北师版七年级数学 《有理数及其运算》全章复习与巩固提高知识讲解与练习
2024-2025学年度北师版七上数学第二章有理数及其运算-回顾与思考课件

.
2024
2025
(方法二)倒数比较法:
2024
1
1
2025
因为
=1+
>1+
=
,
2023
2023
2024
2024
2023
2024
所以
<
.
2024
2025
返回目录
数学 七年级上册 BS版
【点拨】比较大小常用的方法有:(1)数轴比较法.(2)法则
比较法:正数大于0,0大于负数,正数大于负数;两个负数,
1
3
【解析】分数有5%,-2.3, ,3.1415926,- ;负数有
6
4
3
9
-11,-2.3,- ,-9;整数有-11,0, ,2024,-9;非负
4
3
1
9
数有5%, ,3.1415926,0, ,2024.
6
3
1
3
故答案为5%,-2.3, ,3.1415926,- ;-11,-2.3,
6
4
3
9
1
返回目录
数学 七年级上册 BS版
要点六 数轴与绝对值的综合运用
我们知道,在数轴上,点 M , N 分别表示数 m , n ,则点
M , N 之间的距离为| m - n |.若点 A , B , C , D 在数轴上分
2
别表示数 a , b , c , d ,且| a - c |=| b - c |= | d - a |
得
负 ,并把绝对值相乘.任何数与0相乘,积仍为 0 .
返回目录
数学 七年级上册 BS版
(4)除法法则:不为零的两个有理数相除,同号得 正 ,异
第二章 有理数及其运算 复习课 课件 2024-—2025学年北师大版数学七年级上册

解:(1)100×3+10-6-8=296(个), 所以前三天共生产296个. (2)18-(-12)=18+12=30(个), 所以产量最多的一天比产量最少的一天多生产30个. (3)这一周多生产的总个数是10-6-8+15-12+18-9=8(个), 10×700+12×8=7096(元). 答:该厂工人这一周的工资总额是7096元.
解:若在数轴上表示这两数的点位于原点的两侧,则这两个 数到原点的距离分别是3和6,所以这两个数是-3, 6或6,3.若在数轴上表示这两数的点位于原点的同侧,则这两 个数到原点的距离分别是9和18,所以这两个数是-18,-9或 18,9.
·导学建议· 本章所涉及的概念较多,相互之间联系紧密,所以要特别注 意概念的巩固.像第3题这种答案有两种情况的题目学生易出错, 尽量让学生用画图的方法反复体会,形象直观地理解、记忆.
解:(1)正整数;正分数. (2)如图所示:
正确理解有理数有关的概念
例2 若a、b互为相反数,c、d互为倒数,|m|=2,求a4+mb+m-3cd 的值.
解:因为a、b互为相反数, 所以a+b=0. 因为c、d互为倒数, 所以cd=1. 因为|m|=2, 所以m=±2. 所以,原式=0+2-3=-1或原式=0-2-3=-5.
变式训练
去年10月初,由于受台风影响,某地区的水位发生了变化,该 区10月6日的水位是2.83米,由于各种原因,水位一度超过警戒线, 下表是该区10月7日至12日的水位变化情况(单位:米).
日期 7 8 9 10 11
12
水位 +0.41 +0.09 -0.04 +0.06 -0.45
北师大版七年级数学上册第二章《有理数及其运算》复习教案

(2)有理数的性质,如相反数、绝对值的概念和理解。
(3)有理数的加减乘除运算规则,包括同号相加、异号相加、乘法法则等。
(4)混合运算的顺序和法则,以及在实际问题中的应用。
举例:
-重点讲解正负数的加减法运算,如3 + (-2)的计算方法和规则。
最后,通过这节课的教学,我认识到要关注每一个学生的个体差异。对于学习有困难的学生,我需要给予更多的关心和指导,帮助他们克服困难,提高学习效果。同时,对于学习优秀的学生,我也要适当提高要求,让他们在掌握基础知识的同时,拓展思维,提高解决问题的能力。
3.培养学生具备良好的逻辑思维能力,通过有理数运算掌握数学推理方法。
4.培养学生养成数学运算的准确性和规范性,提高运算速度和效率。
5.引导学生体会数学在生活中的广泛应用,激发学习数学的兴趣和积极性。
6.培养学生面对数学问题敢于探究、勇于创新的精神,发展数学思维能力。
三、教学难点与重点
1.教学重点
本节课的核心内容包括:
北师大版七年级数学上册第二章《有理数及其运算》复习教案
一、教学内容
北师大版七年级数学上册第二章《有理数及其运算》复习教案,主要包括以下内容:
1.有理数的概念:正数、负数、整数、分数、有理数的定义及其分类。
2.有理数的性质:相反数、绝对值、有理数的加减乘除运算性质。
3.有理数的运算:
(1)有理数的加减法运算:同号相加、异号相加、加减混合运算。
-难点巩固:通过复杂混合运算的题目,训练学生识别运算顺序,正确运用括号,解决实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要复习的是《有理数及其运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量,比如温度上升和下降?”这个问题与我们将要复习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同回顾有理数的奥秘。
北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)知识点整理及重点题型梳理]
![北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/d7ca7ae9b9f3f90f77c61b03.png)
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《有理数及其运算》全章复习与巩固(提高)【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;作用 举例表示数的性质 0是自然数、是有理数表示没有 3个苹果用+3表示,没有苹果用0表示表示某种状态 00C 表示冰点表示正数与负数的界点0非正非负,是一个中性数2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可. (3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法. 要点四、科学记数法把一个大于10的数表示成10na ⨯的形式(其中1≤10a <,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】 (1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a =1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【变式1】选择题(1)已知四种说法:①|a|=a时,a>0; |a|=-a时, a<0.②|a|就是a与-a中较大的数.③|a|就是数轴上a到原点的距离.④对于任意有理数,-|a|≤a≤|a|.其中说法正确的个数是()A.1 B.2 C.3 D.4(2)有四个说法:①有最小的有理数②有绝对值最小的有理数③有最小的正有理数④没有最大的负有理数上述说法正确的是()A.①② B.③④ C.②④ D.①②(3)已知(-ab)3>0,则()A.ab<0 B.ab>0 C.a>0且b<0 D.a<0且b<0(4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是()A.120 B.-15 C.0 D.-120(5)下列各对算式中,结果相等的是()A.-a6与(-a)6 B.-a3与|-a|3 C.[(-a)2]3与(-a3)2 D.(ab)3与ab3【答案】(1)C;(2)C;(3)A;(4)D;(5)C【变式2】(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为()A.2.7×105B.2.7×106C.2.7×107D.2.7×108【答案】C.2.(2016•江西校级模拟)如果m,n互为相反数,那么|m+n﹣2016|=________.【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n﹣2016|.【答案】 2016.【解析】解:∵m,n互为相反数,∴m+n=0,∴|m+n﹣2016|=|﹣2016|=2016;故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153 ()( 1.5)() 1244 -÷⨯-÷-()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123= (2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4.(2015•铜仁市)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= .【答案】0. 【解析】 解:4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.【总结升华】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 举一反三:【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(1)数形结合思想:已知有理数a 、b 在数轴上对应点的位置如图所示,且|a|>|b|,求|a|-|a+b|-|b-a|的值.A .2b+aB .2b-aC .aD .b(2)分类讨论思想:已知a 是任一有理数,试比较|a|与-2a 的大小. (3)转化思想:1(999)35⎛⎫-÷-⎪⎝⎭.【答案与解析】解:(1)从数轴上a、b两点的位置可以看出a<0,b>0,且|a|>|b|,所以|a|-|a+b|-|b-a|=-a+a+b-b+a=a.(2)a可能是正数,0或负数,这就需要分类讨论:当a>0时,|a|=a>0,-2a<0,所以|a|>-2a;当a=0时,|a|=0,-2a=0,所以|a|=-2a;当a<0时,|a|=-a>0,-2a>0,又-a<-2a,所以|a|<-2a.综上所述:当a≥0时, |a|≥-2a;当a<0时,|a|<-2a.(3)1(999)(10001)(35)35⎛⎫-÷-=-+⨯-⎪⎝⎭(1000)(35)1(35)34965=-⨯-+⨯-=.【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来.举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是()A .1 B .1 C .1 D .1 【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.。
北师大版七年级数学上册第二章有理数及其运算-总复习课件27张

3.有理数的运算律
1)加法交换律 a+b=b+a
2)加法结合律(a+b)+c=a+(b+c)
3)乘法交换律
ab=ba
4)乘法结合律 (ab)c=a(bc) 5)分 配 律 a(b+c)=ab+ac
例1:计算下列各题:
(1) 36 ( 3)3 0.6
2
分析:算式里含有乘方和乘除运算,所以应先算乘方,
例3 计算下列各题:
(1)1+2-3-4+5+6-7-8+……+97+98-99-100 分析:视察式子特点,发现(1-3)、(2-4)、(5 - 7)、……、(97 - 99)、(98 - 100)结果均得 -2。所以运用加法交换律和结合律进行运算。 解法1:原式(1-3)+(2-4)+(5 - 7)+……+(97 - 99) + (98 - 100) (2) (2) ( 2)
若a =0,则︱a︱= 0 ;
3) 对任何有理数a,总有︱a︱≥0.
7.有理数大小的比较
1)可通过数轴比较: 在数轴上的两个数,右边的数
总比左边的数大; 正数都大于0,负数都小于0;
正数大于一切负数; 2)两个负数,绝对值大的反而小。 即:若a<0,b<0,且︱a︱>︱b︱,
则a < b.
在算式 18 32 (2)2 5 中,含有
任何数同0相乘,都得0.
① 几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正.
② 几个数相乘,有一个因数为0, 积就为0.
4)有理数除法法则
①除以一个数等于乘上这个数的倒数;
北师大版(2012)数学七年级上册第2章《有理数及其运算》单元复习课件

画一条水平直线,在直线上取一点表示0,并把这个点
叫原点,选取某一长度作为单位长度,规定直线上向右的方
向为正方向,就得到下面的数轴.
.
.
.
.
数轴像什么? ——像一个平放的温度计!
探究新知
数轴的画法:
1.画:画一条水平直线;
2.取:在直线上取一点表示0(原点);
3.定:规定直线上向右的方向为正方向;
4.选:选取某一长度作为单位长度.
探究新知
知识点 2
正数和负数的概念
具有相反意义的量
用正数和负数可以表示具有相反意义的量
• 判断一个数是正数还是负数的方法:从符号上判断,即只含有“+”
或省略符号的数(0除外)是正数,正数前面有“-”的数是负数,
从数的性质上判断,即所有大于0的数都是正数,所有小于0的数都
是负数.
为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表
的单位长度建立数轴;(2)在数轴上找出所给数相
对应的点,先通过这个数的符号确定它所对应的点在
数轴上原点的哪一边,再在相应的方向上确定它所对
应的点与原点相距几个单位长度,然后画出点即可.
利用数轴比较有理数大小的三个步骤:
(1)画数轴;
(2)定顺序,确定点在数轴上的左右顺序,标出各
点;
(3)定大小,根据数轴上两个点表示的数,右边的
示;而把与这个量意义相反的量规定为负的,用负数来表示.
我们把正整数、0和负整数统称为整数;
正分数和负分数统称为分数.
探究新知
正整数
整数与分数统称为有理数
整数
零
负整数
有理数
正分数
分数
负分数
北师大版七年级数学上册有理数全章考点归纳及练习

【课堂练习】
1.下列各数中是负数的是( )
A.-3 B.0
1 C.1.7 D.
2
2.飞机在飞行过程中,如果上升 23 米记作“+23 米”,那么下降 15 米应记作( )
A.-8 米 B.+8 米 C.-15 米 D.+15 米
3.下列说法正确的是( )
A.非负数包括 0 和整数 B.正整数包括自然数和 0
(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;
(2)一列数:-1,1,-3,1,-5,1,____,____,____,….
2
4
6
解析:(1)对第 n 个数,当 n 为奇数时,此数为 n,当 n 为偶数时,此数为-n;(2)对 第 n 个数,当 n 为奇数时,此数为-n;当 n 为偶数时,此数为1.
考点四: 绝对值的实际应用
【例 4】 检测四个足球,把超过标准重量的克数记为正数,不足标准重量的克数记为 负数,从轻重的角度看,最接近标准的球是( )
解析:因为|+0.9|=0.9,|-2.6|=2.6,|+2.4|=2.4,|-0.8|=0.8,0.8<0.9<2.4<2.6,所 以最接近标准的球是 D.故选 D.
A.0m B.0.5m
C.-0.8m D.-0.5m
解析:由水位升高 0.8m 时水位变化记作+0.8m,根据相反意义的量的含义,则水位 下降 0.5m 时水位变化就记作-0.5m,故选 D.
方法总结:用正、负数表示相反意义的量时,要抓住基准,比基准量多多少记为“+” 的多少,少多少记为“-”的多少.另外通常把“零上、上升、前进、收入、运进、增产”等 规定为正,与它们意义相反的量表示为负.
方法总结:“0”的意义不要单纯地认为表示“没有”,其实“0”表示的意义非常广泛,比 如:冰水混合物的温度就是 0℃,0 是正、负数的分界点等.
北师大版七年级上册数学《有理数》有理数及其运算培优说课教学复习课件

3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
答案:85%
议一议
选定一个高度作为标准,用正负数表示
本班每位同学的身高与选定的身高标准的差
异. 你是怎样表示的? 与同伴进行交流.
课堂小练
1.如图,检测4个足球,其中超过标准质
量的克数记为正数,不足标准质量的克数
记为负数。从轻重的角度看,最接近标准
作 - 200 。
3、如果上升10米记作+10米,那么下降12米,记作 - 12 。
4、如果规定向西走30米记作+30米,那么- 40米,表示
向东走了40米
______________。
5、如果零上5记作+ 5,那么零下3 记作 - 3 。
6、某仓库运进面粉7.5吨记作+ 7.5,那么运出3.8吨,记作 - 3.8 。
四
五
六
日
送餐量(单位:
单)
-3
+4
-5
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
自然数
4.2,5.2,0.02,···
小数
1 1
2 ,3 ,50%,3.3%
分数和百分数
﹣3,﹣155,﹣0.4,
﹣0.02,···
负数
数的认识
类型
0,1,2,3,···
自然数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师版七年级数学单元讲解和提高练习知识全面设计合理含答案教师必备《有理数及其运算》全章复习与巩固(基础)【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态00C表示冰点表示正数与负数的界点0非正非负,是一个中性数2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.数a的绝对值记作a.(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.要点二、有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·1b(b≠0) .(5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法. 要点四、科学记数法把一个大于10的数表示成10n a ⨯的形式(其中1≤10a <,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯. 【典型例题】类型一、有理数相关概念1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________. 【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1 【解析】根据定义,把符合条件的有理数写全.【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【高清课堂:有理数专题复习 357133 概念的理解与应用】【变式】(1)321-的倒数是 ;321-的相反数是 ;321-的绝对值是 .-(-8)的相反数是 ;21-的相反数的倒数是_____. (2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 .(3) 上海浦东磁悬浮铁路全长30km ,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min .(4) 若a 、b 互为相反数,c 、d 互为倒数,则=++)(323b a cd ____ . 【答案】(1)35-; 213; 213;-8;2 (2)降价5.8元,70.2 元;(3)33.7510⨯;(4)3;2.(2015•杭州模拟)已知|x|=|﹣3|,则x 的值为 .【思路点拨】根据题意可知|x|=3,由绝对值的性质,即可推出x=±3. 【答案】±3. 【解析】解:∵|﹣3|=3, ∴|x|=3, ∵|±3|=3, ∴x=±3.【总结升华】本题主要考查绝对值的性质,关键在于求出3和﹣3的绝对值都为3.3.在下列两数之间填上适当的不等号:20052006________20062007. 【思路点拨】根据“a-b >0,a-b =0,a-b <0分别得到a >b ,a =b ,a <b ”来比较两数的大小.【答案】 < 【解析】解法一:作差法由于20052006200520072006200610200620072006200720062007⨯-⨯-==-<⨯⨯,所以2005200620062007<解法二:倒数比较法:因为2006112007112005200520062006=+>+= 所以2005200620062007<【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用.举一反三: 【变式】(2015•宁德)有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( )A .a+b <0B . a ﹣b <0C . a •b >0D .>0【答案】B .类型二、有理数的运算4.(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| (3)()1526061215⎡⎤⎛⎫⎛⎫---+⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(4)()()5410.751252⎡⎤⎛⎫-⨯-÷-+- ⎪⎢⎥⎝⎭⎣⎦【答案与解析】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39) =﹣12﹣5﹣14+39 =﹣31+39 =8(2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|=﹣9÷9﹣6+4 =﹣1﹣6+4 =﹣3 (3)()1526061215⎡⎤⎛⎫⎛⎫---+⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=×60﹣×60﹣×60=10﹣25﹣8 =﹣23(4)()()5410.751252⎡⎤⎛⎫-⨯-÷-+- ⎪⎢⎥⎝⎭⎣⎦=﹣×[(﹣)÷(﹣)﹣32] =﹣×[2﹣32] =﹣×[﹣30] =24(5)231111312112132442434(0.2)⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 3124575512416543415⎛⎫⎛⎫=⨯-++-⨯- ⎪ ⎪⎝⎭⎝⎭⎛⎫- ⎪⎝⎭14575524242412540434⎛⎫=-+⨯+⨯-⨯+ ⎪⎝⎭ 12705633012540=-++-+1121403912040=-+=【总结升华】有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算. 举一反三:【变式】计算:(1)11(2)(2)22-⨯÷⨯- (2)()20064261031-+--⨯-【答案】解:(1)111(2)(2)(1)(2)(1)2(2)4222-⨯÷⨯-=-÷⨯-=-⨯⨯-= (2)()20064261031-+--⨯-=-16+4-3×1 =-15类型三、数学思想在本章中的应用5.(1)数形结合思想:有理数a 在数轴上对应的点如图所示,则a ,-a ,1的大小关系.A .-a <a <1B .1<-a <aC .1<-a <aD .a <1<-a (2)分类讨论思想:已知|x |=5,|y |=3.求x -y 的值. (3)转化思想:计算:3135()147⎛⎫-÷- ⎪⎝⎭ 【答案与解析】解:(1)将-a 在数轴上标出,如图所示,得到a <1<-a ,所以大小关系为:a <1<-a . 所以正确选项为:D .(2)因为| x |=5,所以x 为-5或5 因为|y |=3,所以y 为3或-3.当x =5,y =3时,x -y =5-3=2 当x =5,y =-3时,x -y =5-(-3)=8 当x =-5,y =3时,x -y =-5-3=-8 当x =-5,y =-3时,x -y =-5-(-3)=-2 故(x -y )的值为±2或±8(3)原式=331 35(7)3577246 14142⎛⎫--⨯-=⨯+⨯=⎪⎝⎭【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.举一反三:【变式】若a是有理数,|a|-a能不能是负数?为什么?【答案】解:当a>0时,|a|-a=a-a=0;当a=0时,|a|-a=0-0=0;当a<0时,|a|-a=-a-a=-2a>0.所以,对于任何有理数a,|a|-a都不会是负数.类型四、规律探索6.将1,12-,13,14-,15,16-,…,按一定规律排列如下:请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律.【答案】1 200 -【解析】认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是1210;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是1210-,以此类推向前10个,则得到第20行第10个数是1200-.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.《有理数及其运算》全章复习与巩固(提高)【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态0C表示冰点表示正数与负数的界点0非正非负,是一个中性数2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可. (3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法. 要点四、科学记数法把一个大于10的数表示成10na ⨯的形式(其中1≤10a <,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn )a+(x+y )2009+(-mn )2010的值.【思路点拨】 (1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn )a+(x+y )2009+(-mn )2010 =a 2-(0+1)a+02009+(-1)2010 =a 2-a+1.∵a =1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【高清课堂:有理数的复习与提高 357129 复习例题2】【变式1】选择题 (1)已知四种说法:①|a|=a 时,a >0; |a|=-a 时, a <0. ②|a|就是a 与-a 中较大的数. ③|a|就是数轴上a 到原点的距离. ④对于任意有理数,-|a|≤a≤|a|. 其中说法正确的个数是( ) A .1 B .2 C .3 D .4 (2)有四个说法:①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是( )A .①②B .③④C .②④D .①② (3)已知(-ab)3>0,则( )A .ab<0B .ab>0C .a>0且b<0D .a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A .120 B .-15 C .0 D .-120 (5)下列各对算式中,结果相等的是( )A .-a 6与(-a)6B .-a 3与|-a|3C .[(-a)2]3与(-a 3)2D .(ab)3与ab 3【答案】(1)C ;(2)C ;(3)A ;(4)D ;(5)C 【变式2】(2015•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为( ) A .2.7×105 B . 2.7×106 C . 2.7×107 D .2.7×108 【答案】C .2. 在下列两数之间填上适当的不等号: 99100-________100101-. 【思路点拨】在a 、b 均为正数的条件下,根据“1a b >,1a b =,1ab<分别得到a >b ,a =b ,a <b ”来比较两数的大小.【答案】 >【解析】解法一:作差法:99100--(100101-) =99100991011001001010010110110010100-⨯+⨯-+==>⨯, ∴99100100101->-. 解法二:作商法:由于99100991019999110010110010010000÷=⨯=<,所以99100100101<. 再根据两个负数,绝对值大的反而小,得到:99100100101->-. 【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用.举一反三:【变式】在下列两数之间填上适当的不等号. 1111111-_________111111111-. 【答案】> (提示:倒数法较简便)类型二、有理数的运算【高清课堂:有理数专题复习 357133 有理数的混合运算】3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153()( 1.5)()1244-÷⨯-÷- ()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ (5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a (b+c )=ab+ac ;逆向应用分配律:ab+ac =a (b+c )等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+ 123=(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4.(2015•铜仁市)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= .【答案】0. 【解析】 解:4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.【总结升华】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 举一反三:【高清课堂:有理数的复习与提高 例2】 【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(1)数形结合思想:已知有理数a 、b 在数轴上对应点的位置如图所示,且|a |>|b |,求|a |-|a+b |-|b -a |的值.A .2b+aB .2b -aC .aD .b(2)分类讨论思想:已知a 是任一有理数,试比较|a |与-2a 的大小.(3)转化思想:1 (999)35⎛⎫-÷-⎪⎝⎭.【答案与解析】解:(1)从数轴上a、b两点的位置可以看出a<0,b>0,且|a|>|b|,所以|a|-|a+b|-|b-a|=-a+a+b-b+a=a.(2)a可能是正数,0或负数,这就需要分类讨论:当a>0时,|a|=a>0,-2a<0,所以|a|>-2a;当a=0时,|a|=0,-2a=0,所以|a|=-2a;当a<0时,|a|=-a>0,-2a>0,又-a<-2a,所以|a|<-2a.综上所述:当a≥0时, |a|≥-2a;当a<0时,|a|<-2a.(3)1(999)(10001)(35)35⎛⎫-÷-=-+⨯-⎪⎝⎭(1000)(35)1(35)34965=-⨯-+⨯-=.【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是().A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来.举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是()A .1132 B .1360 C .1495 D .1660【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.【巩固练习】一、选择题1.下列判断正确的个数有( )(1)任何一个有理数的相反数和它的绝对值都不可能相等. (2)若两个有理数互为相反数,则这两个数互为倒数. (3)如果两个数的绝对值相等,那么这两个有理数也相等. A .0个 B .1个 C .2个 D .3个2.(2015•菏泽)如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB . 点NC . 点PD .点Q3. 在-(-2),-|-7|,-|+1|,|-)511(-|32+,中,负数的个数是 ( ) A .1个 B .2个 C .3个 D .4个4.据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示( )A .2.02×210人 B .202×810人 C .2.02×910人 D .2.02×1010人 5.若-1<a<0,则a ,2a ,a1从小到大排列正确的是( )A .a 2<a<a 1 B .a <a 1< a 2 C .a 1<a< a 2 D .a < a 2 <a16.在数轴上距2.5有3.5个单位长度的点所表示的数是( )A .6B .-6C .-1D .-1或6 7.a,b 两数在数轴上的位置如图,则下列正确的是( )A . a+b>0B . ab>0C .ba>0 D .a-b>0 8.已知有理数a ,b 在数轴上对应的两点分别是A ,B .请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b - 二、 填空题9.(2015•湖州)计算:23×()2= .10.水池中的水位在某天八个不同时刻测得记录为:(规定向上为正,向下为负,单位:厘米)+3,0,-1,+5,-4,+2,-3,-2,那么这里0的含义是___________.11.德国科学家贝塞尔推算出天鹅座第61颗暗星距离地球102 000 000 000 000千米,用科学记数法表示出暗星到地球的距离为___ _____千米. 12.7=x ,则______=x ; 7=-x ,则______=x . 13.已知实数a , 在数轴上如下图所示,则|1|-a = .14.若|a-2|+|b+3|=0,则3a+2b= . 15.()221---= .16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.计算:(1)222172(3)(6)3⎛⎫-+⨯-+-÷- ⎪⎝⎭(2)4211(10.5)[2(3)]3---⨯⨯-- (3)21-49.5+10.2-2-3.5+19(4)323233351914321251943252⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭18.已知a 、b 互为倒数,c 、d 互为相反数,且x 的绝对值为3,求2x 2-(ab -c -d )+|ab+3|的值.19.(2015•顺义区一模)居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2014年用电量为3000度,则2014年小敏家电费为多少元? 20.先观察下列各式:11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭;11117103710⎛⎫=- ⎪⨯⎝⎭;…;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算:1111447710+++⨯⨯⨯ (1)20052008+⨯的值. 【答案与解析】一、选择题1.【答案】A 2.【答案】C.【解析】∵点M ,N 表示的有理数互为相反数. ∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C . 3.【答案】 C【解析】负数有三个,分别是:-|-7|,-|+1|,)511(-+ 4.【答案】D 5.【答案】C【解析】由-1<a<0可知2a 为正数,而其它两数均为负数,且| a |<a 1,所以a >a1,所以a1<a< a 2. 6.【答案】D【解析】2.5+3.5=6, 2.5-3.5=-1 7.【答案】D【解析】由图可知,a 、b 异号,且b 的绝对值较大. 8.【答案】D【解析】按正负对a ,b 分类讨论. 二、填空题 9.【答案】2.【解析】23×()2=8×=2. 10.【答案】水位无变化 11.【答案】1.02×1014 12.【答案】7,7±±13.【答案】1-a【解析】由图可知:a-1<0,所以 │a-1│=-(a-1)=1- a 14.【答案】0【解析】∵|a-2|+|b+3|=0,∴a-2=0,b+3=0,即a=2,b=-3.∴3a+2b=6-6=0; 15.【答案】-5 【解析】()221415---=--=- 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+三、解答题 17.【解析】解: (1) 原式14929(6)9=-+⨯+-÷4918(6)949185485=-++-⨯=-+-=-(2) 原式111111511[2(9)]11112232366⎛⎫=---⨯⨯--=--⨯⨯=--=- ⎪⎝⎭ (3)原式=[(21+19)+10.2]+[(-49.5-3.5)-2]=50.2-55=-4.8(4) 原式=32233519422519435⎡⎤⎛⎫⎛⎫⎛⎫-⨯--⨯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦27943191627008251943258⎛⎫=-⨯-⨯+=-⨯= ⎪⎝⎭ 18.【解析】解:将ab =1,c+d =0,|x |=3代入所给式子中得: 2×32-1+|1+3|=21.所以2x 2-(ab -c -d )+|ab+3|=21 19.【解析】解:根据题意得:2880×0.48+(3000﹣2880)×0.53=1446(元), 则2014年小敏家电费为1446元. 20.【解析】 解:原式111111111111343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… 111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+- ⎪⎝⎭1113200812007320086692008⎛⎫=-⎪⎝⎭=⨯=【巩固练习】一、选择题1.(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.2.a b-与a比较大小,必定为().A.a b a-<B.a b a->C.a b a-≤D.这要取决于b3.下列语句中,正确的个数是().①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n<<,则mn n m<-.A.0 B.1 C.2 D.34.已知||5m=,||2n=,||m n n m-=-,则m n+的值是().A.-7 B.-3 C.-7或-3 D.±7或±35.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”、“15cm”分别对应数轴上的 3.6x-和,则().A.910x<<B.1011x<<C.1112x<<D.1213x<<6.如图:数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数a,b,c,d,且b-2a=9,那么数轴的原点对应点是().A.A点B.B点C.C点D.D点7.有理数a,b,c的大小关系如图:则下列式子中一定成立的是().A.0a b c++>B.a b c+<C.a c a c-=+D.b c c a->-8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( ).A .2004B .2006C .2008D .2010 二、填空题9.已知a 是有理数,有下列判断:①a 是正数;②-a 是负数;③a 与-a 必有一个是负数;④a 与-a 互为相反数,其中正确的有________个.10.(2015春•万州区期末)绝对值小于4,而不小于2的所有整数有 . 11.一种零件的尺寸在图纸上是0.050.027+-(单位:mm ),表示这种零件加工要求最大不超过________,最小不小于________.12.当a =________时,式子23(1)a --的值最大,这个最大值是________.13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0;2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米.16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.计算:(1)22213151[4(4)]1417⎛⎫---⨯--⎪⎝⎭(2)323233351914321251943252⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(3)200820097887⎛⎫⎛⎫⨯- ⎪ ⎪⎝⎭⎝⎭(4)5231591736342--+- (5)111223++⨯⨯ (14950)+⨯18.(2015•燕山区一模)为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的运价为3公里以内10元;超出3公里后每公里2元;单程超过15公里,超过部分每公里3元.小周要到离家10公里的博物馆参观,若他往返都乘坐纯电动出租车,共需付车费多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b 的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议?【答案与解析】一、选择题 1.【答案】C.【解析】∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C . 2.【答案】 D【解析】当b 为0时,a b a -=;当b 为正数时,a b a -<;当b 为负数时,a b a -> 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3- 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C【解析】由图可知:4b a -=,又29b a -=,所以5a =- 7.【答案】C【解析】由图可知:0a b c <<<,且c a c a -=-表示数轴上数a 对应点与数c 对应点之间的距离,此距离恰好等于数a 对应点到原点的距离与数c 对应点到远点的距离之和,所以选项C 正确. 8.【答案】C 【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】1【解析】不论a 是正数、0、负数,a 与-a 都互为相反数,∴④正确. 10.【答案】±3,±2.【解析】结合数轴和绝对值的意义,得绝对值小于4而不小于2的所有整数±3,±2. 11.【答案】 7.05mm, 6.98mm【解析】7+0.05=7.05mm, 7-0.02=6.98mm. 12.【答案】1, 3 【解析】2(1)0a -≥,10a -=∴时,2(1)a -取到最小值,同时 23(1)a --取到最大值. 13.【答案】>, >, >, <【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】 10【解析】21-(-39)÷6×1=10(千米). 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+. 三、解答题 17.【解析】解:(1)原式 13151(1616)1417⎛⎫=---⨯- ⎪⎝⎭1315101011417⎛⎫=---⨯=--=- ⎪⎝⎭(2)原式32233431942519435⎡⎤⎛⎫⎛⎫⎛⎫=-⨯--⨯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦33916122525⎛⎫⎛⎫=-⨯-+ ⎪ ⎪⎝⎭⎝⎭ 33020⎛⎫=-⨯ ⎪⎝⎭=(3) 原式20082008788877⎛⎫⎛⎫⎛⎫=⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2008788877⎡⎤⎛⎫⎛⎫=⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦88177⎛⎫=⨯-=- ⎪⎝⎭(4)原式5231591736342=----++-- 5231(59173)6342⎛⎫=--+-+--+- ⎪⎝⎭1101144=-=-(5)原式1111223=-+-+ (11)4950+-111112233⎛⎫⎛⎫=+-++-++ ⎪ ⎪⎝⎭⎝⎭ (1)1114914949505050⎛⎫+-+-=-=⎪⎝⎭ 18.【解析】解:由3<10<15,得到车费为2[10+2(10﹣3)]=48(元), 则共付车费48元.19.【解析】解:由1,a+b ,a 与0,ba,b 相同, 由ba得:分母有0a ≠,所以0a b += 又由三数互不相等,所以1b =,ba a=化简得:1a =-,1b =,0a b +=,1ab =-∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】 解:(1)10÷500≈0.02(克) 答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克) 答:一年大约能节约大米2.847×107千克. (3)2×2.847×107=5.694×107(元) 答:可卖得人民币5.694×107元. (4)5.694×107÷500=1.1388×105答:可供11388名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.。