北京161中2018-2019学年八年级(上)期中数学试卷(PDF解析版)

合集下载

2018-2019学年北京市一六一中学八年级(下)期中数学试卷

2018-2019学年北京市一六一中学八年级(下)期中数学试卷

2018-2019学年北京市一六一中学八年级(下)期中数学试卷一、选择题(本大题共8道小题,每小题3分,共24分)1.(3分)下列二次根式中,最简二次根式是()A.B.C.D.2.(3分)下列各组数中,以它们为边长的线段能构成直角三角形的是()A.4,5,6B.11,12,13C.2,3,4D.8,15,173.(3分)平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A.120°B.60°C.30°D.15°4.(3分)正方形的一条对角线长为4,则这个正方形的面积是()A.8B.4C.8D.165.(3分)若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定6.(3分)如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为()A.16B.24C.4D.87.(3分)如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A.22.5°B.60°C.67.5°D.75°8.(3分)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24B.25C.26D.27二、填空题(本大题共8道小题,每小题3分,本题共24分)9.(3分)化简的结果是.10.(3分)如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是m.11.(3分)三角形三边长分别为3,4,5,那么最长边上的中线长等于.12.(3分)如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为米.13.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120°,则BC的长为cm.14.(3分)反比例函数y=在第一象限的图象如图,请写出一个满足条件的k值,k=.15.(3分)如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.16.(3分)在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C 点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠的依据是.三、计算题(本大题共3道小题,每小题12分,本题共12分)17.(12分)计算:(1)(2)(3)四、解答题(本大题共8道小题,其中23小题4分,24小题6分,其它每小题5分,本题共40分)18.(5分)如图,已知平行四边形ABCD中,E、F是对角线BD上的两个点,且BE=DF.求证:四边形AECF为平行四边形.19.(5分)如图,凹四边形ABCD中,CD⊥AD,AD=8,CD=6,AB=26,BC=24,求凹四边形ABCD的面积.20.(5分)利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:第一步:(计算)尝试满足=,使其中a,b都为正整数,你取的正整数a=,b=;第二步:(画长为的线段)以第一步中你所取的正整数a,b为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上,∠OEF=90°,则斜边OF的长即为,请在下面的数轴上画图;(第二步不要求尺规作图,不要求写画法)第三步:(画表示的点)在下面的数轴上画出表示的点M,并描述第三步的画图步骤:.21.(5分)已知,如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,如果AB=8cm,BC=10cm (1)求FC的长;(2)求EC的长.22.(5分)在平面直角坐标系xOy中,一次函数y=kx+b的图象与y轴交于点B(0,1),与反比例函数y=的图象交于点A(3,﹣2).(1)求反比例函数的表达式和一次函数表达式;(2)若点C是y轴上一点,且BC=BA,直接写出点C的坐标.23.(4分)如图,六个完全相同的小长方形拼成一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图:要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中利用所学特殊四边形的知识,画出线段AB的垂直平分线.24.(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)25.(5分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”,(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的面积为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD解析式.四、填空题(本题6分)26.(6分)如图,OP=1,过P作PP1⊥OP且PP1=1,根据勾股定理,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;OP4=,…:依此继续,得OP2019=,OP n=(n为自然数,且n>0)五、解答题(本题共14分,2小题6分,3小题8分)27.(6分)如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.(1)请补全表:(2)填空:由(1)可以发现单位正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把单位菱形的面积S记为S(α).例如:当α=30°时,S=S(30°)=;当α=135°时,S=S(135°)=.由上表可以得到S(60°)=S(°);S(150°)=S(°),…,由此可以归纳出S(180°﹣α)=(°).(3)两块相同的等腰直角三角板按图2的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).28.(8分)已知如图1,正方形ABCD,△CEF为等腰直角三角形,其中∠CFE=90°,CF=EF,连接CE,AE,AC,点G是AE的中点,连接FG(1)用等式表示线段BF与FG的数量关系是.(2)若将△CEF绕顶点C旋转,使得点F恰好在线段AC上,并且点E在线段AC的上方,点G仍是AE的中点,连接FG,DF①在图2中依据题意补全图形;②求证:DF=FG.2018-2019学年北京市一六一中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8道小题,每小题3分,共24分)1.【解答】解:A、是最简二次根式,本选项正确;B、=3,不是最简二次根式,本选项错误;C、=,不是最简二次根式,本选项错误;D、=3a,不是最简二次根式,本选项错误.故选:A.2.【解答】解:A、∵42+52=41≠62,∴不能构成直角三角形,故本选项不符合题意;B、∵112+122=265≠132,∴不能构成直角三角形,故本选项不符合题意;C、∵22+32=13≠42,∴不能构成直角三角形,故本选项不符合题意;D、∵82+152=289=172,∴能够构成直角三角形,故本选项符合题意.故选:D.3.【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故选:B.4.【解答】解:∵正方形的一条对角线长为4,∴这个正方形的面积=×4×4=8.故选:A.5.【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2=,∵1>,∴y1>y2.故选:C.6.【解答】解:∵四边形ABCD是菱形,∴BO=OD=AC=2,AO=OC=BD=3,AC⊥BD,∴AB==,∴菱形的周长为4.故选:C.7.【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠DBC=45°,∵BE=CD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,故选:C.8.【解答】解:如图,设PM=PL=NR=KR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.二、填空题(本大题共8道小题,每小题3分,本题共24分)9.【解答】解:=3,故答案为:3.10.【解答】解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,∴MN=AB,∴AB=2MN=2×32=64(m).故答案为:64.11.【解答】解:∵32+42=25=52,∴该三角形是直角三角形,∴×5=2.5.故答案为:2.5.12.【解答】解:由题意得BC=9,在直角三角形ABC中,根据勾股定理得:AB==15米.所以大树的高度是15+9=24米.故答案为:24.13.【解答】解:在矩形ABCD中,OA=OB=AC=×4=2cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=OA=2cm,在Rt△ABC中,根据勾股定理得,BC===2cm.故答案为:2.14.【解答】解:∵反比例函数y=的图象在第一象限,∴k>0,∴k=3,故答案为:3.15.【解答】解:过点P作MN∥AD交AB于点M,交CD于点N,如图所示.∵四边形ABCD为正方形,∴MN⊥AB,∴PM≤PE(当PE⊥AB时取等号),PN≤PF(当PF⊥BC时取等号),∴MN=AD=PM+PN≤PE+PF,∵正方形ABCD的面积是2,∴AD=.故答案为:.16.【解答】解:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.故答案是:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).三、计算题(本大题共3道小题,每小题12分,本题共12分)17.【解答】解:(1)原式=2+3﹣﹣5=﹣2;(2)原式=2×÷=2××3×=2;(3)原式==+2.四、解答题(本大题共8道小题,其中23小题4分,24小题6分,其它每小题5分,本题共40分)18.【解答】证明:连接对角线AC交对角线BD于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E,F是对角线BD上的两点,且BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形.19.【解答】解:连接AC,在Rt△ACD中,AD=8,CD=6,∴AC===10,在△ABC中,∵AC2+BC2=102+242=262=AB2,∴△ABC为直角三角形;∴图形面积为:S△ABC﹣S△ACD=×10×24﹣×6×8=96.20.【解答】解:第一步:a=4,b=2;第二步:如图,OF为所作;第三步:如图,以原点为圆心,OF为半径画弧交数轴的正半轴于点M,则点M为所作.故答案为4,2;以原点为圆心,OF为半径画弧交数轴的正半轴于点M,则点M为所作.21.【解答】解:(1)∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF=BF===6,∴FC=BC﹣BF=4;(2)设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3∴EC的长为3.22.【解答】解:(1)∵双曲线y=过A(3,﹣2),将A(3,﹣2)代入y=,解得:m=﹣6.∴所求反比例函数表达式为:y=﹣.∵点A(3,﹣2),点B(0,1)在直线y=kx+b上,∴﹣2=3k+b,b=1,∴k=﹣1,∴所求一次函数表达式为y=﹣x+1.(2)由A(3,﹣2),B(0,1)可得,AB==3,∴BC=3,又∵BO=1,∴CO=3+1或3﹣1,∴C(0,3+1 )或C(0,1﹣3).23.【解答】解:(1)如图1,∠ABC=45°,∠DAB=45°;(2)如图2,MN为所作.24.【解答】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.25.【解答】解:(1)如图1∵点A(2,0),B(0,2),∴OA=2,OB=2,在Rt△AOB中,由勾股定理得:AB===4,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=2∴AC=4,BD=4∴以AB为边的“坐标菱形”的面积==8,故答案为:8;(2)如图2,∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°,过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),设直线CD解析式为y=kx+b,由题意可得或解得:或∴直线CD的表达式为:y=x+1或y=﹣x+3;四、填空题(本题6分)26.【解答】解:由勾股定理得:OP1==;得OP2==;得OP3===2;OP4==;依此类推可得OP n=,∴OP2019===2.故答案为:,2,.五、解答题(本题共14分,2小题6分,3小题8分)27.【解答】解:(1)当α=45°时,如图1,过D作DE⊥AB于点E,则DE=AD=,∴S=AB•DE=,同理当α=60°时S=,当α=120°时,如图2,过D作DF⊥AB,交BA的延长线于点F,则∠DAE=60°,∴DF=AD=,∴S=AB•DF=,同理当α=150°时,可求得S=,故表中依次填写:;;;;(2)由(1)可知S(60°)=S(120°),S(150°)=S(30°),∴S(180°﹣α)=S(α)故答案为:120;30;α;(3)两个带阴影的三角形面积相等.证明:如图3将△ABO沿AB翻折得到菱形AMBO,将△CDO沿CD翻折得到菱形OCND.∵∠AOD=∠COB=90°,∴∠COD+∠AOB=180°,∴S△AOB=S菱形AMBO=S(α)S△CDO=S菱形OCND=S(180°﹣α)由(2)中结论S(α)=S(180°﹣α)∴S△AOB=S△CDO.28.【解答】解:(1)BF=FG,理由是:如图1,连接BG,CG,∵四边形ABCD为正方形,∴∠ABC=90°,∠ACB=45°,AB=BC,∵EF⊥BC,FE=FC,∴∠CFE=90°,∠ECF=45°,∴∠ACE=90°,∵点G是AE的中点,∴EG=CG=AG,∵BG=BG,∴△AGB≌△CGB(SSS),∴∠ABG=∠CBG=∠ABC=45°,∵EG=CG,EF=CF,FG=FG,∴△EFG≌△CFG(SSS),∴∠EFG=∠CFG=(360°﹣∠BFE)=(360°﹣90°)=135°,∵∠BFE=90°,∴∠BFG=45°,∴△BGF为等腰直角三角形,∴BF=FG.故答案为:BF=FG;(2)①如图2所示,②如图2,连接BF、BG,∵四边形ABCD是正方形,∴AD=AB,∠ABC=∠BAD=90°,AC平分∠BAD,∴∠BAC=∠DAC=45°,∵AF=AF,∴△ADF≌△ABF(SAS),∴DF=BF,∵EF⊥AC,∠ABC=90°,点G是AE的中点,∴AG=EG=BG=FG,∴点A、F、E、B在以点G为圆心,AG长为半径的圆上,∵=,∠BAC=45°,∴∠BGF=2∠BAC=90°,∴△BGF是等腰直角三角形,∴BF=FG,∴DF=FG.。

2016-2017学年北京市第一六一中学八年级上学期期中数学试题(含答案)解析

2016-2017学年北京市第一六一中学八年级上学期期中数学试题(含答案)解析

北京一六一中学2016—2017学年度第一学期期中考试初 二 数 学 试 题班级______________姓名______________学号_________一、选择题(本大题共10道小题,每小题3分,共30分)1. 计算24-的结果是A .16-B .18-C .116D . 116- 2.下列分式中,是最简分式的是 A .2xy x B .222x y - C .22x y x y +- D .22xx + 3. 在下列分解因式的过程中,分解因式正确的A.()xz yz z x y -+=-+B. ()223232a b ab ab ab a b -+=- C. 232682(34)xy y y x y -=- D. 234(2)(x 2)3x x x x +-=+-+4. 如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =2,则PQ 的最小值为A .1B .2C .3D .45.若分式211x x --的值为0,则x 的值为A . 1.x =-B . 1.x =C . 1.x =±D . 1.x ≠6. 根据下列已知条件,能画出唯一的△ABC 的是A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30°C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =67.下列各式中,正确的是A .212+=+a b a b B .22++=a b a b C . a b a b c c-++=- D .22)2(422--=-+a a a a 8.如图,在△ABC 和△CDE 中,若︒=∠=∠90CED ACB ,AB=CD , BC=DE ,则下列结论中不正确...的是 A .△ABC ≌ △CDE B . E 为BC 中点 C . AB ⊥CD D . CE=AC9.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x 米,则根据题意所列方程正确的是A .150015002(120%)x x -=-B .150015002(120%)x x =+- C .150015002(120%)x x-=+D .150015002(120%)x x=++ 10.已知2220x a b =++,4(2)y b a =-,x 与y 的大小关系是A .x y ≥B .x y ≤C .x y <D . x y >二、填空题(本大题共7道小题,第11-16题每小题2分,第17题4分,共16分)11.若分式13x -有意义,则x 的取值范围是. 12.如图,AB =AC ,点D ,E 分别在AB ,AC 上,CD ,BE 交于点F ,只添加一个条件使△ABE ≌△ACD ,添加的条件是:______________.AOAC DF B F C13. 计算:2325b a ⎛⎫- ⎪⎝⎭= .14. 如图,B ,D ,E ,C 四点共线,且△ABD ≌△ACE ,若∠AEC =105°, 则∠DAE =___________°.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________.16.12111R R R =+是物理学中的一个公式,其中各个字母都不为零且120R R +≠.用 12R R ,表示R ,则R =_______.17.阅读下面材料:数学课上,老师提出如下问题:请回答:(1)小明的作图依据是 ;(2)他所画的痕迹弧MN 是以点 为圆心, 为半径的弧.三、解答题((本大题共4道小题,其中18-20每小题8分,21题5分,共29分)18. 分解因式:(1))(4)(6q p q q p p +-+ (2) a ab ab 442+-19.计算:(1)42223248515a b a b c c ÷ (2)26193a a +-+ .20.解方程:(1)2510512-=-x x (2)12211xx x +=-+.21.先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从1-,0,1,2中选一个你认为合适的a 值, 代入求值.四、解答题(本大题共5道小题,每小题5分,共25分)22.已知:如图,E 、C 是BF 上两点,且AB ∥DE ,BE = FC ,∠A=∠D .求证:AC = DF .23.北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.24.已知:如图,∠1=∠2,P 为BN 上的一点,PF ⊥BC 于F ,PA=PC ,(1)求证:∠PCB+∠BAP=180º(2)线段BF 、线段BC 、线段AB 之间有何数量关系? 写出你的猜想及证明思路.25.阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的A式子就叫做对称式. 例如: ,,,22b a abc c b a +++含有两个字母a ,b 的对称式的基本对称式是b a +和ab ,像22+a b ,(2)(2)a b ++ 等对称式都可以用b a +和ab 表示,例如:ab b a b a 2)(222-+=+. 请根据以上材料解决下列问题:(1)式子①22b a ②22b a - ③ba 11+中,属于对称式的是_________(填序号);(2)已知2()()x+a x+b =x mx+n + .①若21,2=-=n m ,求对称式b a+a b 的值;②若4-=n ,直接写出对称式442211a b a b +++的最小值.26.在Rt △ABC 中,BC =AC ,∠ACB =90°,点D 为射线AB 上一点,连接CD ,过点C 作线段CD 的垂线l ,在直线l 上,分别在点C 的两侧截取与线段CD 相等的线段CE 和CF ,连接AE 、BF .(1)当点D 在线段AB 上时(点D 不与点A 、B 重合),如图1, ①请你将图形补充完整;②线段BF 、AD 所在直线的位置关系为 ,线段BF 、AD 的数量关系为 ; (2)当点D 在线段AB 的延长线上时,如图2, ①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.图1 图2第Ⅱ卷(附加卷部分,共20分)一、填空题(本大题共2小题,每小题5分,共10分)1. 观察下列等式:第一个等式:122311;1221222a ==-⨯⨯⨯⨯ 第二个等式:2323411;2322232a ==-⨯⨯⨯⨯ 第三个等式:3434511;3423242a ==-⨯⨯⨯⨯ 第四个等式:4545611.4524252a ==-⨯⨯⨯⨯ 按上述规律,回答以下问题:(1) 则第六个等式:6a =_________________________________________; (2) 用含n 的代数式表示第n 个等式:n a =___________________________________________.2. 阅读下列材料通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都可化为 带分数,如:86222223333+==+=. 我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的 次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221xx +这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:()12121111x x x x x +--==-+++; 再如:22111(1)1111x x x )x x x x -++-+==---(111x x =++-. 解决下列问题: (1)分式2x是 分式(填“真分式”或“假分式”); (2)假分式12x x -+可化为带分式 的形式; (3)如果分式211x x -+的值为整数,那么x 的整数值为 .二、解答题(本大题共1小题,共10分)3. 阅读材料,解答问题数学课上,同学们兴致勃勃地探讨着利用不同画图工具画角的平分线的方法.小惠说:如图1,我用相同的两块含30° 角的直角三角板可以画角的平分线.画法如下: (1)在∠AOB 的两边上分别取点M ,N ,使OM=ON ; (2)把直角三角板按如图所示的位置放置,两斜边交于点P . 射线OP 是∠AOB 的平分线.小旭说:我只用刻度尺就可以画角平分线.请你也参与探讨,解决以下问题:(1)小惠的做法正确吗?若正确,请给出证明,若不正确,请说明理由.(2)请你和小旭一样,只用刻度尺画出图2中∠QRS 的平分线,并简述画图的过程.北京一六一中学2016—2017学年度第一学期期中考试初二数学标准答案和评分标准第Ⅰ卷(主卷部分,共100分)一、选择题(本大题共10道小题,每小题3分,共30分)1.C2. D3. C4.B5. A6.C7. D 8 B 9. D 10.A二、填空题(本大题共7道小题,第11-16题每小题2分,第17题4分,共16分)11.3≠x 12. C B ∠=∠或AD AE = 13. 62254ab 14.30 15. 1 16.2121R R R R + 17. (1)三边对应相等的两个三角形全等,全等三角形的对应角相等,两点确定一条直线(射线),(2)E ,CD三、解答题((本大题共4道小题,其中18-20每小题8分,21题5分,共29分)18. (1)解:)(4)(6q p q q p p +-+=)23)((2q p q p -+ ………………4分(2)解: a ab ab 442+- )44(2+-=b b a ………………2分2)2(-=b a ………………4分19. (1)解: 42223248515a b a b c c ÷=42232241558a b c c a b ⋅........................................................................................... 1分 =232a c........................................................................................................... 4分(2)解:=61(3)(3)3a a a ++-+………………………… ………………………………1分图2RSQ=63(3)(3)(3)(3)a a a a a -++-+- ………… …………………………………2分=6(3)(3)(3)a a a +-+-……………………… …………………………………………3分=3(3)(3)a a a ++-=13a -.……………………………4分20.(1)解:105=+x ········································································· 1分 5=x ··········································································· 2分 检验:当5=x 时,0252=-x5=∴x 是增根. 原分式方程无解. ···································································· 4分(2)解: (1)2(1)2(1)(1)x x x x x ++-=+-. ····································· 1分 2212222x x x x ++-=-. ············································· 2分 3x =. ································································ 3分 经检验3x =是原方程的解. ·························································· 4分 所以原方程的解是3x =.21. 解:原式=a 2-2a +1a ÷ 1-a2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………2分=1-a …………………………………………………3分当a=2时,原式=1211-=-=-a ………………………4分四、解答题(本大题共5道小题,每小题5分,共25分)22. 证明:∵ AB ∥DE ,∴ ∠B =∠DEF . ………………………… 1分 ∵ BE =FC ,∴ BC =EF . ………………………… 2分 在△ABC 和△DEF 中,,,,A D B DEF BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌△DEF (AAS ). ………………………… 4分 ∴ AC = DF . ………………………… 5分23. 解:设普通快车的平均行驶速度为x 千米/时,则高铁列车的平均行驶速度为x 5.1千米/时.----1分根据题意得18018011.53x x -=. -------------------------------------3分 解得 180x =.经检验,180x =是所列分式方程的解,且符合题意.∴1.5 1.5180270x =⨯=.答:高铁列车的平均行驶速度为270千米/时. -----------------------------5分24. (1) 过P 点作BA PE ⊥于E BC PF ⊥∠=∠,21 PF PE =∴--------------------1分在PAE Rt ∆与PCF Rt ∆中⎩⎨⎧==PFPE PCPAPAE Rt ∆≌PCF Rt ∆(HL )∴∠PCF =∠PAE , ∵∠PAE+∠BAP=180°∴∠PCB+∠BAP=180º-----------------2分 (2)BC AB BF +=2---------------------3分A BDEB F C证明思路:①由(1)PAE Rt ∆≌PCF Rt ∆可得AE=CF②由PE=PF ,BP=BP 可证PBE Rt ∆≌PBF Rt ∆,可得BF BE =-----------------4分 ③AC AB BF FC AB BF AE AB BF BE BF +=++=++=+=2----5分 25. 解:(1)①③. ------------------2分(2)由已知得 ,a b m a b n +==. ①由题意可知12,2.a b ab +=-=2222()21(2)2241 3.a b a b ab∴+=+-=--⨯=-=223612b a a b abab+∴+===. --------------------------4分 ② 172. ------------------------5分26. (1)① ……………………………..1分②垂直,相等. ……………………………..2分(2)①……………………………..3分②如图2成立. 证明: EF CD ⊥∴ ︒=∠90DCF ︒=∠90ACB∴BCD ACB BCD DCF ∠+∠=∠+∠即BCF ACD ∠=∠CF CD AC BC ==, ∴△ACD ≅△BCF (SAS )∴ BF AD =,FBC BAC ∠=∠∴︒=∠+∠=∠+∠=∠90BAC ABC FBC ABC ABF即AD BF ⊥……………………………..5分A第Ⅱ卷(附加卷部分,共20分)一、填空题(本大题共2小题,每小题5分,共10分)1. 67678116726272a ==-⨯⨯⨯⨯;12(1)2nn n a n n ++=+⋅=12)1(121+⋅+-⋅n n n n 2. 真;231+-x ;4,2,2,0-- 二、解答题(本大题共1小题,共10分)3. 解:(1)小惠的做法正确. 理由如下:如图1,过O 点作OC ⊥PM 于C ,OD ⊥PN 于D . ∴ ∠C=∠D=90°.由题意,∠PMA=∠PNB=60°,∴ ∠OMC=∠PMA=60°,∠OND=∠PNB=60°. ∴ ∠OMC=∠OND .∵ OM=ON , ∴ △OMC ≌△OND .∴ OC=OD ,∠COM=∠DON . ∵ OC ⊥PM 于C ,OD ⊥PN 于D . ∴ 点O 在∠CPD 的平分线上. ∴ ∠CPO=∠DPO . ∴ ∠COP=∠DOP . ∴ ∠MOP=∠NOP .即 射线OP 是∠AOB 的平分线. …………… 5分 (2)如图. 射线RX 是∠QRS 的平分线. …………… 7分 简述画图过程:如图2. 用刻度尺作RV =RW ,RT =RU ; 连接TW ,UV 交于点X ;射线RX 即为所求∠QRS 的平分线. …………… 10分DC PNMO BA图1图2。

2019北京西城161中学初二上册期中考试试卷.docx

2019北京西城161中学初二上册期中考试试卷.docx

529 161中学八上期中四.单项填空(共15分,每小题1分)从每题所给A、B、C、D四个选项中,选出可以填入空白处的最佳选项。

21. Ms. Li often gives ______ some advice on how to learn English better.A. weB. usC. ourD. ours22. ---How do you like physics?---It’s a little ______ than math.A.easyB. easierC. easiestD. the easiest23. If you try your best, I believe you will be ______ Mary.A. as excellentB. excellent thanC. as more excellent asD. most excellent24. ______ people race in many different marathons every year.A. MillionsB. Three millionsC. Millions ofD. Million of25. Most of my classmates don’t like to talk to their parents, ______ I am different from them.A. orB. butC. soD. and26. ---How do you go to school every day?---______ subway.A.InB. OnC. WithD. By27. The more time you ______ reading, the greater progress you will make.A. spendB. takeC. payD. cost28. Jenny was very ______ me just because I forgot to go to her party last Friday.A. excited aboutB. afraid ofC. angry withD. pleased with29. In order to save electricity, my mother often tells me ______ the lights when I leave the room.A. to turn onB. not to turn offC. to turn offD. turn off30. Could you stop talking? I ______ my homework. I’ll have a test tomorrow.A. am doingB. didC. doD. was doing31. ---______ is the population of London?---It’s about seven and a half million.A.WhatB. How manyC. How muchD. How32. ---What did you do for your mom on her birthday?---I ______her a birthday cake.A.buyB. boughC. will buyD. am buying33. You will understand the report well if you ______ carefully.A. listenB. will listenC. listenedD. listens34. When I went to say goodbye to Ann, she ______ the piano.A. playsB. playedC. will playD. was playing五.完形填空(共12分,每小题1分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D四个选项中,选出最佳选项。

2018-2019(含答案)八年级(上)期中数学试卷

2018-2019(含答案)八年级(上)期中数学试卷

2018-2019(含答案)八年级(上)期中数学试卷.................................................................................................................................................................2018.10.22一、选择题(每题3分,共18分)1.下列各式中互为有理化因式的是()A.a+b和a−bB.−x−1和x−1C.5−2和−5+2D.x a+y b和x a+y b2.下列各式中,在实数范围内不能分解因式的是()A.x2+4x+4B.x2−4x−4C.x2+x+1D.x2−x−13.已知a=7−5,b=5−3,c=3−7,则a、b、c三个数的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>a>b4.已知一个两位数等于它个位上的数的平方,并且十位上的数字比个位上的数字小3,则这个两位数为()A.25B.25或36C.36D.−25或−365.关于x的方程(a−6)x2−8x+6=0有实数根,则整数a的最大值是()A.6B.7C.8D.96.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50−2x(0<x<50)B.y=50−2x(0<x<25)(50−2x)(0<x<50)C.y=12(50−x)(0<x<25)D.y=12二、填空题:(每题2分,共24分)7.如果(x+2)2=−x−2,则x的取值范围是________.8.已知20n是整数,则满足条件的最小正整数n为________.9.已知m=n−1−1−n+3,则m n+1=________.a−1是同类二次根式,则a=________,b=________.10.若最简根式4a−1和3b+511.关于x的一元二次方程(a−1)x2+x+(a2−1)=0的一个根是0,则a的值是________.12.已知(x2+y2)2+2(x2+y2)=15,则x2+y2=________.13.如果关于x的方程(a−1)x2−2x−1=0有两个不相等的实数根,那么a的取值范围是________.14.在实数范围内因式分解:2x2−8xy+5y2=________.15.某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x,依题意可列方程________.16.已知点P(a, b)在第三象限,则直线y=(a+b)x经过第________象限,y随x的增大而________.17.反比例函数y=kx的图象经过点P(a, b),且a、b是一元二次方程x2−5x+4=0的两根,k的值是________,点P的坐标为________.18.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=________.三、简答题(每题4分,共28分)19.计算:12−(3+1)2+434÷513.20.计算:xy2−1x8x3y+1y18xy3(x>0, y>0)21.解方程:(x+5)2−2(x+5)=8.22.解方程:2x2−5x+1=0(用配方法)23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?24.已知y=y1−y2,y1与x成反比例,y2与(x−2)成正比例,并且当x=3时,y=5,当x=1时,y=−1;求y与x之间的函数关系式.25.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长________千米;(2)小强下坡的速度为________千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是________分钟.四、综合题:(每题6分,共30分)26.已知关于x的方程x2−(2k+1)x+4k−2=0(1)求证:不论k取什么实数值,这个方程总有实数根;(2)若等腰△ABC的一边长为a=4,另两边的长b、c恰好是这个方程的两个根,求△ABC 的周长.27.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.28.如图,在△ABC中,∠C=90∘,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.29.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y=k的图x象上,已知正方形OAPB的面积为9.(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.30.如图,在四边形ABCD中,AB=BC=1,∠ABC=90∘,且AB // CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.答案1. 【答案】B【解析】根据有理化因式的定义进行解答即可.【解答】解:A、∵⋅=(a+b)(a−b),∴两根式不互为有理化因式,故本选项错误;B、∵(−x−1)⋅x−1=1−x,∴两根式互为有理化因式,故本选项正确;C、∵(5−2)•(−5+2)=210−7,∴两根式不互为有理化因式,故本选项错误;D、∵(x a+y b)•(x a+y b)=(x a+y b)2,∴两根式不互为有理化因式,故本选项错误.故选B.2. 【答案】C【解析】先令二次三项式为0,若有实数根则能因式分解,否则不能.【解答】解:A、x2+4x+4=0有实数根,故本选项能在实数范围内因式分解;B、x2−4x−4=0有实数根,故本选项能在实数范围内因式分解;C、x2+x+1=0没有实数根,故本选项不能在实数范围内因式分解;D、x2−x−1=0有实数根,故本选项能在实数范围内因式分解;故选C.3. 【答案】B【解析】首先求出a,b,c的倒数,进而比较它们的大小,进而得出a、b、c三个数的大小关系.【解答】解:∵a=7−5,b=5−3,c=3−7,∴1 a =7−5=7+52,1 b =5−3=5+32,1 c =3−7=3+72,∵7>3,∴1 a >1b,∵3>5,∴1 a <1c,∴1 c >1a>1b,∴b>a>c.故选:B.4. 【答案】B【解析】设十位上的数字为x,则个位上的数字为(x+3),根据该两位数等于它个位上的数的平方,即可得出关于x的一元二次方程,解之即可得出x的值,进而即可得出该两位数.【解答】解:设十位上的数字为x,则个位上的数字为(x+3),根据题意得:10x+x+3=(x+3)2,整理得:x2−5x+6=0,解得:x=2或x=3,∴x+3=5或x+3=6,∴这个两位数为25或36.故选B.5. 【答案】C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a−6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【解答】解:当a−6=0,即a=6时,方程是−8x+6=0,解得x=68=34;当a−6≠0,即a≠6时,△=(−8)2−4(a−6)×6=208−24a≥0,解上式,得a≤263≈8.6,取最大整数,即a=8.故选C.6. 【答案】D【解析】根据等腰三角形的腰长=(周长-底边长)×12,及底边长x>0,腰长>0得到.【解答】解:依题意有y=12(50−x).∵x>0,50−x>0,且x<2y,即x<2×12(50−x),得到0<x<25.故选D7. 【答案】x≤−2【解析】根据二次根式的性质,可得答案.【解答】解:由(x+2)2=(−x−2)2=−x−2,得x+2≤0,解得x≤−2,故答案为:x≤−2.8. 【答案】5【解析】因为20n是整数,且20n=4×5n=25n,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵20n=4×5n=25n,且20n是整数;∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.9. 【答案】9【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出n的值,得到m的值,代入代数式根据乘方法则计算即可.【解答】解:由题意得,n−1≥0,1−n≥0,解得,n=1,∴m=3,则m n+1=9,故答案为:9.10. 【答案】3,2【解析】根据最简二次根式与同类二次根式的定义列方程组求解.【解答】解:由题意,得a−1=24a−1=3b+5,解得a=3 b=2,故答案为:3,2.11. 【答案】−1【解析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a −1≠0.【解答】解:∵关于x 的一元二次方程(a −1)x 2+x +(a 2−1)=0的一个根是0, ∴x =0满足该方程,且a −1≠0.∴a 2−1=0,且a ≠1.解得a =−1.故答案是:−1.12. 【答案】3【解析】首先设x 2+y 2=z ,然后将原方程转化为关于z 的一元二次方程,解该方程即可解决问题.【解答】解:设x 2+y 2=z ,(z ≥0)则原方程变为:z 2+2z −15=0,解得:z =3或−5(舍去).故答案为:3.13. 【答案】a >12且a ≠1【解析】根据方程有两个不相等的实数根利用根的判别式结合二次项系数非零即可得出关于a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的方程(a −1)x 2− 2x −1=0有两个不相等的实数根,∴ a −1≠0△=(− 2)2+4(a −1)>0, 解得:a >12且a ≠1.故答案为:a >12且a ≠1.14. 【答案】( 2x −2 2y + 3y )( 2x −2 2y − 3y )【解析】首先把5y 2变为8y 2−3y 2,然后把前三项组合提公因式2,再利用完全平方分解,然后再次利用平方差分解因式即可.【解答】解:原式=2x 2−8xy +8y 2−3y 2,=2(x −2y )2−3y 2,=[ 2(x −2y )+ 3y ][ 2(x −2y )− 3y ],=( 2x −2 2y + 3y )( 2x −2 2y − 3y ),故答案为:( 2x −2 2y + 3y )( 2x −2 2y − 3y ).15. 【答案】100(1−x )2=64【解析】设平均每次降价的百分率为x ,根据某件商品原价100元,经过两次降价后,售价为64元,可列方程求解.【解答】解:设平均每次降价的百分率为x ,100(1−x )2=64.故答案为:100(1−x )2=64.16. 【答案】二、四,减小【解析】先根据第三象限点的坐标特征得到a <0,b <0,然后根据正比例函数与系数的关系判断直线y =(a +b )x 经过的象限.【解答】解:因为点P (a , b )在第三象限,所以a <0,b <0,可得a+b<0,所以直线y=(a+b)x经过第二、四象限,y随x的增大而减小;故答案为:二、四;减小17. 【答案】4,(1, 4)或(4, 1)的图象经过点P(a, b),把点P的坐标代入解析式,得到关【解析】先根据反比例函数y=kx于a、b、k的等式ab=k;又因为a、b是一元二次方程x2−5x+4=0的两根,得到a+b=5,ab=4,根据以上关系式求出a、b的值即可.得,ab=k,【解答】解:把点P(a, b)代入y=kx因为a、b是一元二次方程x2−5x+4=0的两根,根据根与系数的关系得:a+b=5,ab=4,解得a=1,b=4或a=4,b=1,所以k=4,点P的坐标是(1, 4)或(4, 1).故答案为4,(1, 4)或(4, 1).18. 【答案】6【解析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4的系数k,由此即可求出S1+S2.x上的点,分别经过A、B两点向x轴、y轴作垂线段,【解答】解:∵点A、B是双曲线y=4x则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4−1×2=6.故答案为6.19. 【答案】解:原式=23−(3+23+1)+23×343=23−(4+23)+5=−【解析】根据二次根式的运算性质即可求出答案.【解答】解:原式=2−(3+2+1)+2×343=23−(4+23)+5=−20. 【答案】解:原式=2xy−22xy+32xy2xy.=322【解析】根据二次根式性质与化简,可得同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=2xy−22xy+32xy2=322xy.21. 【答案】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.【解析】将x+5看做整体因式分解法求解可得.【解答】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.22. 【答案】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.【解析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.23. 【答案】修建的道路宽为1米.【解析】设路宽为x,则道路面积为30x+20x−x2,所以所需耕地面积551=20×30−(30x+20x−x2),解方程即可.【解答】解:设修建的路宽为x米.则列方程为20×30−(30x+20x−x2)=551,解得x1=49(舍去),x2=1.24. 【答案】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.【解析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1−y2,再把当x=3时,y=5,当x=1时,y=−1代入关于y的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【解答】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.25. 【答案】2; 0.5; 14【解析】(1)根据题意和函数图象可以得到下坡路的长度;; (2)根据函数图象中的数据可以求的小强下坡的速度;; (3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【解答】解:(1)由题意和图象可得,小强去学校时下坡路为:3−1=2(千米),; (2)小强下坡的速度为:2÷(10−6)=0.5千米/分钟,; (3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:21+10.5=14(分钟),26. 【答案】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.【解析】(1)根据方程的系数结合根的判别式即可得出△=(2k−3)2≥0,由此可得出:不论k取什么实数值,这个方程总有实数根;; (2)当a为底时,由根的判别式△=(2k−3)2= 0可求出k值,再根据根与系数的关系可得出b+c=4,由b+c=a可知此种情况不符合题意;当a为腰时,将x=4代入原方程求出k值,再根据根与系数的关系可得出b+c=6,套用三角形的周长公式即可求出结论.【解答】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.27. 【答案】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.【解析】(1)根据面积为60m2,可得出y与x之间的函数关系式;; (2)由(1)的关系式,结合x、y都是正整数,可得出x的可能值,再由三边材料总长不超过26m,DC的长<12,可得出x、y的值,继而得出可行的方案.【解答】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.28. 【答案】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.【解析】(1)设x秒钟后,可使△PCQ的面积为8平方厘米,用x表示出△PCQ的边长,根据面积是8可列方程求解.; (2)假设y秒时,△PCQ的面积等于△ABC的面积的一半,列出方程看看解的情况,可知是否有解.【解答】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.29. 【答案】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.【解析】(1)利用正方形的性质得到P点坐标为(3, 3),再把P点坐标代入y=kx即可得到k的值;然后利用待定系数法求直线OP的解析式;; (2)设正方形ADFE的边长为a,利用正方形的性质易表示F点的坐标为(a+3, a),然后把F(a+3, a)代入y=9x,再解关于a的一元二次方程即可得到正方形ADFE的边长.【解答】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.30. 【答案】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.【解析】(1)可通过构建全等三角形来证PB=PQ,过点P作PF⊥BC于点F,PE⊥CD于点E,由于△PEC是等腰直角三角形,因此PE=EC,可得出四边形PECF是正方形,由此可得出PE=PF,根据同角的余角相等可得出∠FPB=∠QPE,这两个三角形中又有一组直角,因此构成了全等三角形判定条件中ASA的条件.根据全等三角形即可得出PB=PQ;; (2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≅△QPE,根据全等三角形的性质即可得出结论;; (3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.【解答】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.。

北京第161中学2014—2015学年度初二上期中数学试题和答案

北京第161中学2014—2015学年度初二上期中数学试题和答案

1 / 7北京一六一中学2014—2015学年度第一学期期中考试初 二 数 学 试 题班级______________姓名______________学号_________一、选择题(本大题共10道小题,每小题3分,共30分)1.计算23-正确的是 A .91-B .91C .61D .61-2.下列图案是轴对称图形的有A .1个B .2个C .3个D .4个 3.下列各式从左到右的变形中,是因式分解的为A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x x D .c b a x c bx ax ++=++)(4. 已知图中的两个三角形全等,则∠1等于 A . 72° B . 60° C . 50° D . 58°(第4题图)5.下列变形中,正确的是A .y x b a y x b a -+=--+- B .y x ba y xb a ++-=+-+C .y x b a y x b a -+-=+-+ D .yx ba y xb a -+-=-+-6.已知等腰三角形的两边长分别为3和6,则它的周长等于A . 12B . 12或15C . 15D . 15或18 7.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是 (第7题图) A .3 B .4 C .6 D .5 8.下列说法中,正确的是A .两个三角形全等,它们一定关于某条直线对称B .两个图形关于某直线对称,对应点一定在直线两旁C .两个图形的对应点连线的垂线,就是它们的对称轴D .两个关于某直线对称的三角形是全等三角形 9.如图,设k =(a >b >0),则有(第9题图)A .k >2B .1<k <2C .21<k <1 D .0<k <2110.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第 n 个三角形中以A n 为顶点的内角度数是A .()n•75°B .()n -1•65°C .()n -1•75° D .()n•85°(第10题图)b2 / 7二、填空题(本大题共8道小题,每小题2分,共16分)11.若分式211x x +-有意义,则x 的取值范围是 . 12. 约分:22515mnm n-=_____________.13. 用科学记数法表示000614.0-为___ ___.14.如图,AC 、BD 相交于点O ,∠A =∠D ,请补充一个条件, (第14题图)使△AOB ≌△DOC ,你补充的条件是 (填出一个即可).15.多项式x 2-8x +k 是一个完全平方式,则k =_ ___.16. 若13x x +=,则221xx += . 17.等腰三角形一腰上的高与另一腰的夹角为36度,则该等腰三角形的底角的度数为 . 18.已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画 条.三、解答题(本大题共6道小题,19、20每小题4分,21、22每小题5分,共26分)19. 因式分解:(1)225m -; (2)269a b ab b -+.20.计算:(1)2222223432⎪⎭⎫⎝⎛-⋅÷d cd b a cab ; (2)22y x xy y x y --+. 21.解方程:211x x x=+-. 22.先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中m =9.四、解答题(本大题共6道小题,其中23、26每小题5分,24题3分,25题6分,27小题3分,28题6分,共28分)23.如图,点D 在AB 上,点E 在AC 上,AB =AC ,AD =AE .求证:∠B =∠C .(第23题图)24. 如图,电信部门要在公路m ,n 之间的S 区域修建一座电视信号发射塔P .按照设计要求,发射塔P 到区域S 内的两个城镇A ,B 的距离必须相等,到两条公路m ,n 的距离也必须相等.发射塔P 应建在什么位置?在图中用尺规作图的方法作出P 的位置并标出(不写作法但保留作图痕迹) .(第24题图)25.列方程或方程组解应用题某村庄离城市80千米,甲坐公共汽车从村庄出发进城,2小时后,乙开一辆小轿车也从该村出发进城,已知小轿车的速度是公共汽车速度的3倍,结果乙比甲早40分钟到达城市,求这两种车的速度.26.如图,D 为△ABC 外一点,∠DAB =∠B ,CD ⊥AD ,12DCBA3 / 7∠1=∠2,若AC =7,BC =4,求AD 的长.(第26题图)27.图①、图②、图③都是44⨯的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个网格中标注了5个格点.按下列要求画图:(1)在图①中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有..3个;(2)在图②中以格点为顶点画一个等腰直角三角形,使其内部已标注的格点只有..3个;(与图①不同)(3)在图③中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有..4个.28.在△ABC 中,AB=AC ,点D 是射线CB 上的一动点(不与点B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段CB 上,且∠BAC =90°时,那么∠DCE = 度; (2)设∠BAC =α,∠DCE =β.① 如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量 关系,并证明你的结论;② 如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整, 并直接..写出此时α与β之间的数量关系(不需证明).(第28题图)第Ⅱ卷(附加卷部分,共20分)一、填空题(本大题共1小题,共6分)1. 记y = f (x )=221x x +. 如: f (1)表示当x =1时y 的值,即f (1)=22111+=12;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+.试回答:(1)f (1)+f (2)+f (12)+f (3)+f (13)= ;(2)f (1)+f (2)+f (12)+f (3)+f (13)+……+f (n )+f (1n )=_______. (结果用含n 的代数式表示,n 为正整数)二、解答题(本大题共2小题,第2题6分,第3题8分,共14分) 2. 阅读下列材料通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都 可化为带分数,如:86222223333+==+=. 我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于 分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221xx +这样的分式就是真分式.27题图① 27题图②27题图③ DCBAED ED AB CC B A图1图2图3类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:()12121111xxx x x+--==-+++;再如:22111(1)1111x x x)xx x x-++-+==---(111xx=++-.解决下列问题:(1)分式2x是分式(填“真分式”或“假分式”);(2)假分式12xx-+可化为带分式的形式;(3)如果分式211xx-+的值为整数,那么x的整数值为.3.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(第3题图)【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若,则△ABC≌△DEF.北京一六一中学2014—2015学年度第一学期期中考试初二数学标准答案和评分标准第Ⅰ卷(主卷部分,共100分)一、选择题(本大题共10道小题,每小题3分,共30分)1. B2. B3.C4. D5. C6. C7. A 8 .D 9. B 10. C二、填空题(本大题共8道小题,每小题2分,共16分)11.1≠x12.3nm-13. 41014.6-⨯-14.OA=OD等15.16 16.7 17. 63°或27°18.7三、解答题(本大题共6道小题,19、20每小题4分,21、22每小题5分,共26分)19.(1)解:252-m4 / 75 / 7=)5)(5(-+m m ………………4分(2)解:b ab b a 962+-)96(2+-=a a b ………………2分 2)3(-=a b ………………4分20. (1)解:2222223432⎪⎭⎫⎝⎛-∙÷d cd b a cab=2222223342⎪⎭⎫ ⎝⎛-∙⨯d b a cdc ab ………………1分 =2222249342d b a cd c ab ∙⨯ ………………3分 =acd23………………4分 (2)解:22y x xyy x y --+ 22)(y x xyy x y ---=………………2分222yx y --= ………………4分 21. 解:方程两边同乘()1-x x ,得:)1(2)1(2-+-=x x x x ----------------------------------------------------------2分解这个整式方程,得:x =2 --------------------------------------------------------------4分检验:当x =2时,()1-x x ≠0,∴原方程的解是x =2. ------------------------------------------------------------5分22. 解:2112.3369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭()()()232332m mm m m -=⨯-+……………………………………………………3分 3.3m m -=+…………………………………………………………………………4分 当9m =时,原式9361.93122-===+…………………………………………………………5分四、解答题(本大题共6道小题,其中23、26每小题5分,24题3分,25题6分,27小题3分,28题6分,共28分)23. 证明:在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=AD AE A A AC AB ……………………………………………………3分 ∴△ABE ≌△ACD (SAS ). ……………………………………………………4分 ∴∠B =∠C . ……………………………………………………5分24. 作图痕迹:线段AB 的垂直平分线的作图痕迹 …………1分 覆盖区域S 的直线m 与n 的夹角的角平分线作图痕迹 …………2分 (未标出点P 扣一分) …………3分 25. 解:设公共汽车的速度为x 千米/时,那么小轿车的速度为3x 千米/时, …1分由题意,得6040238080++=x x 即3838080+=x x ………………3分解得x =20………………4分经检验,x =20是原方程的根,且符合题意 ………………5分 ∴3x =60答:公共汽车的速度为20千米/时,小轿车的速度为60千米/时. ………………6分 26. 证明:延长AD ,BC 交于点E∵CD ⊥AD ,∴∠ADC =∠EDC =90º.又∵∠1=∠2,CD =CD ,E12DC6 / 7∴△ADC ≌△EDC (ASA ).………………….1分 ∴∠DAC =∠DEC ,AC =EC ,AD =ED .……...2分 又∵AC =7, ∴EC =7.又∵∠DAB =∠B ,BC =4∴AE =BE =11.……………………………………4分 ∴AD =5.5.………………………………………..5分27.解:答案不惟一.图(1),图(2),图(3)各1分(1)(2)(3)28. 解:(1) 90 度.…………………………………………………………1分图3E DCBA图1图2ED ED ABCCBA(2)① 180αβ+=︒.………………………………………………………2分理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC .即∠BAD =∠CAE 又AB =AC ,AD =AE ,∴△A B D ≌△A C E .…………………………………………………3分 ∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∴B ACB DCE β∠+∠=∠=.∵180B ACB α+∠+∠=︒,∴180αβ+=︒.…………………………………………………4分(3)图形正确.………………………………………………………………5分αβ=. ……………………………………………………………………6分第Ⅱ卷(附加卷部分,共20分)一、填空题(本大题共1小题,共6分)1.25,12n - ………………………………………6分二、解答题(本大题共2小题,第2题6分,第3题8分,共14分)7 / 72.解:(1) 真 分式;…………………………………………………………………1分 (2)13122x x x -=-++;……………………………………………………2分 (3)x 的可能整数值为 0,-2,2,-4 . …………………………………6分 3.(1)解:HL ; .………………….1分(2)证明:如图,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作DH ⊥DE 交DE 的延长线于H ,∵∠B =∠E ,且∠B 、∠E 都是钝角,∴180°﹣∠B =180°﹣∠E , 即∠CBG =∠FEH ,在△CBG 和△FEH 中,⎪⎩⎪⎨⎧=︒=∠=∠∠=∠EF BC H G FEHCBG 90,∴△CBG ≌△FEH (AAS ),∴CG =FH ,在Rt △ACG 和Rt △DFH 中,⎩⎨⎧==FHCG DFAC ,∴Rt △ACG ≌Rt △DFH (HL ),∴∠A =∠D ,在△ABC 和△DEF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DF AC E B D A ,∴△ABC ≌△DEF (AAS ); .………………….4分(3)解:如图,△DEF 和△ABC 不全等; .………………….6分 (4)解:若∠B ≥∠A ,则△ABC ≌△DEF . .………………….8分。

2018--2019学年度第一学期北师大版八年级期中考试数学试卷及答案解析(word版)

2018--2019学年度第一学期北师大版八年级期中考试数学试卷及答案解析(word版)

○…………外…装…………订____姓名:___________○…………内…装…………订绝密★启 2018-2019学年度第一学期 北师大版八年级期中考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.做题时要平心静气,不可漏题 一、单选题(计30分) 1.(本题3分)如果三角形的三个内角的度数之比为1:2:3,那么这个三角形的三条边长之比为( ) A .1:2:3 B .1:4:9 C .1::2 D .1:: 2.(本题3分)在0⋯,2π,0.333...-中,无理数有 A . 2个 B . 3个 C . 4个 D . 5个 3.(本题3分)如图,点M 表示的实数是( ) A . B . C . D . 4.(本题3分)已知y = + -3,则2xy 的值为( ) A . -15 B . 15 C . - D . 无法确定 5.(本题3分)如图是我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD 的面积是小正方形EFGH 面积的13倍,那么tan ∠ADE 的值为( )………○……………○…装※※订※※线※※※※………○……………○…A.B.C.D.6.(本题3分)(﹣2)2的算术平方根是()A.2 B.±2 C.﹣2 D.7.(本题3x的取值范围是()A.x≥43B.x≤43C.x<43D.x≠438.(本题3分)(2013•镇江模拟)已知圆锥的母线长OA=8,底面圆的半径为2,一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短距离为()A.8 B.4π C.8 D.89.(本题3分)如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角.当小球第1次碰到长方形的边时的点为P1,第2次碰到长方形的边时的点为P2,…,第n次碰到长方形的边时的点为P n,则点P2 018的坐标是()A.(7,4)B.(3,0)C.(1,4)D.(8,3)10.(本题3分)Rt△ABC中,斜边BC=2,则AB2+BC2+CA2=()A.8 B.6 C.4 D.无法计算二、填空题(计32分)11.(本题4分)已知一个直角三角形的两边长分别为4和3,则它的面积为_________ .12.(本题4分)在Rt△ABC中,∠ACB=90°,CA=CB,如果斜边AB=5cm,那么斜边上的高CD= cm.13.(本题4分)计算:9+(2-1)0= .14.(本题4分)|﹣|= ,比较大小:π﹣3 0.14.15.(本题4分)若无理数5a,则a=________.16.(本题4分)的平方根是它本身,的立方根是它本身.…○……○…17.(本题4分)按照如图所示的操作步骤,若输入x 的值为3,则输出的值为________. 18.(本题4分)若一个正数的两个平方根分别是2m +1和m -4,则这个正数是________. 三、解答题19.(本题8分)(1)计算: ;(2)已知 =4,求x 的值. 20.(本题8分)已知,求下列代数式的值 (1)x 2y+xy 2 (2)x 2-xy+y 2 21.(本题8分)已知数 满足 - - ,求 - .……○………※※装※※订※※线……○……… 22.(本题8分)一个正数 的平方根是 与 ,求 和 的值。

北京第161中学—度初二上期中数学试题及答案.doc

北京第161中学—度初二上期中数学试题及答案.doc

初二数学试题 第 1 页 共 7 页北京一六一中学2014—2015学年度第一学期期中考试初 二 数 学 试 题班级______________姓名______________学号_________一、选择题(本大题共10道小题,每小题3分,共30分)1.计算23-正确的是 A .91-B .91C .61D .61-2.下列图案是轴对称图形的有A .1个B .2个C .3个D .4个 3.下列各式从左到右的变形中,是因式分解的为A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x x D .c b a x c bx ax ++=++)(4. 已知图中的两个三角形全等,则∠1等于 A . 72° B . 60° C . 50° D . 58°(第4题图)5.下列变形中,正确的是A .y x b a y x b a -+=--+- B .y x ba y xb a ++-=+-+C .y x b a y x b a -+-=+-+ D .yx ba y xb a -+-=-+-6.已知等腰三角形的两边长分别为3和6,则它的周长等于A . 12B . 12或15C . 15D . 15或18 7.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是 (第7题图) A .3 B .4 C .6 D .5 8.下列说法中,正确的是A .两个三角形全等,它们一定关于某条直线对称B .两个图形关于某直线对称,对应点一定在直线两旁C .两个图形的对应点连线的垂线,就是它们的对称轴D .两个关于某直线对称的三角形是全等三角形 9.如图,设k =(a >b >0),则有(第9题图)A .k >2B .1<k <2C .21<k <1 D .0<k <2110.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第 n 个三角形中以A n 为顶点的内角度数是A .()n•75°B .()n -1•65°C .()n -1•75° D .()n•85°(第10题图)b初二数学试题 第 2 页 共 7 页二、填空题(本大题共8道小题,每小题2分,共16分)11.若分式211x x +-有意义,则x 的取值范围是 . 12. 约分:22515mnm n-=_____________.13. 用科学记数法表示000614.0-为___ ___.14.如图,AC 、BD 相交于点O ,∠A =∠D ,请补充一个条件, (第14题图)使△AOB ≌△DOC ,你补充的条件是 (填出一个即可).15.多项式x 2-8x +k 是一个完全平方式,则k =_ ___.16. 若13x x +=,则221xx += . 17.等腰三角形一腰上的高与另一腰的夹角为36度,则该等腰三角形的底角的度数为 . 18.已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画 条.三、解答题(本大题共6道小题,19、20每小题4分,21、22每小题5分,共26分)19. 因式分解:(1)225m -; (2)269a b ab b -+.20.计算:(1)2222223432⎪⎭⎫⎝⎛-⋅÷d cd b a cab ; (2)22y x xy y x y --+. 21.解方程:211x x x=+-. 22.先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中m =9.四、解答题(本大题共6道小题,其中23、26每小题5分,24题3分,25题6分,27小题3分,28题6分,共28分)23.如图,点D 在AB 上,点E 在AC 上,AB =AC ,AD =AE .求证:∠B =∠C .(第23题图)24. 如图,电信部门要在公路m ,n 之间的S 区域修建一座电视信号发射塔P .按照设计要求,发射塔P 到区域S 内的两个城镇A ,B 的距离必须相等,到两条公路m ,n 的距离也必须相等.发射塔P 应建在什么位置?在图中用尺规作图的方法作出P 的位置并标出(不写作法但保留作图痕迹) .(第24题图)25.列方程或方程组解应用题某村庄离城市80千米,甲坐公共汽车从村庄出发进城,2小时后,乙开一辆小轿车也从该村出发进城,已知小轿车的速度是公共汽车速度的3倍,结果乙比甲早40分钟到达城市,求这两种车的速度.26.如图,D 为△ABC 外一点,∠DAB =∠B ,CD ⊥AD , ∠1=∠2,若AC =7,BC =4,求AD 的长.(第26题图)12DCBA初二数学试题 第 3 页 共 7 页27.图①、图②、图③都是44⨯的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个网格中标注了5个格点.按下列要求画图:(1)在图①中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有..3个;(2)在图②中以格点为顶点画一个等腰直角三角形,使其内部已标注的格点只有..3个;(与图①不同)(3)在图③中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有..4个.28.在△ABC 中,AB=AC ,点D 是射线CB 上的一动点(不与点B 、C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段CB 上,且∠BAC =90°时,那么∠DCE = 度; (2)设∠BAC =α,∠DCE =β.① 如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量 关系,并证明你的结论;② 如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整, 并直接..写出此时α与β之间的数量关系(不需证明).(第28题图)第Ⅱ卷(附加卷部分,共20分)一、填空题(本大题共1小题,共6分)1. 记y = f (x )=221x x +. 如: f (1)表示当x =1时y 的值,即f (1)=22111+=12;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+.试回答:(1)f (1)+f (2)+f (12)+f (3)+f (13)= ;(2)f (1)+f (2)+f (12)+f (3)+f (13)+……+f (n )+f (1n )=_______. (结果用含n 的代数式表示,n 为正整数)二、解答题(本大题共2小题,第2题6分,第3题8分,共14分) 2. 阅读下列材料通过小学的学习我们知道,分数可分为“真分数”和“假分数”.而假分数都 可化为带分数,如:86222223333+==+=. 我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于 分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221xx +这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:()12121111x x x x x +--==-+++; 再如:22111(1)1111x x x )x x x x -++-+==---(111x x =++-. 解决下列问题: (1)分式2x是 分式(填“真分式”或“假分式”); 27题图① 27题图②27题图③ DCBAED ED ABCCBA图1图2图3(2)假分式12xx-+可化为带分式的形式;(3)如果分式211xx-+的值为整数,那么x的整数值为.3.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(第3题图)【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若,则△ABC≌△DEF.初二数学试题第4 页共7 页初二数学试题 第 5 页 共 7 页北京一六一中学2014—2015学年度第一学期期中考试初二数学标准答案和评分标准第Ⅰ卷(主卷部分,共100分)一、选择题(本大题共10道小题,每小题3分,共30分)1. B2. B3.C4. D5. C6. C7. A 8 .D 9. B 10. C二、填空题(本大题共8道小题,每小题2分,共16分)11.1≠x 12. 3n m- 13. 41014.6-⨯- 14.OA =OD 等15.16 16.7 17. 63°或27° 18.7三、解答题(本大题共6道小题,19、20每小题4分,21、22每小题5分,共26分)19.(1)解: 252-m=)5)(5(-+m m ………………4分(2)解:b ab b a 962+-)96(2+-=a a b ………………2分 2)3(-=a b ………………4分20. (1)解:2222223432⎪⎭⎫⎝⎛-∙÷d cd b a cab =2222223342⎪⎭⎫⎝⎛-∙⨯d b a cd c ab ………………1分=2222249342db a cdc ab ∙⨯ ………………3分 =acd23………………4分 (2)解:22y x xyy x y --+ 22)(yx xyy x y ---=………………2分 222yx y --= ………………4分 21. 解:方程两边同乘()1-x x ,得:)1(2)1(2-+-=x x x x ----------------------------------------------------------2分解这个整式方程,得:x =2 --------------------------------------------------------------4分检验:当x =2时,()1-x x ≠0,∴原方程的解是x =2. ------------------------------------------------------------5分22. 解:2112.3369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭ ()()()232332m mm m m -=⨯-+……………………………………………………3分 3.3m m -=+…………………………………………………………………………4分 当9m =时,原式9361.93122-===+…………………………………………………………5分四、解答题(本大题共6道小题,其中23、26每小题5分,24题3分,25题6分,27小题3分,28题6分,共28分)23. 证明:在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=AD AE A A AC AB ……………………………………………………3分 ∴△ABE ≌△ACD (SAS ). ……………………………………………………4分 ∴∠B =∠C . ……………………………………………………5分24. 作图痕迹:线段AB 的垂直平分线的作图痕迹 …………1分初二数学试题 第 6 页 共 7 页覆盖区域S 的直线m 与n 的夹角的角平分线作图痕迹 …………2分 (未标出点P 扣一分) …………3分 25. 解:设公共汽车的速度为x 千米/时,那么小轿车的速度为3x 千米/时, …1分由题意,得6040238080++=x x 即3838080+=x x ………………3分解得x =20………………4分经检验,x =20是原方程的根,且符合题意 ………………5分 ∴3x =60答:公共汽车的速度为20千米/时,小轿车的速度为60千米/时. ………………6分 26. 证明:延长AD ,BC 交于点E∵CD ⊥AD ,∴∠ADC =∠EDC =90º.又∵∠1=∠2,CD =CD ,∴△ADC ≌△EDC (ASA ).………………….1分 ∴∠DAC =∠DEC ,AC =EC ,AD =ED .……...2分 又∵AC =7, ∴EC =7.又∵∠DAB =∠B ,BC =4∴AE =BE =11.……………………………………4分 ∴AD =5.5.………………………………………..5分27.解:答案不惟一.图(1),图(2),图(3)各1分(1)(2)(3)28. 解:(1) 90 度.…………………………………………………………1分图3E DCBA图1图2ED ED ABCCBA(2)① 180αβ+=︒.………………………………………………………2分理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC .即∠BAD =∠CAE 又AB =AC ,AD =AE ,∴△A B D ≌△A C E .…………………………………………………3分 ∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∴B ACB DCE β∠+∠=∠=.∵180B ACB α+∠+∠=︒,E12DCBA初二数学试题 第 7 页 共 7 页∴180αβ+=︒.…………………………………………………4分(3)图形正确.………………………………………………………………5分αβ=. ……………………………………………………………………6分第Ⅱ卷(附加卷部分,共20分)一、填空题(本大题共1小题,共6分)1.25,12n - ………………………………………6分二、解答题(本大题共2小题,第2题6分,第3题8分,共14分)2.解:(1) 真 分式;…………………………………………………………………1分(2)13122x x x -=-++;……………………………………………………2分 (3)x 的可能整数值为 0,-2,2,-4 . …………………………………6分 3.(1)解:HL ; .………………….1分(2)证明:如图,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作DH ⊥DE 交DE 的延长线于H ,∵∠B =∠E ,且∠B 、∠E 都是钝角,∴180°﹣∠B =180°﹣∠E , 即∠CBG =∠FEH ,在△CBG 和△FEH 中,⎪⎩⎪⎨⎧=︒=∠=∠∠=∠EF BC H G FEHCBG 90,∴△CBG ≌△FEH (AAS ),∴CG =FH ,在Rt △ACG 和Rt △DFH 中,⎩⎨⎧==FH CG DFAC ,∴Rt △ACG ≌Rt △DFH (HL ),∴∠A =∠D ,在△ABC 和△DEF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DF AC E B D A ,∴△ABC ≌△DEF (AAS ); .………………….4分(3)解:如图,△DEF 和△ABC 不全等; .………………….6分(4)解:若∠B ≥∠A ,则△ABC ≌△DEF . .………………….8分。

2017-2018学年北京市第一六一中学八年级第一学期期中数学试题含答案.docx

2017-2018学年北京市第一六一中学八年级第一学期期中数学试题含答案.docx

北京一六一中学2017— 2018 学年度第一学期期中考试初 二 数 学 试 题班级 ______________姓名 ______________学号 _________考 1.本试卷共 4 页,考试时间 100 分钟。

试卷由主卷和附加卷组成,主卷部分满分100分,附加卷部分满分 20 分。

生 2.试卷答案一律书写在答题纸上,在试卷上作答无效。

须 3.在答题纸上,用黑色字迹钢笔或签字笔作答。

知4.考试结束后,将答题纸交回。

第 Ⅰ卷 ( 主 卷部 分 , 共 100 分 )一、选择题(本大题共 10 道小题,每小题 3 分,共 30 分)1. 下列标志是轴对称图形的是ABC D2. 计算 ( 1) 2的结果是311A . 9C .D . 9B .993.下列约分正确的是6B . b +c = b22D .x + y= yA .m3 = m 2C .xy x yma + c axyx4. 如图,右图中的两个三角形是全等三角形,其x85°中一些角和边的大小如图所示,那么x 的值是385°A . 30B . 4545°3C . 50D . 855. 在下列分解因式的过程中,分解因式正确的是A. x 2 4x 4 ( x 4)B.m( a 3) 2(3 a) (a 3)(m 2)C.x 2 4xy 4 y 2 ( x 2 y)2D. x 28x 9 ( x 3)( x 3) 8x6. 工人师傅常用角尺平分一个任意角.做法如下:如图,∠ AOB 是一个任意角,在边 OA ,OB 上分别取 OM = ON ,移动角尺, 使角尺两边相同 的刻度分.. 别与点 M ,N 重合,过角尺顶点 C 作射线 OC .由此作法便可得 △MOC ≌ △NOC ,其依据是A .SSSB . SASC . ASAD .AAS7. 在平面直角坐标系中,已知点A ( 2, m )和点B ( n ,- 3)关于 y 轴对称,则 m n 的值是A .- 1B . 1C . 5D .- 58. 如图,在△ ABC 中, BD ⊥AC 于点 D , CE 平分∠ ACB ,与 BD 交于点 E ,若 BC=5,△ BCE 的面积为 5,则 ED 的长为1A.B.1C.2D.529. 张明 3 小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2 小时清点完另一半图书 .如果李强单独清点这批图书需要几小时?设李强单独清点这批图书需要 x小时,则列方程正确的是A.11.2(1 1 1B .1 1 1 13 3 )21.2()x3 xC . 1 1.2(11 )1D .1 1.2( 11 )13 6 x2 6 x10. 已知 x13 ,则下列三个等式:① x 21 7 ,② x 15 ,③ 2x 26x2 中,xx 2x 正确的有A .①②B .①③ C. ②③D .①②③1二、填空题(本大题共 6 道小题, 11-14每小题 2 分,15-16题每小题 3 分,共 14 分)11.若分式2有意义,则 x 的取值范围是.D x312.如图,四边形 ABCD 中, BC=DC ,要使△ ABC≌△ ADC,还需要A C添加一个条件,你添加的条件是...2a2 b)3B13.计算: (=.3c14. 如图,在△ ABC 中,∠ ABC=∠ ACB, AB 的垂直平分线交AC 于点 M,交 AB 于点 N.连接 MB ,若 AB= 8,△ MBC 的周长是14 ,则 BC 的长为.(1)以点 C 为圆心, CA 为半径画弧①;(2)以点 B 为圆心, BA 为半径画弧②,两弧相交于点(3)连结 AD ,交 BC 的延长线于点 E.所以线段AE 就是所求作的BC 边上的高线.B老师说:“小丽的作法正确.”D;AEC①D②15.等腰三角形一腰上的高与另一边的夹角为50°,则这个等腰三角形顶角的度数为.16.阅读下面材料:在数学课上,老师提出如下问题:已知:如图,△ ABC.求作: BC 边上的高线.AB C小丽的作法如下:请回答:小丽的作图依据是________________________________________ .三、解答题 ( 本大题共 4 道小题,其中 17 题 6 分,18 题 6 分,19 题 8 分,20 题 5 分,共25 分 )17.分解因式:(1)9a24b2(2)2ax212ax18a3ab21b2x118.计算:( 1)2 y10 xy( 2)9 x 34x x2.5x23x161.19.解方程:( 1)2x x 1( 2)1x2x x120.已知a22a 2 0 ,求代数式a2a1a4的值 .a 22a a24a 4a22四、解答题(本大题共6 道小题,其中 21-22 题每小题 4 分, 23 题 5 分, 24-26 题每小题 6 分,共 31 分 )21.如图,在4 4 的正方形方格中,阴影部分是涂黑 5 个小正方形所形成的图案.将方格内空白的两个小正方形涂黑,使得到的新图案成为一个轴对称图形,请在下面的图中至少画出具有..不同对称轴的四个方案,并画出对称轴.24.某校为美化校园,计划对一些区域进行绿化,安排了甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的 2 倍,并且两队在独立完成面积为400m2区域的绿化时,甲队比乙队少用 4 天.求甲、乙两工程队每天能完成绿化的面积分别是多少m2?25.已知:在△ ABC 中, CD 平分∠ ACB 交 AB 于点 D,点 E 在线段 CD 上,且∠ EAC=2∠ EBC.求证: AE+ AC=BC26.已知:如图,在△ ABC 中,∠ ABC = 45°,AH ⊥ BC 于点 H,点 D 为 AH 上的一点,且 DH =HC,22. 如图,已知∠ CAB,用直尺和圆规作∠ABD ,使∠ ABD =1∠ CAB,射线 BD 与射线 AC连接 BD 并延长 BD 交 AC 于点 E,连结 EH.A2( 1)请补全图形;相交于点 D .(不写画法,保留作图痕迹)( 2)写出 BD 与 AC 的数量关系和位置关系并证明;C( 3)求证:∠ BEH= 45°.B H CA B23. 如图, AD ∥BE,点 C 在 AB 上, AC= BE,∠ ADC =∠ BCE, CF 平分D∠ DCE 交 DE 于点 F.第Ⅱ卷(附加卷部分,共 20 分)求证 : ( 1)△ ADC ≌△ BCE F一、填空题(本大题共 1小题,共 6 分)( 2) CF 是 DE 的垂直平分线ACB3b ba;1. ( 1)已知 2 ,则=E a a3( 2)已知11 5 ,则3a5ab3b=.a b a3ab b二、解答题(本大题共 2 小题,第 2 小题 6 分,第 3 小题 8 分,共14分)2.阅读下列材料:在学习“分式方程及其解法”过程中,老师提出一个问题:若关于x 的分式方程a31的解为正数,求 a 的取值范围?x 1 1 x经过小组交流讨论后,同学们逐渐形成了两种意见:小明说:解这个关于x 的分式方程,得到方程的解为x a 2 .由题意可得 a2>0 ,所以 a>2 ,问题解决.小强说:你考虑的不全面. 还必须保证a 3 才行.老师说:小强所说完全正确.请回答:小明考虑问题不全面,主要体现在哪里?请你简要说明:完成下列问题:( 1)已知关于x 的方程2mx11 的解为负数,求m 的取值范围;x 2( 2)若关于 x 的分式方程3 2x1nx 2无解 .直接写出 n 的取值范围 .x 3x 33. 钝角三角形 ABC 中, BAC 90, ACB,ABC,过点 A 的直线 l 交BC边于点 D ,点 E 在直线l上,且BC BE( 1)若 AB AC ,点E在AD延长线上.①当30,点 D 恰好为BC中点时,补全图1,直接写出BAE =____°, BEA=___°;②如图 2,若BAE 2,求BEA的度数(用含的代数式表示);AAB CDB CE图 1图2l( 2)如图 3,若 AB AC ,BEA 的度数与(1)中②的结论相同,直接写出BAE ,,满足的数量关系.4AB C3北京一六一中学2017— 2018 学年度第一学期期中考试初二数学标准答案和评分标准第Ⅰ卷(主卷部分,共 100 分)一、选择题(本大题共10 道小题,每小题 3 分,共 30 分)1.B2. D3. C4.C5. B6.A7.D8 C9. D 10. B二、填空题(本大题共 6 道小题, 11-14每小题 2 分,15-16 题每小题 3 分,共 14 分)11. x312.ACB ACD 或 AB AD8a6b3 13.27 c314. 615. 400或1400或100016.与段两个端点距离相等的点在条段的垂直平分上;两点确定一条直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京161中2018-2019学年八年级(上)期中数学试卷
一、选择题(每小题3分,共30分)
1.下列图形中,是轴对称图形的是()
A.B.C.D.
【分析】根据轴对称图形的概念对各选项分析判断即可得解.
解:A、不是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项正确;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:B.
【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=a x+a y
B.x2﹣4x+4=x(x﹣4)+4
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+3x=(x﹣4)(x+4)+3x
【分析】直接利用分解因式的意义分别分析得出答案.
解:A、a(x+y)=ax+ay,是整式的乘法运算,故此选项不合题意;
B、x2﹣4x+4=(x﹣2)2,故此选项不合题意;
C、10x2﹣5x=5x(2x﹣1),正确,符合题意;
D、x2﹣16+3x,无法分解因式,故此选项不合题意;
故选:C.
【点评】此题主要考查了因式分解的意义,正确分解因式是解题关键.
3.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图,根据图形全等的知识,说明画出∠A'O'B'=∠AOB的依据是()
A.边角边,全等三角形对应角相等
B.角边角,全等三角形对应角相等
C.边边边,全等三角形对应角相等
D.斜边直角边,全等三角形对应角相等
【分析】根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,所以运用的是三边对应相等,两三角形全等作为依据.
解:根据作图过程可知O′C′=OC,O′D′=OD,C′D′=CD,
在△OCD与△O′C′D′中,

∴△OCD≌△O′C′D′(SSS),
∴∠A′O′B′=∠AOB.
故选:C.
【点评】本题考查基本作图“作一个角等于已知角”的相关知识,其理论依据是三角形全等的判定“边边边”定理和全等三角形对应角相等.从作法中找已
知,根据已知条件选择判定方法.
4.下列变形正确的是()
A.B.
C.D.
【分析】根据分式的性质,进行变形,再判断对错即可.
解:A、=,此选项错误;
B、=﹣,此选项正确;
C、=,此选项错误;
D、=1,此选项错误.
故选:B.
【点评】本题考查了分式的性质.解题的关键是灵活利用分式的性质.
5.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()
A.10B.6C.4D.2
【分析】根据全等三角形的对应边相等可得AB=AC,AE=AD,再由CD=AC ﹣AD即可求出其长度.
解:∵△ABD≌△ACE,
∴AB=AC=6,AE=AD=4,
∴CD=AC﹣AD=6﹣4=2,
故选:D.
【点评】本题考查了全等三角形对应边相等的性质,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.
6.下列各题中,所求的最简公分母错误的是()
A.与最简公分母是6x2
B.与的最简公分母是3a2b3c
C.与的最简公分母是m2﹣n2
D.与的最简公分母是ab(x﹣y)(y﹣x)
【分析】求几个分式的最简公分母时,通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母.
解:D中与中字母最高次幂的积为一次,所以最简公分母是ab(x ﹣y);。

相关文档
最新文档