 (2250/(20.83*8))*3.5+(750*2%)*5 = 122.25 如果这种情况下,我们五天都请假一个小时,那么公式转换就成为 (3000/(20.83*8))*5 = 90

加速老化实验

山东华普医疗科技有限公司 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用范围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前 包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前

阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年内和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

用公式进行时间的换算

用公式进行时间的换算 作为地球自转产生的后果之一,时间的换算一直是地理教学中的一项重要内容。而且随着世界联系的密切、国际交往的增加,在日常生活中也经常会遇到换算两个地点时间的问题。在地理教学中教师可采用多种方法,如图示法、计算法等,但都要涉及过日界线的问题,学生往往要反复考虑经过日界线时日期的变更,以及推算时是向东还是向西进行的,使时间的换算很容易出现错误。用公式进行时间的换算简单易行,是进行时间换算的良好选择。 一、不同时刻之间的换算公式 (一)地方时的换算地方时是因经度而不同的时刻,一般均是指地方平太阳时而言。地方时仅取决于经度。地球上任意两个地点之间,若经度相同则地方时刻相同,而经度的差异必然会产生地方时刻的差异。地方时的换算公式为: t1-t2=λ1-λ2式中,λ1、λ2分别表示任意两个地点的经度,其本身含有+、-号,规定东经为+,西经为-;t1、t2分别表示上述两个地点的地方时。根据此公式可方便地换算两个不同地点的地方时,但在计算过程中要注意单位的统一。 (二)区时换算地球上按经度划分为24个时区,各地根据经度的不同,分属于不同的时区。可根据下列公式计算出任一已知经度的地点所处的时区: n=λ/15°式中,λ为某地点的经度,n为所在的时区序号,计算结果四舍五入保留整数。区时是指每一时区中央经线的地方平太阳时。任意两地如果处于同一时区中则具有相同的区时;若时区不同,则区时也不相同,他们之间的关系是:T1-T2=n1 -n2式中,T1、T2分别为两个地点的区时,n1 、n2分别为这两个地点所在的时区序号,规定东时区为+,西时区为-。用此公式可以方便地进行任意两时区的区时换算。 (三)地方时同世界时的换算由于世界时是指0°经线的地方时,所以在地方时换算公式中,以T0表示世界时,以t表示某一地点的地方时,以λ表示该地点的经度,仍然是东经为+,西经为-,则得:T0-t=0-λ所以:T0=t-λ用此公式可进行任意地点的地方时刻与世界时的换算。 (四)区时同世界时的换算由于世界时即0时区的区时,所以在区时换算公式中,只要以世界时T0代替某一时区的区时即得:T0-T=0-n所以:T0=T-n 在上述公式中,地方时换算和区时换算是两个基本的公式,其他公式均可在理解概念的前提下推论得出。生活中遇到的问题主要是区时的换算。 二、有关计算结果的说明 无论用哪一种公式,最后计算的时间结果都可能出现特殊值,需要对其进行进一步处理。

加速寿命试验的理论模型与试验方法

产品可靠性试验 6.2.1 可靠性试验的意义与分类 可靠性试验是为分析、评价、提高或保证产品的可靠性水平而进行的试验。产品的研制者通过试验获得产品设计、鉴定所需的可靠性数据(可靠性测定试验)。通过试验暴露产品缺陷,改进设计并获得可靠性增长信息(可靠性增长试验)。产品的制造者通过试验剔除零件批中的不合格品或暴露整机缺陷,消除早期故障(可靠性筛选或老化试验老化试验不是消除早期故障的)产品使用者通过试验验证产品批可靠性水平以保证接收的产品批达到规定要求(可靠性接收试验)。政府或行业管理部门通过试验获得数据库所需基础可靠性数据(可靠性测定试验),认证产品可靠性等级(可靠性验证试验),进行产品的可靠性鉴定与考核(可靠性鉴定试验)。 本节主要介绍可靠性测定试验,这是为获得产品可靠性特征量的估计值而进行的试验,根据需要可由试验结果给出可靠性特征量的点估计值和给定置信度下的区间估计。由于可靠性试验往往是旷日持久的试验,为节省时间与费用常采用加速试验的方式。本节将介绍某些加速寿命试验的理论模型与试验方法。 6.2.2 指数分布可靠性测定试验 大多数电子元器件、复杂机器及系统的寿命都服从指数分布。其待估参数为故障率λ,其他可靠性指标可利用估计值进行计算MTBF 已经有平均的意思了 1.定时截尾试验 (1)点估计试验进行至事先规定的截尾时间t c停止试验,设参与试验的n个样本中有r个发生关联故障,则由极大似然估计理论得出的故障率点估计值为 式中t i——第I个关联故障发生前工作时间(i=1,…,r)。 若在试验过程中及时将已故障产品修复或替换为新产品继续试验,则为有替换的定时截尾试验。此时λ的点估计为

声学计算公式大全

当声波碰到室内某一界面后(如天花、墙),一部分声能被反射, 一部分被吸收(主要是转化成热能),一部分穿透到另一空间。 透射系数: 反射系数: 吸声系数: 声压和声强有密切的关系,在自由声场中,测得声压和已知测点到声源的距离,就可计算出该测点之声强和声源的声功率。 声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为:

听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 1、声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为: 听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 2、声功率级Lw 取Wo为10-12W,基准声功率级 任一声功率W的声功率级Lw为: 3、声强级: 3、声压级的叠加 10dB+10dB=? 0dB+0dB=? 0dB+10dB=? 答案分别是:13dB,3dB,10dB.

几个声源同时作用时,某点的声能是各个声源贡献的能量的代数和。因此其声压是各声源贡献的声压平方和的开根号。 即: 声压级为: 声压级的叠加 ?两个数值相等的声压级叠加后,总声压级只比原来增加3dB,而不是增加一倍。这个结论对于声强级和声功率级同样适用。 ?此外,两个声压级分别为不同的值时,其总的声压级为

两个声强级获声功率级的叠加公式与上式相同 在建筑声学中,频带划分的方式通常不是在线性标度的频率轴上等距离的划分频带,而是以各频率的频程数n都相等来划分。 声波在室内的反射与几何声学 3.2.1 反射界面的平均吸声系数 (1)吸声系数:用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以α表示,定义式: 材料和结构的吸声特性和声波入射角度有关。

产品加速老化测试方案

产品加速老化测试方案 1、试验前准备 1.1 试验产品信息 样品名称: 样品型号: 样品数量: 样品序号: 1.2 试验所需的设备信息 设备名称:恒温恒湿箱 设备编号: 设备参数:温度测试范围为: 湿度测试范围为: 1.3 测试人员: 复核人员: 批准人员: 1.4 测试环境:加速老化测试在75℃、90% RH的恒温恒湿箱中进行 1.5 测试时间: 2、试验原理和步骤 2.1 使用的物理模型--最弱链条模型 最弱链条模型是基于元器件的失效是发生在构成元器件的诸因素中最薄弱的部位这一事实而提出来的。 该模型对于研究电子产品在高温下发生的失效最为有效,因为这类失效正是由于元器件内部潜在的微观缺陷和污染,在经过制造和使用后而逐渐显露出来的。暴露最显著、最迅速的地方,就是最薄弱的地方,也是最先失效的地方。 2.2 加速因子的计算 加速环境试验是一种激发试验,它通过强化的应力环境来进行可靠性试验。加速环境试验的加速水平通常用加速因子来表示。加速因子的含义是指设备在正常工作应力下的寿命与在加速环境下的寿命之比,通俗来讲就是指一小时试验相当于正常使用的时间。因此,加速因子的

计算成为加速寿命试验的核心问题,也成为客户最为关心的问题。加速因子的计算也是基于一定的物理模型的,因此下面分别说明常用应力的加速因子的计算方法。 2.2.1温度加速因子 温度的加速因子计算: ?? ???????? ???==stress normal a stress normal AF T T k E L L T 1-1exp ……………… (1) 其中,normal L 为正常应力下的寿命; stress L 为高温下的寿命; a E 为失效反应的活化能(eV ); normal T 为室温绝对温度; stress T 为高温下的绝对温度; k 为Boltzmann 常数,8.62× 10-5eV/K ; 实践表明绝大多数电子元器件的失效符合Arrhenius 模型,下表给出了半导体元器件常见的失效反应的活化能。 2.2.2 湿度的加速因子 2.3 试验方案 本试验采用最弱链条的失效模型,通过提高试验温度和湿度来考核产品电路板和显示屏的使用寿命。在75℃、90% RH 下做加速寿命测试,故其加速因子应为温度加速因子和湿度加速因子的乘积,计算如下: n normal stress stress normal a AF AF RH RH T T k E H T AF ???? ????????????? ???=?=1-1ex p (3)

加速寿命试验公示计算汇总

加速寿命试验公示计算汇总 一、前言 新研究的医疗器械在上市前应确保在储存期( 通常 1 到5 年) 内产品的质量不应发生任何影响安全性和有效性变化,新产品一般没有实时和储存周围环境条件下确定有效期的技术资料。如果按实际储存时间和实际环境储存条件进行检测需要很长的时间才能获得结果,为了在实时有效期结果获得以前,有必要进行加速老化实验提供确定有效期的实验数据。 医疗器械设计人员能够准确地预计聚合物性能的变化对于医疗器械产业化是非常重要的。建立聚合物材料退行性变的动态模型是非常困难和复杂的,事实上材料短期产生的变化或变性的单速率表达形式可能不能充分反映研究的产品或材料在较长有效期的真实情况。为了设计试验方案能准确模拟医疗器械时间相关的退行性变,有必要对材料的组成、结构、成品用途、组装和灭菌过程的影响、失效模型机制和储存条件有深入的了解。 一个给定的聚合物具有以各种方式( 晶体、玻璃、不定形等) 组成的许多化学功能基团,并含有添加剂如抗氧化剂、无机充填剂、色素和加工助剂。所有这些变量的总和结合产品使用和储存条件变量决定了材料的化学性能的退行性变。得庆幸的是,生产医疗器械的大部分都是采用常用的几种高分子材料,这些材料已经广泛使用并且都进行了良好的表征。根据以碰撞理论为基础的阿列纽斯(Arrhenius) 模型建立的老化简化实验方案(Simplified Protocol for Accelerated Aging) ,也称“10 度原则”(10-degree rule) ,可在中度温度范围内适用于良好表征的聚合物,试验结果可以在要求的准确度范围内。 医疗器械或材料的老化是指随着时间的延长它们性能的变化,特别是与安全性和有效性有关的性能。加速老化是指将产品放置在比正常储存或使用环境更严格或恶劣的条件下,在较短的时间内测定器械或材料在正常使用条件下的发生变化的方法。 采用加速老化实验合格测试的主要原因是可以将医疗器械产品尽早上市。主要目标是可以给病人和企业带来利益,病人可以尽早使用这些最新的医疗器械,挽救病人的生命;企业可以增加销售获得效益,而又不会带来任何风险。尽管加速老化试验技术在学术领域已经比较成熟,但是这些技术在医疗器械产品的应用还是有限的。美国FDA 发布了一些关于接触眼镜、药物和生物制品等关于加速老化实验的指导性文件,还没有加速老化试验的标准。在我国尚无关于医疗器械有效期确定的加速老化的实验指导原则。国外许多医疗器械企业根据这些指导原则和文献建立自己的加速老化试验方法。(来源于:《中国医疗器械信息》2008年第14卷第5期《医疗器械加速老化实验确定有效期的基本原理和方法》) 二、实验条件和时间对比表

无菌医疗器械包装的加速老化试验标准指南

ASTM F 1980:2002 无菌医疗器械包装的加速老化试验标准指南 Standard Guide for Accelertated Aging of Sterile Medical Device Package 1 范围 1.1 本指南提供了开发加速老化方案的信息,以便快速确定包装的无菌完好性和包装材料的物理特性受所经历的时间和环境的影响。 1.2 用本指南获得的信息可用以支持产品包装的有效日期。 1.3 加速老化指南涉及初包装整体,不涉及包装与产品间的相互作用或相容性,这在新产品的开发中可能涉及到。在包装设计之前的材料分析过程中宜涉及包装与产品的相容性和相互作用。 1.4本指南不涉及实际时间老化方案,但进行实际时间老化研究能证实用同样评价方法的加速老化试验的结果。 1.5 用于包装过程确认的方法,包括机械过程、灭菌过程、运输、贮存的影响也不在本指南的范围内。 1.6 本标准不打算涉及标准使用中的所有安全问题,本标准的使用者在使用前有责任建立相应的安全和卫生规范,并确定法规限制的适用性。 2 规范性引用文件 2.1 ASTM 标准 D 3078 用气泡发射法测定软性包装的试验方法 D 4169 运输容器和系统的性能试验规范 D 4332 容器、包装或包装组件的试验用状态调节的规范 E 337 用干湿球温度计(测量湿球温度和干球温度)测定湿度的试验方法 F 88 软质屏障材料密封强度的试验方法 F 1140医疗应用无约束包装抗内压破坏试验方法 F1327 医用包装屏障材料的相关术语 F 1585 医用包装多孔屏障材料完好性试验指南 F 1608 医用包装多孔屏障材料的微生物等级的试验方法 F 1929 用染色穿透的方法测定多孔材料医用包装中密封泄漏的试验方法 2.2 AAMI 标准 ANSI/AAMI/ISO 11607 最终灭菌医疗器械的包装 AAMI TIR 17-1997 辐射灭菌材料鉴定 3 术语 3.1 定义 医疗器械包装的一般定义见ISO 11607。有关医用包装屏障材料的术语见F1327 3.2 本标准规定术语的定义: 3.2.1 加速老化(AA) 样品贮存在严酷的温度(T AA),以一种缩短时间的方式来模拟实际时间老化 3.2.2 加速老化因子(AAF) 一个估计的或计算出的与实际时间(RT)条件贮存的包装达到同样水平的物理性能变化的时间比率

医械加速老化实验确定有效期的原理和方法

医疗器械加速老化实验确定有效期的基本原理和方法 1、内容提要 加速老化简化试验方案是医疗器械生产企业获得新产品的关键性能和有效期数据的重要手段。该方法获得的结果具有保守性,加速老化试验的有效期和实时老化获得的结果相比要短。这一方案是假设所有材料按照零级和一级反应速率关系确定的,在整个研究的时间框架内反应物质的提供是保持恒定的。为了获得更加可靠的结果,应充分了解降解反应化学,选择中等的老化温度可以使误差因素降到最小,要充分了解一些对升高温度敏感的反应物质。采用任何加速老化试验方法,在没有获得实时/大气环境试验结果前都是有风险的。如论如何,设计的试验方法提供的数据最终应满足产品的标准要求。 2、前言 医疗器械设计人员能够准确地预计聚合物性能的新研究的医疗器械在上市前应确保在储存期( 通常变化对于医疗器械产业化是非常重要的。建立聚合物1 到5 年) 内产品的质量不应发生任何影响安全性和有材料退行性变的动态模型是非常困难和复杂的,事实效性的变化,新产品一般没有实时和储存周围环境条上材料短期产生的变化或变性的单速率表达形式可能件下确定有效期的技术资料。如果按实际储存时间和不能充分反映研究的产品或材料在较长有效期的真实实际环境储存条件进行检测需要很长的时间才能获得情况。为了设计试验方案能准确模拟医疗器械时间相同结果,为了在实时有

效期结果获得以前,有必要进行关的退行性变,有必要对材料的组成、结构、成品加速老化实验提供确定有效期的实验数据。用途、组装和灭菌过程的影响、失效模型机制和储存条件有深入的了解。一个给定的聚合物具有以各种方式( 晶体、玻璃、r = dq/dt = C2[T2-T1]/10 不定形等) 组成的许多化学功能基团,并含有添加剂应该指出的是10 度原则提供了室温活化能小于如抗氧化剂、无机充填剂、色素和加工助剂。所有这0.7eV 时一个保守的加速因子,由于指数效应,在量级些变量的总和结合产品使用和储存条件变量决定了材上应该有一定的保守性。在某些情况下,通过采用其料的化学性能的退行性变。值得庆幸的是,生产医疗他5? 到20? 温度差改良的10 度原则可以使老化模型和器械的大部分都是采用常用的几种高分子材料,这些室温试验数据之间很好的吻合。 材料已经广泛使用并且都进行了良好的表征。根据以10 度原则在医疗器械有效期的确定时虽然具有碰撞理论为基础的阿列纽斯(Arrhenius) 模型建立的加一定的保守性,然而,加速老化试验确定的有效期必须通过产品正常储存和使用条件下实时试验结果进速老化简化实验方案(Simplified Protocol for Accelerated Aging) ,也称“10 度原则”(10-degree rule) ,可在中度一步验证。产品上市前在进行加速老化试验的同时应温度范围内适用于良好表征的聚合物,试验结果可以进行连续“室温”条件下的老化试验,并且室温老化在要求的准确度范围内。 试验时间要比产品实际使用时间要长,这一点是非常医疗器械或材料

产品寿命可靠性试验MTBF计算规范标准

产品寿命可靠性试验MTBF计算规范 一、目的: 明确元器件及产品在进行可靠性寿命试验时选用标准的试验条件、测试方法 二、范围: 适用于公司内所有的元器件在进行样品承认、产品开发设计成熟度/产品成熟度(DMT/PMT)验证期间的可靠性测试及风险评估、常规性ORT例行试验 三、职责: DQA部门为本文件之权责单位,责权主管负责本档之管制,协同开发、实验室进行试验,并确保供应商提交的元器件、开发设计产品满足本文件之条件并提供相关的报告。 四、内容: MTBF:平均无故障时间 英文全称:Mean Time Between Failure 定义:衡量一个产品(尤其是电器产品)的可靠性指标,单位为“小时”.它反映了产品的时间质量,是体现产品在规定时间内保持功能的一种能力.具体来说,是指相邻两次故障之间的平均工作时间,也称为平均故障间隔,它仅适用于可维修产品,同时也规定产品在总的使用阶段累计工作时间与故障次数的比值为MTBF

MTBF测试原理 1.加速寿命试验(Accelerated Life Testing) 1.1执行寿命试验的目的在于评估产品在既定环境下之使用寿命. 1.2 常規试验耗時较长,且需投入大量的金钱,而产品可靠性资讯又不能及时获得并加以改善. 1.3 可在实验室时以加速寿命试验的方法,在可接受的试验时间里评估产品的使用寿命. 1.4 是在物理与时间基础上,加速产品的劣化肇因,以较短的时间试验来推定产品在正常使用状态的寿命或失效率.但基本条件是不能破坏原有设计特性. 1.5 一般情況下, 加速寿命试验考虑的三个要素是环境应力,试验样本数和试验时间. 1.6 一般电子和工控业的零件可靠性模式及加速模式几乎都可以从美軍规范或相关标准查得,也可自行试验分析,获得其数学经验公式. 1.7 如果溫度是产品唯一的加速因素,則可采用阿氏模型(Arrhenius Model),此模式最为常用. 1.8 引进溫度以外的应力,如湿度,电压,机械应力等,則为爱玲模型(Eyring Model),此种模式适用的产品包括电灯,液晶显示元件,电容器等. 1.9反乘冪法則(Inverse Power Law)适用于金属和非金属材料,如轴承和电子装备等.

EXCEL关于时间的公式

5个时间问题8个时间函数全搞定 表格中常常会涉及到与日期有关的项目。通过一些日期相关函数的巧妙组合使用,可轻松满足日期计算中的常见需求。下面我们通过5个具体实例,带大家玩转日期相关函数。 用出生年月快速计算年龄 如图的表格第一列已经列出了“出生年月日”数据,“年龄”一列为空需要填写,不需要手动就可是快速完成。具体方法是在B2单元格中输入如下公式,然后用填充柄填充B列即可。 =DATEDIF(A2,TODAY(),"y")

解释:DATEDIF函数的作用是计算从开始日期到结束日期的时间(天数、月数或年数)。其中A2为开始日期,TODAY()为结束日期,"y"表示信息类型为年数(若要计算月数改为m,计算天数改为d即可)。 根据身份证号计算出生年月 下图的表格中已有身份证号码,出生年月日一列就没必要重新填写了,可自动生成,这是因为身份证号码中就包含了出生年月日的信息。只需在B2单元格输入如下公式并向下填充B 列即可: =TEXT(MID(A2,7,8),"0!/00!/00") 解释:上述函数从A2单元格的第7为开始截取8位数字,然后以日期格式"0!/00!/00"表示出来。

根据身份证号码提取性别 在身份证号码中虽然直接看不出性别,但其中的某些位数却暗含着性别信息,通过简单运算可得知男女性别。我们只需在B2单元格输入如下信息并向下填充该列即可: =IF(MOD(MID(A2,15,3),2),"男","女") 解释:上述函数从A2单元格的第15位开始截取3位数,然后做取模运算,若余数为0则为男,否则为女。 根据身份证号码计算实际年龄 还可以通过身份证号码计算出实际年龄。在B2中构造公式如下,然后依次填充B列单元格即可。 =YEAR(TODAY())-MID(A2,7,4) 解释:其中YEAR(TODAY())代表今年,MID(A1,7,4)取身份证中的年份,两个相减就是年龄。

可靠性-LED加速老化寿命试验方法概论Word文档

一、可靠性理论基础 1.可靠度: 如果有N个LED产品从开始工作到t时刻的失效数为n(t),当N足够大时,产品在t时刻的可靠度可近似表示为: 随时间的不断增长,将不断下降。它是介于1与0之间的数,即。 2.累积失效概率: 表示发光二极管在规定条件下工作到t这段时间内的失效概率,用F(t)表示,又称为失效分布函数。 如果N个LED产品从开始工作到t时刻的失效数为n(t),则当N足够大时,产品在该时刻的累积失效概率可近 似表示为: 3.失效分布密度: 表示规定条件下工作的发光二极管在t时刻的失效概率。失效分布函数的导函数称为失效分布密度,其表达式如下: ?早期失效期; ?偶然失效期(或稳定使用期) ; ?耗损失效期。 二、寿命 老化:LED发光亮度随着长时间工作而出现光强或光亮度衰减现象。器件老化程度与外加恒流源的大小有关, 可描述为: B t为t时间后的亮度,B0为初始亮度。通常把亮度降到B t=0.5B0所经历的时间t称为二极管的寿命。 1. 平均寿命 如果已知总体的失效分布密度f(t),则可得到总体平均寿命的表达式如下: 2. 可靠寿命 可靠寿命T R是指一批LED产品的可靠度下降到r时,所经历的工作时间。T R可由R(T R)=r求解,假如该产品的失效分布属指数分布规律,则: 即可求得T R如下:

3. 中位寿命 中位寿命T0.5指产品的可靠度R(t)降为50%时的可靠寿命,即:对于指数分布情 况,可得: 二、LED寿命测试方法 LED寿命加速试验的目的概括起来有: ?在较短时间内用较少的LED估计高可靠LED的可靠性水平 ?运用外推的方法快速预测LED在正常条件下的可靠度; ?在较短时间内提供试验结果,检验工艺; ?在较短时间内暴露LED的失效类型及形式,便于对失效机理进行研究,找出失效原因; ?淘汰早期失效产品,测定元LED的极限使用条件 1. 温度加速寿命测试法 由于通常LED寿命达到10万小时左右,因此要测得其常温下的寿命时间太长,因此采用加速寿命的方法。 根据高温加速寿命得的结果外推其他温度下的寿命。LED温度加速老化寿命测试原理是基于Arrhenius 模型。 利用该模型可以发现由温度应力决定的反应速度的依赖关系,即 式中L为寿命,Ea为激活能,A为常数,k为玻尔兹曼常数,T为热力学温度。 因此测试温度应有两个,即还需测得另一个温度T2下器件寿命为L2。可以求得激活能Ea。样便可以求得温度 T1对某温度T3下的加速系数K3: 。有: 可见实验需要测得同一批器件在两个不同温度下的寿命,然后推得其他温度下的寿命。 这就要求被测器件的数量应足够多,才能避免个性影响,而得到共性,即得到统计寿命值才真实。 LED从正常状态进入劣化状态的过程中,存在能量势垒,跃过这个势垒所需要的能量必须由外部供给,这个能量势垒就称为激活能。

胶体金试纸加速老化试验原理及方案设计

胶体金试纸加速老化试验原理及方案设计 点击次数:305 作者:Tombacon 发表于:2008-08-20 13:49转载请注明来自丁香园 来源:丁香园 你制作的胶体金试纸保质期有多长, 1年, 2年? 难道我要将试纸放置两年以后才知道质量是否过关? 为了解决保质期的问题,我们设计了将试纸放置于高温环境下烘烤的加速老化试验。然而这个实验到目前为止都没有明确的技术资料,大多数文献资料里面只有 "37度2个月=常温下2年", "45度一个月=常温下2年" 的一个概念描述,那么这个实验的原理是什么,是否真的如以上所说。实验应该如何设计。一系列的问题接踵而至。 一、原理 37度或45度老化试验的原理是什么? --------阿伦尼乌斯公式;Arrhenius equation 由瑞典的阿伦尼乌斯所创立,表示化学反应速率常数( k )对温度( T )的依赖关系的经验公式。公式的演算和背景分析,请大家自己GOOGLE. 公式如下: d(In k)/dT=Ea/RT2 (这个2, 是T的平方,论坛里不知道怎么搞上去) Ea为表观活化能,R为摩尔气体常量。变化趋势为T增大,一般k也增大。 Ea 约等于19.5 Kcal/mol. 于是计算出对应的温度与老化天数关系。全部数值以一年稳定性情况对比。 温度/天

85.2/1.2 80.2/1.8 74.9/2.7 70.1/4.0 65.0/6.0 60.1/9.3 55.1/14.6 50.1/23.0 45.0/37.5 40.1/64.4 37.0/91.0 30.1/193.0 25.1/343.7 22.1/494.8 20.1/616.7 15.1/1145.3 12.0/1688.4 提取我们经常用的数值温度/天 25.1/343.7 37.0/91.0

电工电子产品加速寿命试验(完整资料).doc

【最新整理,下载后即可编辑】 电工电子产品加速寿命试验之一 1概述 寿命试验是基本的可靠性试验方法,在正常工作条件下,常常采用寿命试验方法去评估产品的各种可靠性特征。但是这种方法对寿命特别长的产品来说,不是一种合适的方法。因为它需要花费很长的试验时间,甚至来不及作完寿命试验,新的产品又设计出来,老产品就要被淘汰了。因此,在寿命试验的基础上形成的加大应力、缩短时间的加速寿命试验方法逐渐取代了常规的寿命试验方法。 加速寿命试验是用加大试验应力(诸如热应力、电应力、机械应力等)的方法,激发产品在短时间内产生跟正常应力水平下相同的失效,缩短试验周期。然后运用加速寿命模型,评估产品在正常工作应力下的可靠性特征。加速环境试验是近年来快速发展的一项可靠性试验技术。该技术突破了传统可靠性试验的技术思路,将激发的试验机制引入到可靠性试验,可以大大缩短试验时间,提高试验效率,降低试验耗损。

2 常见的物理模型 元器件的寿命与应力之间的关系,通常是以一定的物理模型为依据的,下面简单介绍一下常用的几个物理模型。 2.1失效率模型 失效率模型是将失效率曲线划分为早期失效、随机失效和磨损失效三个阶段,并将每个阶段的产品失效机理与其失效率相联系起来,形成浴盆曲线。该模型的主要应用表现为通过环境应力筛选试验,剔除早期失效的产品,提高出厂产品的可靠性。 2.1 失效率模型图示: O 1 典型的失效率曲线 规定的失效率 随机失效 早期

失效 磨损失效 t 2.2应力与强度模型 该模型研究实际环境应力与产品所能承受的强度的关系。 应力与强度均为随机变量,因此,产品的失效与否将决定于应力分布和强度分布。随着时间的推移,产品的强度分布将逐渐发生变化,如果应力分布与强度分布一旦发生了干预,产品就会出现失效。因此,研究应力与强度模型对了解产品的环境适应能力是很重要的。

相关文档
最新文档