平方差公式和完全平方公式的应用

合集下载

平方差公式和完全平方公式

平方差公式和完全平方公式

平方差公式和完全平方公式一、平方差公式:设有两个数a和b,平方差公式可以表示为:(a+b)*(a-b)=a^2-b^2例如,对于任意两个实数a和b,有(a + b)^2 - (a - b)^2 = 4ab这个公式的应用十分广泛,对于二次方程的因式分解、求根等问题有很大的帮助。

通过平方差公式,可以将一个二次方程因式分解为两个一次方程的乘积,从而简化计算过程。

举个例子,假设有一个二次方程x^2+5x+6=0,我们可以将其因式分解为(x+2)(x+3)=0,然后求解得到x=-2或x=-3通过平方差公式,我们可以简化计算过程,直接得到因式分解的结果。

二、完全平方公式:完全平方公式是指一个二次三项式可以表示为一个完全平方的形式。

设有一个二次三项式x^2 + bx + c,完全平方公式可以表示为:x^2 + bx + c = (x + m)^2 + n其中m和n是常数。

通过完全平方公式,我们可以将一个二次三项式转化为一个完全平方的形式,从而进行进一步的求解。

举个例子,假设有一个二次三项式x^2+6x+9,根据完全平方公式可以将其表示为(x+3)^2通过完全平方公式,我们可以快速得到该二次三项式的解为x=-3与平方差公式类似,完全平方公式也是简化计算的重要工具。

通过完全平方公式,我们可以将一个二次三项式转化为一个完全平方,从而更方便地进行求解。

总结:平方差公式和完全平方公式是数学中常用的两个公式,用于求解一元二次方程。

平方差公式使我们能够将一个二次方程进行因式分解,简化计算过程。

完全平方公式用于将一个二次三项式转化为一个完全平方,进一步求解。

这两个公式在数学的教学和实际应用中有着重要的作用,帮助我们更方便地求解问题,提高计算的效率。

完全平方公式和平方差公式的应用

完全平方公式和平方差公式的应用

完全平方公式和平方差公式的应用公式:语言叙述:两数的。

公式结构特点:左边:右边:熟悉公式:公式中的a和b既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

(5+6x)(5-6x)中是公式中的a,是公式中的b(5+6x)(-5+6x)中是公式中的a,是公式中的b(x-2y)(x+2y)填空:1、(2x-1)( )=4x2-12、(-4x+ )( -4x)=16x2-49y2第一种情况:直接运用公式1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)第二种情况:运用公式使计算简便1、1998×20022、498×5023、999×10014、1.01×0.995、30.8×29.26、(100-13)×(99-23)7、(20-19)×(19-89)第三种情况:两次运用平方差公式1、(a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x-12)(x2+14)(x+12)第四种情况:需要先变形再用平方差公式1、(-2x-y)(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1) 5.(b+2a)(2a-b) 6.(a+b)(-b+a) 7.(ab+1)(-ab+1)第五种情况:每个多项式含三项1.(a+2b+c )(a+2b-c)2.(a+b-3)(a-b+3)3.x-y+z)(x+y-z)4.(m-n+p)(m-n-p)完全平方公式公式:语言叙述:两数的 . 。

公式结构特点:左边: 右边:熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

公式变形1、a 2+b 2=(a+b)2 =(a-b)22、(a-b )2=(a+b)2 ; (a+b)2=(a-b)23、(a+b)2 +(a-b )2=4、(a+b)2 --(a-b )2= 一、计算下列各题: 1、2)(y x + 2、2)23(y x - 3、2)21(b a + 4、2)12(--t5、2)313(c ab +-6、2)2332(y x +7、2)121(-x 8、(0.02x+0.1y)2二、利用完全平方公式计算: (1)1022 (2)1972三、计算: (1)22)3(x x -+ (2)22)(y x y +-(3)()()2()x y x y x y --+-四、计算:(1))4)(1()3)(3(+---+a a a a (2)22)1()1(--+xy xy(3))4)(12(3)32(2+--+a a a五、计算:(1))3)(3(-+++b a b a (2))2)(2(-++-y x y x(3))3)(3(+---b a b a (4)()()2323x y z x y z +-++六、拓展延伸 巩固提高 1、若22)2(4+=++x k x x,求k 值。

平方差公式与完全平方公式应用中易犯错误分析

平方差公式与完全平方公式应用中易犯错误分析

平方差公式与完全平方公式应用中易犯错误分析在初中数学中,学生易犯的错误很多,下面我就平方差公式与完全平方公式的计算来分析一下学生出现错误的原因,并且进一步总结反思。

许多学生由于对两个公式结构特点理解不清楚,计算时往往出现这样那样的错误。

一、我们将这些常出现的错误总结出来,进行分析。

1、平方差与完全平方公式混淆1)( x – 3y)2 = x2 - 9y22)( 2x + 3y)2 = 4x2 + 9y2错因:这两个式子都是完全平方公式,应等于它们的平方和,加上(或减去)它们的积的2倍。

正确解法:1、22222(x-3y)23(3)69x x y y x xy y=-+=-+2、22222(23)(2)223(3)4129x y x x y y x xy y+=++=-+2、平方差公式结构特点模糊( m + 3n ) ( -m - 3n ) = m2 - 9n2错因:平方差公式左边必须是两式中一项相同,一项互为相反数。

m+ 3n 与-m - 3n两项都互为相反数,此题不能用平方差公式。

应用完全平方公式。

正确解法:2 2222( m + 3n ) ( -m - 3n ) =(m+3n)[-(m+3n)]=-(m+3n) [23(3)]69m m n n m mn n=-++=---3、公式计算中项的概念不够明确,漏掉系数( 2x + y ) ( 2x – y ) = 2x2 - y2错因:式子在计算中都没有明确“项”的概念,包括字母前面的系数,因此在平方时漏掉了系数。

应是2x与y这两项的平方差。

正确解法:2222x y x y-=-( 2x + y ) ( 2x - y ) =(2)44、公式中的符号错误1)( -a + b )2 = a2 + 2ab + b22)( -a – b )2 = a2 - 2ab - b2错因:公式中各项的符号特点及公式右边各项与公式左边两项的的关系理解模糊,出现了符号错误。

完全平方公式和平方差公式有哪些

完全平方公式和平方差公式有哪些

完全平方公式和平方差公式有哪些完全平方公式和平方差公式是数学中常用的公式,它们在解决一些与平方数相关的问题时发挥着重要的作用。

下面将详细介绍完全平方公式和平方差公式的定义和应用。

一、完全平方公式完全平方公式是指将一个二次多项式转化为一个完全平方式表示的公式。

二次多项式可以写成\[a^2 + 2ab + b^2 = (a + b)^2\]其中,a和b可以是任意实数。

完全平方公式通过将二次多项式写成一个完全平方式的形式,可以方便地进行运算和化简。

完全平方公式的应用十分广泛,特别是在因式分解与整式运算、解二次方程、求函数的最值等方面,其作用不可忽视。

二、平方差公式平方差公式是指将两个数的平方差表示为一个因式的形式的公式。

平方差公式有两种常见形式:1. \(a^2 - b^2 = (a + b)(a - b)\)其中,a和b可以是任意实数。

平方差公式可以应用于因式分解、整式运算等问题的解答。

2. \(a^2 + b^2 = (a + bi)(a - bi)\)其中,a和b表示实数,i为虚数单位。

当b不为0时,该公式可以应用于复数运算,如复数的乘法和除法。

当b为0时,该公式可以用于判定一个实数是否为一个复数的平方。

平方差公式的广泛应用使得解决与平方数相关的问题变得更加简便。

总结:完全平方公式和平方差公式是数学中常用的公式,它们在解决与平方数相关的问题时发挥着重要作用。

完全平方公式将二次多项式转化为完全平方式,便于运算和化简;平方差公式通过将平方差表示为因式的形式,方便因式分解、整式运算和复数运算等问题的解答。

这些公式的应用广泛,对于学习和应用数学都至关重要。

在实际问题中,我们可以根据具体情况选择合适的公式来解决与平方数相关的问题。

熟练掌握完全平方公式和平方差公式的定义、应用和证明,将会极大地提高我们在数学领域的能力和解题技巧。

通过不断的练习和实践,我们可以更好地理解和运用这些公式,为解决更复杂的数学问题打下坚实的基础。

平方差公式与完全平方公式的应用技巧

平方差公式与完全平方公式的应用技巧

(D)1 xn .
分析:解答时,把握好两点,一是准确的进行计算;二是准确的寻找式子的特点,结果
的特点,明确变化中,哪些量是保持不变,哪些量一直在不断变化,变化的规律是什么,问
题就顺利破解.
解:(1+x)(1-x)=1- x 2 , (1 x)(1 x x2 ) =1- x3 ,…,规律为结果的第一项是数字 1,
(2)写出你猜想的第 n 个等式(用含 n 的式子表示),并验证其正确性. 分析: 由①②③三个等式可得,被减数是从 3 开始连续奇数的平方,减数是从 1 开始连续 自然数的平方的 4 倍,计算的结果是被减数的底数的 2 倍减 1,由此规律得出答案即可. 解:
(1)因为 32 - 4? 12 =5 ①, 52 - 4? 22 =9 ②, 72 - 4? 32 =13 ③…
解:设大正方形的边长为 x1 ,小正方形的边长为 x2 ,由图①和②列出方程组得,
ìïïíïïî
x1 x1
+ -
2x2 2x2
= =
a b
,解得,x1
=
a
+ 2
b
,x2
=
a
4
b
,所以大正方形中未被小正方形覆盖部分
的面积=( a + b )2 - ( a - b )2 ×4=ab.所以应该填 ab.
2
所以 92 ﹣4×- 2 = = 92 ﹣4× 42 =17;
(2)第 n 个等式为:(2n + 1)2 - 4n2 =2(2n+1)﹣1;
证明:因为左边
=(2n + 1)2 - 4n2 =(2n + 1)2 - (2n)2 = (2n + 1+ 2n)(2n + 1- 2n) = 4n + 1

平方差公式与完全平方公式

平方差公式与完全平方公式

(1) 103 X 97(2) 118X 122(3) 19- 203 3(a+b ) ( a — b ) =a 2 — b 2应用1、平方差公式的应用: 例1、利用平方差公式进行计算:(1) ( 5+6x )( 5 — 6x )( 2)(x + 2y ) (x — 2y )(3) (— mi + n ) (— m- n ) 解:21) ( 2x — 3)1(3 ) (— x y )21(5 ) ( — x+ y )22 ) ( 4x+5y 4 ) ( — x — 2y例2、计算:1 1(1) ( x y ) ( x y )4 4(2) ( — m — n ) ( m — n )2(3) ( m + n ) ( n — m ) +3m2 2(4) ( x+y ) ( x — y ) ( x — y ) 解:例5、利用完全平方公式计算: 2 2 2(1) 102(2 ) 197 (3) 19999 — 19998 X 20002解:a+b ) a- b )2+2ab+b 2=a 2— 2ab+b 解:应用2、 完全平方公式的应用:例4、计算:平方差公式与完全平方公式例3、计算:试一试:计算:9 X 7—82= _____________应用3、乘法公式的综合应用:例6、计算:2(1)(x+5) —( x+2) (x —2)(2)(a+b+3) (a+b—3)(3)(a —b+1) (b—a+1)2(4)(a+b—c)解:1111、(1) (1-2)(1 2 )(1 2 )(1 —2)23410(2) (21)(221)(241)(281) (232 1)解:例10、证明:x2+y2+2x —2y+3的值总是正的。

1 2例7、( 1)若一x ax 4是完全平方式,则:4a= _______________(2 )若4X2+1加上一个单项式M使它成为一个完全平方式,则M= _______________例18、( 1 ) 已知:a 3 , 则:a21a 2 -a_(2) 已知:a15,则:a 2a a(3) 已知:a+b=5, ab=6,则:a2+b2=(4 ) 已知 : 2 2(a+b ) =7 , ( a —b ) =3 , 则:2 2a +b=,ab=例9、计算:【模拟试题】一、耐心填一填1、计算:(2+3x) (—2+3x) = _____________ ; (—a —b) 2= _____________ .*2、一个多项式除以a2—6b2得5a2+b2,那么这个多项式是 __________________ .23、若ax +bx+c= ( 2x—1) (x —2),则a= _______ , b= ______ , c= ________ .2 24、已知(x—ay) (x + ay ) = x —16y ,那么a = _____________ .5、多项式9x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是 .(填上一个你认为正确的即可)6、计算:(a—1) (a+1) (a2—1) = _________ .7、已知x —y=3, x —y =6,贝U x+y= _____ .8、若x+y=5, xy=6,贝V x +y = ________ .9、利用乘法公式计算:1012= __________ ; 1232—124X 122= __________ .10、若A= (2—1) (2+ 1) (22+ 1) (24+ 1 )……(232+ 1) +1,贝U A的个位数字是二、精心选一选(每小题3分,共30分)1、计算结果是2x2—x —3的是( )A. (2x —3) (x+1)B. (2x —1)(x —3)C. (2x+3) (x—1)D. (2x—1) (x+3)2、下列各式的计算中,正确的是( )2 2A. (a+5) (a—5) =a —5B. (3x+2) (3x —2) =3x —42 2 2C. ( a+2) (a—3) =a —6D. (3xy+1) ( 3xy —1) =9x y—13、计算(—a+2b) 2,结果是, ( )2 2 2 2A. —a +4ab+bB. a—4ab+4b2 2C. —a —4ab+bD. a 2 2—2ab+2b4、设x+y=6, x —y=5,则x2—y2等于( )A. 11B. 15C. 30D. 605、如果(y+a) 2=y2—8y+b,那么a、b的值分别为()A. a=4 , b=16B. a= —4, b=—16C. a=4 , b= —16D. a= —4, b=166、若(x —2y) 2= (x+2y) 2+m,则m等于( )A. 4xyB. —4xyC. 8xyD.—8xy7、下列式子中,可用平方差公式计算的式子是()a b2、对于任意有理数a、b、c、d,我们规定=adc d(x y) 2x—be,求的值。

完全平方公式和平方差公式

完全平方公式和平方差公式

乘法公式1.平方差公式(1)平方差公式的推导:因为(a +b )(a -b )=a 2-ab +ab -b 2=a 2-b 2,所以(a +b )(a -b )=a 2-b 2.【例1】 利用平方差公式计算.(1)(2a +3b )(-2a +3b ); (2)503×497.2.完全平方公式(1)两数和的完全平方公式:(a +b )2=a 2+2ab +b 2;两数差的完全平方公式:(a -b )2=a 2-2ab +b 2.析规律 完全平方公式的特征 完全平方公式总结口诀为:首平方,尾平方,首尾二倍积,加减在中央.【例2】 计算:(1)(4m +n )2; (2)(y -12)2; (3)(-a -b )2; (4)(-2a +12b )2.3.添括号法则法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.警误区 添括号法则的易错点 添括号时,如果括号前面是负号,括到括号里面的各项都改变符号,不可只改变部分项的符号,如:a -b +c =a -(b +c ),这样添括号时只是改变了第一项的符号,而第二项的符号没有改变,所以这样添括号是错误的.【例3】 填空:(1)(x -y +z )(x +y -z )=[x -( )][x +( )];(2)(x +y +z )(x -y -z )=[x +( )][x -( )].【例4】 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式__________.【例6】 观察下列各式的规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;…写出第n 行的式子,并证明你的结论.类型一:巧用乘法公式 类型二:平方差与完全平方公式混用22114422x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭计算: ()()a b c a b c ++--计算:类型三:完全平方公式在三角形中的运用例3、已知△ABC 的三边长a,b,c 满足2220a b c ab bc ac ++---=,试判断△ABC 的形状类型四:利用乘法公式解方程(组)例4:()()()()222432x y x y x y x y ⎧+-+=+-⎪⎨-=-⎪⎩解方程组类型五:多项式的证明例5:证明无论a,b 为何值,多项式222612a b a b +--+的值恒为正类型六:灵活运用乘法公式解题例6、计算22222111111-1-1-11234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭拓展:三项完全平方公式:()2222222a b c a b c ab ac bc ++=+++++ 二次三项式:()()()2+x a x b x a b x ab +=+++ 立方和公式:()()3322a b a b a ab b +=+-+立方差公式:()()3322-+a b a b a ab b =++1、若()()234+,,x x x px q p q --=+那么的值分别是2、()()()224,b ax b x x ab ++=-+=若则3、()()3x m x ++如与的乘积中不含x 的一次项,则m 的值为4、已知()()250,3+2a a a a -+=-则的值是5、已知实数()()2222,1,25,a b a b a b b ab +=-=++=满足则a6、将代数式()2262x x x p q ++++化成的形式为7、若2+216x ax +是一个完全平方展开式,则a 的值是________-8、已知216x x k ++是个完全平方式,则常数k 的值为_______9、若()222560,x =x y xy y +-+-=+则___________- 10、已知2221114,x x x x x ⎛⎫+=+- ⎪⎝⎭求x 和的值 11、知实数()()2222,1,25,a b a b a b b ab +=-=++=满足则a课后练习1.下列各式中,相等关系一定成立的是( )A.(x -y)2=(y -x)2B.(x+6)(x -6)=x 2-6C.(x+y)2=x 2+y 2D.x 2+2xy 2-y 2=(x+y)22.下列运算正确的是( )A.(a+3)2=a 2+9B.(13x -y)2=16x 2-23xy+y 2 C.(1-m)2=1-2m+m 2 D.(x 2-y 2)(x+y)(x -y)=x 4-y 43.将面积为a 2的正方形边长增加2,则正方形的面积增加了( )A.4B.2a+4C.4a+4D.4a4.下列多项式乘法中,不能用平方差公式计算的是( )A.(a+1)(2a -2)B.(2x -3)(-2x+3)C.(2y -13)(13+2y) D.(3m -2n)(-3m -2n) 5.不等式(2x -1)2-(1-3x)2<5(1-x)(x+1)的解集是( )A.x >-2.5B.x <-2.5C.x >2.5D.x <2.56.计算:(1)(1.2x -57y)(-57y -1.2x); (2)1523×(-1413);(3)[2x2-(x+y)(x-y)][(z-x)(x+z)+(y-z)(y+z)];(4)(a-2b+3c)(a+2b-3c).7.(1)已知x+y=6,xy=4,求①x2+y2,②(x-y)2,③x2+xy+y2的值.(2)已知a(a-3)-(a2-3b)=9,求222a b-ab的值.1.计算:(1)(a2+1)(a2-1)-(-a2)·a2;(2)(2a-b)(2a+b)-(-3a-b)(-3a+b);(3)x2-(4-x)2;(4)(3x-2y)2-4(2x-y)(x-y).2.已知(a+b)2=7,(a-b)2=4,求a2+b2和ab的值.3.已知△ABC的三边a、b、c满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.4.解方程:(1)9x(4x-7)-(6x+5)(6x-5)+38=0;(2)(y2-3y+2)(y2+3y-2)=y2(y+3)(y-3).。

平方差和完全平方公式应用举例

平方差和完全平方公式应用举例

平方差和完全平方公式应用举例一、平方差公式平方差公式描述了两个数(或代数式)的乘积与它们的差之间的关系:(a+b)(a-b)=a²-b²这个公式的应用在代数运算中非常常见,下面我们通过几个具体的例子来说明它的应用。

例子1:计算(7+2)(7-2)根据平方差公式,我们有:(7+2)(7-2)=7²-2²=49-4=45所以,(7+2)(7-2)=45例子2:计算(x+1)(x-1)根据平方差公式,我们有:(x+1)(x-1)=x²-1²=x²-1所以,(x+1)(x-1)=x²-1二、完全平方公式完全平方公式描述了一个一次多项式的平方的表达式:(a + b)² = a² + 2ab + b²这个公式的应用也非常广泛,下面我们通过几个具体的例子来说明它的应用。

例子3:展开(x+2)²根据完全平方公式,我们有:(x+2)²=x²+2(x)(2)+2²=x²+4x+4所以,(x+2)²=x²+4x+4例子4:展开(3+2x)²根据完全平方公式,我们有:(3+2x)²=3²+2(3)(2x)+(2x)²=9+12x+4x²所以,(3+2x)²=4x²+12x+9这些例子展示了平方差和完全平方公式在解题中的应用。

它们可以用来简化计算过程,化简表达式和方程。

例如,当我们需要计算两个数的乘积或平方时,我们可以利用平方差公式,将计算过程转化为相加或相减的操作,从而简化计算。

另外,完全平方公式可用于展开一个一次多项式的平方,从而获取更多的信息。

这在求解方程和证明等问题中经常会遇到。

总结起来,平方差和完全平方公式是代数中常用的公式,它们的应用在代数运算、化简表达式、求解方程和证明等问题中都具有重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作 业
1.计算:
(1)( 31x+32y 2)( 31x−3
2y 2); (2)(a+2b−c)(a−2b+c); (3)(m−2n)(m 2+4n 2)(m+2n);
(4)(a+2b)( 3a−6b)(a 2+4b 2);
(5)(m+3n)2(m−3n)2;
(6)( 2a+3b)2−2( 2a+3b)(a−2b)+(−a+2b)2.
2.利用乘法公式进行简便运算:
①20042;
②999.82;
③(2+1)(22+1)(24+1)(28+1)(216+1)+1
参考答案
一、选择题
1. 答案:C
说明:利用完全平方公式(a−b)2 = a 2−2ab+b 2,A 错;(a+3b)2 = a 2+ 2a(3b)+(3b)2 = a 2+6ab+9b 2,B 错;(a+b)2 = a 2+2ab+b 2,C 正确;利用平方差公式(x+3)(x−3) = x 2−9,D 错;所以答案为C .
2. 答案:B
说明:选项B ,(−5xy+4z)(−4z−5xy) = (−5xy+4z)(−5xy −4z),符合平方差公式的形式,可以用平方差公式计算;而选项A 、C 、D 中的多项式乘法都不符合平方差公式的形式,不能用平方差公式计算,所以答案为B .
3. 答案:D
说明:( 2a+b)( 2a−b) = ( 2a)2−b 2 = 4a 2−b 2,A 错;(0.3x+0.2)(0.3x−0.2) =
(0.3x)2−0.22 = 0.09x 2−0.04,B 错;(a 2+3b 3)(3b 3−a 2) = (3b 3)2−(a 2)2 = 9b 6−a 4,C 错;( 3a−bc)(−bc− 3a) = (−bc )2−( 3a)2 = b 2c 2− 9a 2 = − 9a 2+b 2c 2,D 正确;所以答案为
D .
4. 答案:C
说明:利用完全平方公式(−2y−x)2 = (−2y)2+2(−2y)(−x)+(−x)2 = 4y 2+4xy+x 2,所以答案为C .
5. 答案:D
说明:选项D ,两个多项式中−m 2n 与m 2n 互为相反数,2与−2也互为相反数,因此,不符合平方差公式的形式,不能用平方差公式计算,而其它三个选项中的多项式乘法都可以用平方差公式计算,答案为D .
答案:B
说明:利用完全平方公式(x+y)2 = x 2+2xy+y 2,A 错;(x−2y)2 = x 2−2x(2y)+(2y)2
= x 2−4xy+4y 2,C 错;(21a−b)2 = (21a)2−2(21a)b+b 2 =4
1a 2−ab+b 2,D 错;只有B 中的式子是成立的,答案为B . 二、解答题
1. 解:(1)(
31x+32y 2)( 31x−32y 2) = (31x)2−(32y 2)2 =91x 2−9
4y 4. (2) (a+2b−c)(a−2b+c)
= a2−(2b−c)2
= a2−(4b2−4bc+c2)
= a2−4b2+4bc−c2
(3)(m−2n)(m2+4n2)(m+2n)
= (m−2n)(m+2n)(m2+4n2)
= (m2−4n2)(m2+4n2)
= m4−16n4
(4)(a+2b)( 3a−6b)(a2+4b2)
= (a+2b)•3•(a−2b)(a2+4b2)
= 3(a2−4b2)(a2+4b2)
= 3(a4−16b4)
= 3a4−48b4
(5) 解1:(m+3n)2(m−3n)2
= (m2+6mn+9n2)(m2−6mn+9n2)
= [(m2+9n2)+6mn][(m2+9n2)−6mn]
= (m2+9n2)2−(6mn)2
= m4+ 18m2n2+81n4− 36m2n2
= m4− 18m2n2+81n4
解2:(m+3n)2(m−3n)2
= [(m+3n)(m−3n)]2
= [m2−(3n)2]2
= (m2−9n2)2
= m4− 18m2n2+81n4
(6)解1:( 2a+3b)2−2( 2a+3b)(a−2b)+(−a+2b)2
= 4a2+12ab+9b2−2(2a2+3ab−4ab−6b2)+a2−4ab+4b2 = 4a2+12ab+9b2− 4a2−6ab+8ab+12b2+a2−4ab+4b2 = a2+10ab+25b2
解2:( 2a+3b)2−2( 2a+3b)(a−2b)+(−a+2b)2
= ( 2a+3b)2−2( 2a+3b)(a−2b)+(a−2b)2
= (a+5b)2
= a2+10ab+25b2
2. 解:①20042
= (2000+4)2
= 20002+2•2000•4+42
= 4000000+16000+16
= 4016016
②999.82
= (1000−0.2)2
= (1000)2−2×1000×0.2+(0.2)2
= 1000000−400+0.04
= 999600.04
③(2+1)(22+1)(24+1)(28+1)(216+1)+1
= (2−1)(2+1)(22+1)(24+1)(28+1)(216+1)+1
= (22−1)(22+1)(24+1)(28+1)(216+1)+1
= (24−1)(24+1)(28+1)(216+1)+1
= (28−1)(28+1)(216+1)+1
= (216−1)(216+1)+1
=232−1+1
= 232.。

相关文档
最新文档