高温固相法制备
高温固相合成法

高温固相合成法高温固相合成法是一种常用于制备无机材料的方法,具有简单易操作、成本较低等优点。
本文将详细介绍这种方法的定义、特点、机制、优缺点以及应用领域。
一、定义:高温固相合成法是指在高温条件下,将原料粉末按照一定配方混合,并在惰性气氛下加热,使其化学反应生成所需的无机材料的方法。
二、特点:1、简单易操作高温固相合成法操作简单,一般只需要将原料粉末按照一定的配比混合,然后加热反应即可,无需太多的设备和技术支持。
2、成本较低高温固相合成法的原料通常都是便宜易得的,且反应过程中无需额外地消耗太多的能源,因此成本相对较低。
3、产品纯度较高高温固相合成法操作温度相对较高,通常可以使原料快速反应,反应生成的产物纯度较高。
三、机制:高温固相合成法的反应过程主要包括两部分,即原料混合和加热反应。
1、原料混合在高温惰性气氛下,将所需原料按照一定的配比混合,形成均匀的反应体系。
2、加热反应将反应混合物放入高温烘箱或炉内,进行加热反应。
在惰性气氛下,反应体系中的原料粉末发生化学反应,生成所需的无机材料。
四、优缺点:1、优点(1)简单易操作(2)成本较低(3)产物纯度较高(4)能够制备较难制备的无机材料2、缺点(1)反应温度较高,可能会使一些材料失去活性(2)产物形貌不易控制(3)容易产生杂质五、应用领域:高温固相合成法被广泛应用于无机材料的制备,例如:(1)金属氧化物陶瓷材料(2)半导体材料(3)无机非金属材料(4)光学材料(5)电池材料总之,高温固相合成法是一种简单、低成本、高效的制备无机材料的方法,可广泛应用于各种领域。
高温固相法

高温固相法氧化铈(CeO2)是一种廉价、用途极广的轻稀土氧化物,已被用于发光材料、抛光剂、紫外吸收剂、汽车尾气净化催化剂、玻璃的化学脱色剂以及耐辐射玻璃等。
氧化铈的物理化学性质可能直接影响材料的性能,如超细氧化铈加入不但可以降低陶瓷的烧结温度,还可以增加陶瓷的密度;大比表面积可以提高催化剂的催化活性;且由于铈具有变价性,对发光材料也具有重要意义。
铈的抗菌作用早在19世纪晚期就已经被发现,相关研究表明铈对16类种属细菌中39个菌种有抑菌作用,此外铈对于弱酸性的细菌敏感性最为明显。
纳米氧化铈的制备方法主要包括固相法、液相法和气相法。
固相法是一种传统的粉体制备工艺,是在高温下通过固-固反应制备产品的方法,具有产量大、制备工艺简单易行等优点,但容易混入杂质等缺点,一般使用较少。
液相法相对于固相法和气相法而言,具有不需苛刻的物理条件、易中试放大、操作方便和粒子可控的特点,因而研究广泛。
液相法主要包括沉淀法、溶胶-凝胶法、水热法和微乳液法等。
沉淀法制备纳米级氧化物粉体工艺中,在沉淀反应、干燥、焙烧三个阶段会导致不同程度的团聚,因此需要解决粒子间的团聚问题。
溶胶-凝胶法以易于水解的金属结合物(无机盐或金属醇盐)为原料,使之在某种溶剂中和水发生反应,经过水解和缩聚过程逐渐凝胶化,再经干燥和煅烧得到所需氧化物粉末,可以使得粒子的粒径达到纳米级。
水热法是在特制的密闭反应容器里,采用水溶液作为介质,通过对反应容器加热,创造一个高温高压反应环境,使得通常难溶或不溶的物质溶解并且重结晶,该法应用较为广泛。
微乳液法制备的粒子,反应条件容易实现,所得粒子粒度小,且可控制,但是应用这种方法制备超细粒子所消耗的表面活性剂及溶剂的量很多,成本较高。
气相法是指两种或两种以上单质或化合物在气相中发生化学反应生成纳米级新化合物的方法,包括溅射法、通电加热蒸发法、挥发性化合物混合法和激光诱导化学气相沉积(LICVD)等,但是需要的条件严苛,对反应条件的控制也更高。
高温固相法

高温固相合成是指在高温(1000~1500℃)下,固体界面间经过接触,反应,成核,晶体生长反应而生成一大批复合氧化物,如含氧酸盐类、二元或多元陶瓷化合物等。
高温固相法是一种传统的制粉工艺,虽然有其固有的缺点,如能耗大、效率低、粉体不够细、易混入杂质等,由于该法制备的粉体颗粒无团聚、填充性好、成本低、产量大、制备工艺简单等优点,迄今仍是常用的方法。
高温固相合成是指在高温(1000~1500℃)下,固体界面间经过接触,反应,成核,晶体生长反应而生成一大批复合氧化物,如含氧酸盐类、二元或多元陶瓷化合物等。
高温固相法是一种传统的制粉工艺,虽然有其固有的缺点,如能耗大、效率低、粉体不够细、易混入杂质等,由于该法制备的粉体颗粒无团聚、填充性好、成本低、产量大、制备工艺简单等优点,迄今仍是常用的方法。
扩展资料合成稀土三基色荧光粉的几种方法.(一)高温固相反应法此方法是制备稀土三基色荧光粉最原始的一种方法.以稀土三基色荧光粉中的红色荧光粉(YEu)O3为例,用这种方法制备的工艺如下:称取一定计量比的Y2O3和Eu2O3(99.99%或以上)加入定量助熔剂,混匀在1300-1500ºC灼烧2h左右后取出研磨并洗涤即可.这种方法操作简单但粒度较大,会有成分偏析的现象,这样会降低发光效率,若灼烧温度偏高则会烧结严重在最后研磨时会破坏激活剂所在的晶格位置从而导致发光效率的降低.(二)共沉淀法制备前驱体在发现了高温固相法的缺点后人们一直在探索一种新的方法试图克服高温固相反应的弊端.结果发现,在溶液合成荧光粉会使产品成分均匀.方法如下:(同样以红色荧光粉为例)取一定配比的Y2O3和Eu2O3(99.99%或以上)用HNO3或HCl溶解,制成混合稀土酸溶液后用草酸与其反应直至完全在经烘干,其他方法同方法(一).这种方法制出的产品成分组成相对均匀很少出现成分的偏析,但粒度不易控制,工序比第一种方法稍复杂.以上两种方法使比较常用的也已形成工业化生产,虽然两种方法都存在着不足,但这两种方法制备出来的产品比其他方法合成的产品在发光性能指标上有着很大的优势.。
一种高温固相制备li5feo4的方法及其应用与流程

一种高温固相制备li5feo4的方法及其应用与流程高温固相法是一种常用的制备Li5FeO4的方法,其基本原理是通过高温下将适量的原料混合混磨,然后在高温条件下进行反应,最终得到Li5FeO4。
一种典型的高温固相法制备Li5FeO4的方法如下:1.原料准备:将适量的Li2CO3和Fe2O3按照一定的摩尔配比分别称量并粉碎,然后将两种粉末混合。
2.混磨:将混合后的粉末放入球磨机中进行混磨处理,以增加反应物的接触面积,促进反应的进行。
3.烧结:将混磨后的粉末放入烧结炉中,在高温下进行烧结处理。
常用的烧结温度为600-800℃,烧结时间一般为数小时。
4.冷却:待烧结结束后,将炉内的样品冷却至室温。
5.粉碎:将烧结后的样品取出,粉碎成所需颗粒大小的粉末。
6.筛分:对粉碎后的样品进行筛分,得到所需的Li5FeO4粉末。
通过高温固相法制备的Li5FeO4可广泛应用于锂离子电池等领域,具有以下应用和优势:1.锂离子电池:Li5FeO4可用作正极材料,在锂离子电池中具有较高的比容量和循环性能,有望替代传统的正极材料,提高电池的能量密度和循环寿命。
2.超级电容器:Li5FeO4在超级电容器中可用作导电材料,具有高电导率和高比容量,能够提高超级电容器的储能性能。
3.光催化:Li5FeO4可用作催化剂,在光催化反应中具有较高的催化活性,可应用于环境治理、水分解产氢等领域。
4.高温电子器件:Li5FeO4在高温条件下具有较好的稳定性和导电性,可用于制备高温电子器件,如高温传感器、高温电阻器等。
总体流程如下:原料准备-混磨-烧结-冷却-粉碎-筛分通过上述步骤,可以制备出高纯度、颗粒均匀的Li5FeO4粉末。
这种高温固相法制备的Li5FeO4不仅具有良好的电化学性能,还具有广泛的应用前景,对于推动锂离子电池等领域的发展具有重要意义。
三元材料的制备

三元材料的制备概述三元材料是指由三种不同金属元素组成的化合物,常用于制备锂离子电池的正极材料。
目前,三元材料已经成为锂离子电池领域的研究热点,因其具有高能量密度、长循环寿命和优异的安全性而备受关注。
本文将详细介绍三元材料的制备方法,包括化学共沉淀法、溶胶-凝胶法和高温固相法。
同时,还将探讨三元材料的结构特点和性能优化的方法。
一、化学共沉淀法化学共沉淀法是制备三元材料的常用方法之一。
该方法通过在溶液中同时加入三种金属盐,使其发生共沉淀反应,生成三元材料颗粒。
具体步骤如下:1.选择合适的金属盐:根据所需三元材料的组成,选择相应的金属盐,如氢氧化物、硝酸盐等。
2.溶解金属盐:将所选金属盐溶解于适量的溶剂中,如水、醇类溶剂等。
3.调整溶液条件:根据所需材料的性质,调整溶液的酸碱度、温度等条件,以促进共沉淀反应的进行。
4.共沉淀反应:将三种金属盐的溶液混合均匀,搅拌一段时间后,加入沉淀剂,如氨水、碳酸氢铵等,使金属离子发生沉淀反应。
5.沉淀收集与处理:将生成的三元材料沉淀进行分离、洗涤和干燥处理,得到所需的三元材料粉末。
化学共沉淀法制备的三元材料具有晶粒细小、分散性好的特点,但其晶体结构和纯度通常较低,需要进一步热处理或其他方法进行优化。
二、溶胶-凝胶法溶胶-凝胶法是另一种常用的三元材料制备方法。
该方法通过溶胶的形成和凝胶的固化过程,得到三元材料的凝胶体,然后经过热处理得到所需的材料。
具体步骤如下:1.制备溶胶:将所选金属盐溶解于适量的溶剂中,通过调整溶液的酸碱度、温度等条件,形成均匀的溶胶。
2.凝胶形成:通过溶胶的凝胶化反应,使溶胶逐渐形成凝胶体。
凝胶化的方法包括自凝胶化和外加凝胶剂法。
3.凝胶处理:将凝胶进行热处理,通过煅烧或热解等过程,将凝胶转化为三元材料的结晶体。
4.结晶体处理:对得到的三元材料结晶体进行研磨、筛选等处理,得到所需的三元材料粉末。
溶胶-凝胶法制备的三元材料具有较高的纯度和结晶度,且可以控制材料的微观结构和形貌,但制备过程较为复杂,需要耐心和技巧。
高温固相法制备ZnMoO_(4):Eu^(3+)荧光粉及其发光性质研究

(b)
5D0 → 7F2
ZnMoO4:xEu3+ λem=617nm
x=0.01 x=0.02 x=0.03 x=0.04 x=0.05
ZnMoO4 在此条件下成功地被制备出来,并且没有杂相生成。 此外,Eu3+ 的引入并没有引起基质晶格明显的改变,这是因 为 Zn2+(0.88Å)和 Eu3+(1.087Å)离子半径和配位环境相似, 以及掺杂浓度并不是很高,所以稀土 Eu3+ 能够成功掺杂到基 质 ZnMoO4 中。
收稿日期 :2021–03–16 基金项目 :2021 年 度 吉 林 省 教 育 厅“ 十 四 五 ” 科 研 规 划 项 目
(JJKH20210542KJ) 作者简介 :吴宏越(1987—),男,吉林龙井人,讲师,主要研究方
向为稀土发光材料。 通讯作者 :李琳琳(1987—),女,吉林通化人,副教授,主要研究
此仪器装备的氙灯是 150W。所有测试都在室温下进行。 ·95·
第47卷第6期
2021年6月
研究与开发
Research and Development
化工设计通讯
Chemical Engineering Design Communications
3 结果与讨论 3.1 所制备样品的物相分析
图 1 为 最 大 掺 杂 浓 度 样 品 ZnMoO4 :0.05Eu3+ 和 ZnMoO4 标准粉末 X 射线衍射数据(PDF#72-1486)的 XRD 图谱。将 合 成 的 样 品 ZnMoO4 :0.05Eu3+XRD 衍 射 峰 图 谱 与 ZnMoO4 的标准衍射图谱进行对比,可以看出两者匹配得很好,得知
在近些年的研究中,制备荧光粉的方法日渐多样化,目 前常用的方法有 :高温固相合成法、微波热合成法、共沉淀 合成法等。不同的制备条件和方法会直接影响制备出发光材 料的使用效果和决定它是否可以普遍应用。本文选用的是高 温固相法来制备荧光粉,应用该方法制备的荧光粉优点很多 性能稳定,发光强度高,且制备方法既简单环保又利于工业 上大批生产,因此得到了广泛应用 [4]。
1-磷酸铁锂合成方法比较

磷酸铁锂正极材料制备方法比较A.固相法一.高温固相法1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。
例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;Takahashi等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。
高温固相法

高温固相法是传统的粉碎方法。
该方法制得的粉末颗粒虽然具有固有的缺点,如能耗高,效率低,粉末不够细,易与杂质混合等,但具有不结块,填充性好,成本低的优点。
,产量大,制备工艺简单。
固相法通常具有以下特点:
1)固态反应通常包括两个过程:相界面处的物质反应和物质的迁移。
2)通常,它需要在高温下进行。
3)固体物质之间的反应性低
4)整个固相反应速度由最慢的速度控制。
5)固态反应的反应产物有以下阶段:原料→初始产物→中间产物→最终产物。
固相法根据其加工特性可分为机械粉碎法和固相反应法。
机械破碎法是用破碎机将原料直接研磨成超细粉末。
固相反应法是将金属盐或金属氧化物按式混合,研磨后煅烧进行固相反应,然后直接得到或再研磨得到超细粉末。
该方法是制备稀土三基色磷光体的最原始的方法。
以稀土三基色荧光粉中的红色荧光粉(yeu)o3为例,采用以下方法制备:称量一定化学计量比的y2o3和eu2o3(99.99%以上),并加入一定量的混合均匀的助焊剂,在1300-1500ºc下燃烧约2小时,然后取出,研磨和洗涤。
该方法操作简单,但是粒径大,这将导致组分的分离,这将降低发光效率。
如果烧成温度过高,则烧结将变得严重,并且在最终研磨中将破坏活化剂所在的晶格位置,从而导致发光效率降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、实验药品和仪器
主要药品
五氧化二钒(V2O5) 碳酸锂(Li2CO3) 水合氢氧化锂(LiOH· H2O) 氟化锂LiF
主要仪器
电子天平 管式炉 球磨机 电热真空干燥箱 粉末压片机 电话学工作站 SEM
磷酸二氢胺(NH4H2PO4)
石墨 葡萄糖(C6H12O6· H2 O) 蔗糖(C12H22O11) 乙炔黑 聚偏氯乙烯 氮甲基吡咯烷酮 锂片,铝箔,电解质
高温固相法制备锂离子电池正 极材料磷酸钒锂(Li3V2(PO4)3 )
一、磷酸钒锂研究ห้องสมุดไป่ตู้目的和意义
磷酸钒盐因具有环保、成本低廉、结构稳定、 安全性能优秀、电化学性能较好等特点, 成为了近 年来研究的热点。其中Li3V2(PO4)3 具有优秀的 性价比,被誉为是继金属硫化物和金属氧化物之后 的第三代锂离子电池正极材料将是非常有希望取 LiCoO2 的正极材料。 我国钒资源丰富、价格低廉 , 钒系化合物具有 很好的嵌锂性能,又无污染,作为电池正极材料具有 开发前途. 根据我国的钒资源情况和国情, 开展新 型锂离子电池正极材料 Li3V2(PO4)3 的研究和制 备具有重要的现实意义和长远意义。
第三阶段:对测得的数据及图像做进 一步的分析处理,得到所需参数,进 一步优化实验条件,选择出最佳的工 艺条件,并完成毕业论文。
八 、 参考文献
• [1]武俊萍,李宁,戴长松等.锂离子电池正极材料 Li3V2(PO4)3的合成及性能研究 哈尔滨工业大学工学硕士 学位论文2007 • [2]M.Y. Saı¨di,1, J. Barker1, H. Huang, J.L. Swoyer1, G. Adamson Performance characteristics of lithium vanadium phosphateas a cathode material for lithium-ion batteries Journal of Power Sources 119–121 (2003) 266–272 • [3]曹艳军,龙翔云,程云峰等.锂离子电池正极材料的研究现 状和展望 化工技术与开发2007,36(3):17-25 • [4]朱先军, 刘云霞, 耿良梅, 程龙兵等.锂离子电池正极材料 Li3V2(PO4)3的研究进展 电池2007,37(5):390-393 • [5]倪江锋,苏光耀,周恒辉,陈继涛 .锂离子电池正极材 料LiMPO4 的研究进展 化学进展2004,16(4):555-600
谢谢啊
Li3V2(PO4)3的合成方法先后出现了高温固 相法 , 碳热还原法,溶胶 - 凝胶法等。其中, 高温固相法操作简便,环境污染小,反应 效率高,但制备的材料粒径不均匀碳热还 原法由于是用C代替H2作还原剂,并且过量 的C可作为导电剂,明显提高正极活性物质 的电子导电性和电化学性能,因此这种方 法更有利于工业化生产。
三、本课题主要研究的内容
本课题采用碳热还原法,分别以Li2CO3、LiF、 LiOH·H2O为锂源,以石墨、葡萄糖、蔗糖和乙炔黑 为碳源 采用不同组合与磷酸二氢胺和五氧化二钒进 行反应,生成Li3V2(PO4)3。
锂源 碳源
石墨 Li2CO3 葡萄糖 LiF LiOH· H2O 蔗糖 乙炔黑 磷 酸 二 氢 胺 五 氧 化 二 钒 Li3V2(PO4)3
五、制备方法:
根据反应步骤的不同可分为一步加热法、 二步加热法和三步加热法 , 其中二步加热法 最常见,即将原料充分研磨,先经预热处理,之 后于惰性气氛中烧结为最终产品。一步加 热法省去了预热处理工序 , 而三步加热法在 预热处理工序后增加了烧结工序。
六、具体工艺流程
锂源 磷酸二氢胺 五氧化二钒 Li3V2(PO4) 3样品 冷却至室 温 管式炉, 氩气 加入过量 的碳,研 磨 混合研磨 管式炉, 氩气300℃ 冷却研磨
• [11]李宇展,任慢慢,吴青端,魏进平阎杰等.锂离子蓄电 池正极材料的研究进展 电源技术综述 2005,29(2): 124-127 [12]王海燕, 唐爱东, 黄可龙, 吴晓等.锂离子蓄电池正极材 料磷酸钒盐研究进展电源技术综述2007,31(4):337340 [13]应皆荣, 高剑, 姜长印, 李维, 唐昌平等.锂离子电池正极 材料LiV2(PO4)3的制备及性能研究无机材料学报2006, 21,(5):1097-1101 [14]侯春平,岳敏等.液相球化法合成新型正极材料磷酸钒 锂 物理化学学报2007, 23(12): 1954-1957 [15]李宇展,任慢慢等. 锂离子蓄电池钒系正极材料的研究 进展[J]. 电源技术,2005,29(2):124-126.
[6]郭孝东,钟本,唐艳,廖文华,吴德桥等.镁离子掺杂对锂离子 正极材料Li3V2(PO4)3 的影响 化学研究与应用 2008,20(5):625-627 [7]李宇展,任俊霞,周震,高学平,阎杰等.锂离子二次电 池正极材料LiVPO4F的制备及其电化学性能的研究 无机化 学学报2005,10(21):1598-1600 [8]刘素琴, 唐联兴, 黄可龙, 张静等.新型锂离子电池正极材料 Li3V2(PO4)3的合成及其性能 中国有色金属学报 2008,15(8):1294-1299 [9]刘素琴, 唐联兴, 黄可龙等.碳热还原法合成正极材料 Li3V2(PO4)3及其性能电源技术研究与设计2006.30(6): 473-476 [10]姜霖琳, 田彦文, 刘丽英等.碳热还原法制备锂离子电池正 极材料Li3V2(PO4)3的研究材料与冶金学报2006,5(2): 115-118
组装锂离子电池
性能测试
确定最优方案
七、进度安排(三步走)
第一阶段:搜集资料并仔细阅读研究, 加深对课题的认识,对课题的来源及 研究的目的和意义有一个大体的了解, 设计出具体的实验方案,制定详尽实 验计划,完成学士学位论文开题报告。
第二阶段:在老师的指导下进行实验, 制备磷酸钒锂材料,完成电极制备及 模拟电池的组装任务,并进行一系列 的测试,观察现象,记录原始数据, 并进行详细比较,完成中期报告。,.
二、研究现状
近年来,随着人们生活水平的不断提高和电子产 品等的不断发展,越来越多的方面用到锂离子电 池。其正极材料磷酸钒锂(Li3V2(PO4)3 )的研究 取得一定进展。目前,Li3V2(PO4)3的合成方法主 要是高温固相法,且以纯H2作为还原剂。由于传统 的高温固相法的局限性,很难得到纯度高、粒径小、 电性能好的样品,并且用纯H2作为还原剂不但成本 高,不适用于工业化批量生产,而且在实验操作时由 于H2的易燃易爆性质而非常危险。其他化学方法 合成Li3V2(PO4)3还未见报道。