线性代数逆矩阵
逆矩阵求解方式

逆矩阵求解方式简介在线性代数中,逆矩阵是一个非常重要的概念。
一个方阵A的逆矩阵记作A-1,满足A·A-1=I,其中I是单位矩阵。
求解逆矩阵的方法有多种,本文将介绍几种常用的方法。
具体方法1. 初等行变换法初等行变换法是一种常用的求解逆矩阵的方法。
具体步骤如下:1.将待求逆矩阵A和单位矩阵I合并成一个增广矩阵(A|I)。
2.对增广矩阵进行初等行变换,使得(A|I)变为(I|B)。
3.如果A存在逆矩阵,则B就是它的逆矩阵。
初等行变换包括以下三种操作:•交换两行:将第i行与第j行互换。
•数乘某一行:将第i行所有元素都乘以一个非零常数k。
•某一行加上另一行的k倍:将第j行所有元素都加上第i行对应元素的k倍。
通过多次进行这些操作,可以将增广矩阵变为单位矩阵,此时增广矩阵的右半部分就是原矩阵的逆矩阵。
2. 初等变换法初等变换法是一种与初等行变换法类似的方法。
具体步骤如下:1.将待求逆矩阵A和单位矩阵I合并成一个增广矩阵(A|I)。
2.对增广矩阵进行初等变换,使得(A|I)变为(I|B)。
3.如果A存在逆矩阵,则B就是它的逆矩阵。
初等变换包括以下三种操作:•交换两列:将第i列与第j列互换。
•数乘某一列:将第i列所有元素都乘以一个非零常数k。
•某一列加上另一列的k倍:将第j列所有元素都加上第i列对应元素的k倍。
通过多次进行这些操作,可以将增广矩阵变为单位矩阵,此时增广矩阵的左半部分就是原矩阵的逆矩阵。
3. 公式法对于一个二维方阵A,如果其行列式不为零,则可以通过公式求解其逆矩阵。
公式如下:A-1 = (1/|A|)·adj(A)其中,|A|表示A的行列式,adj(A)表示A的伴随矩阵。
伴随矩阵的计算方法如下:•对于A的每个元素aij,计算它的代数余子式Aij。
•将所有的代数余子式按照一定规律填入一个新的矩阵,这个新矩阵就是伴随矩阵adj(A)。
对于高维方阵来说,公式法求解逆矩阵会比较复杂,涉及到更多的行列式和代数余子式的计算。
线性代数PPT课件:矩阵 第3节 逆 矩 阵

2 A A 2 E O 证明 例5 设方阵 A 满足
A 及 A 2E 都可逆,并求
例6
A
1
及 ( A 2E ) .
1
设
4 2 3 A 1 1 0 , 1 2 3
AB A 2 B,
求 B.
例7 用逆矩阵求解线性方程组的解.
2 x1 x2 x3 4, x1 2 x3 4, 3x x 3x 2. 3 1 2
问题.
2.3.4 矩阵可逆的充要条件
定理2.3.1 如果 n 阶方阵A可逆,则它的
逆矩阵是唯一的.
由定理2.3.1知,如果 A 是可逆矩阵,则有
detA 0, 那么,反过来是否成立呢?为了回
答这个问题,先引入伴随矩阵的定义.
定义 2.3.2 n 阶方阵 A 的行列式 detA 的各
个元素的代数余子式 Aij 所构成的如下方阵
2.3.5 举例
例2 求二阶矩阵
a b A c d
的逆矩阵.
“两调一除 ”法
求二阶矩阵的逆矩阵可用 “两调一除 ”的方法 , 其方法是 : 先将矩阵 A 中的主对角线上的 元素调换位置 , 再将次对角线上的元素调换其符号 , 最后用 |A| 去除 A 的每一个元素 , 即可得 A 的逆矩
例1
设
3 1 1 1 A 2 1 , B 2 3 ,
验证 B 是否为 A 的逆矩阵.
2.3.3 可逆矩阵的性质
设 A, B, Ai (i = 1, 2, …, m) 为 n 阶可逆方阵,
k 为非零常数,则
A-1, kA, AB, A1A2…Am , AT 也都是可逆矩阵,且 (1) (A-1)-1 = A; (2)
《线性代数》逆矩阵

,
ann
x1
X
x2
,
xn
b1
b
b2
,
bn
当|A|≠0时,A-1存在, AX=b两边左乘A-1,得 X=A-1b
这就是线性方程组解的矩阵表达式.
例5. 利用逆矩阵求解方程组
2x1 x1
2 x2 x2
3x3
2 2
.
x1 2x2 x3 4
解: 将方程组写成矩阵形式 AX b
又因c0,故有 c1(aA2 bA)E, 即c1(aAbE )AE,
因此A可逆,且A1c1aAc1bE .
3. 可逆矩阵的性质
(1) 若A可逆,则A1也可逆,且(A1)1A.
(2) 若A可逆,数l0,则lA 可逆,且(lA )1l1A1.
(3) 若A、B为同阶可逆矩阵,则AB亦可逆,且(AB )1B 1A1. 因为 (AB)(B1A1) A(BB1)A1AEA1AA1 E
于是 B BE B(AB1) ( BA)B1 EB1 B1 .
1. 可逆矩阵的定义
定义1 对于n阶矩阵A,如果存在n阶矩阵B,使得 ABBAE,
那么矩阵A称为可逆矩阵,而B称为A的逆矩阵.
定理1 如果矩阵A可逆,则A的逆矩阵是唯一的.
A的逆矩阵记为A1 . 即若ABBAE ,则BA1 .
由于A,B位置对称,故A,B互逆,即BA1, AB1. 如
2、设A,B,C均n为阶方阵,且ABC=E,则( ).
①ACB=E; ②CBA=E ; ③BAC=E ; ④BCA=E .
解: 1. 由A2-A-2E=O,得
1 A(A E) E, 2
所以A-E可逆,正确选项为③ .
2. 由ABC=E, 可得BC为A的逆阵, 所以BCA=E,正确选项为④ .
线性代数3-2 逆矩阵

则矩阵 A1称为 A 的逆矩阵.
二、逆矩阵的概念与性质
第三章 矩阵的运算
定义3.2.1 设A是一个n 阶方阵,若存在n 阶方阵B, 使得 AB = BA = E 则称 A 可逆的,并称B 为 A 的逆矩阵.
例如
1 2 5 2
A 2 5 , B 2
2
2
A1 1 3E A
2
第三章 矩阵的运算
小结
1.逆矩阵概念 若AB=E,则 A1 B, B1 A.
2.伴随矩阵概念与性质定理
A1 1 A * A
3. 矩阵可逆的充要条件 A可逆 A 0
4.逆矩阵的性质 ( A1 )1 A ( AT )1 ( A1 )T
1
有AB = BA = E ,所以A 与 B 互为逆阵.
第三章 矩阵的运算
说明: 若A是可逆矩阵,则A的逆矩阵是唯一的.
证明:
记作 A-1
若设B和C是A的可逆矩阵,则有
AB BA E, AC CA E,
可得 B EB CAB CAB CE C.
所以A的逆矩阵是唯一的 , 记作 A-1
An1
只A 要aA21
a022,就有a2An (
1 AA* *)A(12 A
1 AA22* ) A A
EAn
2
an1
an2
ann
A1n
A2n
Ann
第三章 矩阵的运算
定理3.2.1(可逆的充分必要条件) n阶方阵A可逆 | A | 0,而且A1 1 A. | A|
大学线性代数:矩阵的逆

−1
例
⎛ 1 1 − 1⎞ ⎜ ⎟ 求 A = ⎜ 1 2 − 3 ⎟ 的逆矩阵. ⎜0 1 1 ⎟ ⎠ ⎝ 1 1 −1
解
| A |=
1 2 −3 0 1 1
= 3 ≠ 0.
1 −3 1+ 2 1+1 = −1, A = ( − 1 ) = 5 , A11= ( −1) 1 1 12 0 1 1 −1 1+ 3 1 2 2 +1 = 1, A13 = ( −1) A21= ( −1) 1 1 = −2, 0 1
⎞ ⎟ ⎟ ⎟. ⎟ L 1 / an ⎟ ⎠ L L L 0 0 L
试验证 A =
−1
0 ⎛ 1 / a1 ⎜ 1 / a2 ⎜ 0 ⎜ L L ⎜ ⎜ 0 0 ⎝
证Q
⎛ a1 0 ⎜ ⎜ 0 a2 ⎜L L ⎜ ⎜0 0 ⎝
L 0 ⎞⎛ 1 / a1 0 ⎟⎜ L 0 ⎟⎜ 0 1 / a2 L L ⎟⎜ L L ⎜ ⎟ ⎟ L a n ⎠⎜ 0 ⎝ 0
⎛ −2 1 ⎞ ⎟ ⎜ = ⎜ 10 − 4⎟. ⎜ − 10 4 ⎟ ⎝ ⎠
例 设A是n阶可逆矩阵,B是n × m矩阵,则矩阵方程 AX = B有惟一解。
−1 可 令 矩 阵 X = A B 解:由于A可逆,A 存在, 0
-1
则 AX 0 = A( A B) = ( AA )B =
设X 1也是方程的解,则 有 A X 1 = B
L 0 ⎞ ⎛1 0 L 0⎞ ⎟ ⎟ ⎜ L 0 ⎟ ⎜0 1 L 0⎟ =⎜ ⎟ L L L L L L⎟ ⎟ ⎜ ⎟ ⎟ ⎜ L 1 / an ⎠ ⎝ 0 0 L 1 ⎟ ⎠
线性代数-逆矩阵

=
6
2 0 0
0 4 0
0 1 0 −0 7 0
0 1 0
0 0 1
−1
=
6
1 0 0
0 3 0
0 −1
0 6
1 0 0−1 1 0 = 6 0 3 0 = 6 0 1 3
0 6 0 0 0 = 0 2 0.
0 0 6 0 0 1 6 0 0 1
1 0 0 0 0
0 2 0 0 0
证明 由A2 − A − 2E = 0,
A−1
得A(A − E ) = 2E ⇒ A A − E = E
2 ⇒ A A − E = 1 ⇒ A ≠ 0, 故A可逆.
2
∴ A−1 = 1 (A − E ).
2
又由A2 − A − 2E = 0
⇒ (A + 2E )(A − 3E ) + 4E = 0
1 5 − 11
123 1 2 3
解
A = 2 1 2= 0 −3 −4
133 0 1 0
12 3 = 0 − 3 − 4 = − 3 − 4 = 4≠ 0, 所以A可逆.
01 0 1 0
A11
=
1 3
2 = −3, 3
A12
=
−
2 1
2 = −4, 3
A13
=
2 1
1 = 5, 3
同理可求得 A21 = 3, A22 = 0, A23 = −1, A31 = 1, A32 = 4, A33 = −3.
1 1
−1 1
1 1 0X1
−1 1
1 4 0 = 0
2 −1
3 5
2 1 1 3 2 1 2 1 1
线性代数-逆矩阵

b 2 :
a m1
a m2
...
a mn
x n
b m
线性方程组 可记为AX=b.
A
Xb
对线性方程组AX=b, 若A为可逆方阵, 则方 程组有唯一解, 可得 X=A-1b.
例5 解线性方程组 解 写成矩阵形式
y 2z 1 x y 4z 1. 2x y 2
0 1 2 x 1 1 1 4 y 1. 2 1 0 z 2
练习 设方阵A满足A2–A–2E=0, 证明A, A+2E 都可逆, 并求其逆矩阵.
解: 由A2–A–2E=0A(A –E)=2E |A||A –E|0 A可逆, 且A-1= (A –E)/2.
由A可逆及A+2E=A2 A+2E可逆.
(A+2E)-1= (A –E)2/4或(3E –A)/4.
例4 设A为满秩方阵, 且AB=0. 证明: B=0.
证明 A是满秩矩阵即A是可逆矩阵, 这样
A-1(AB)=A-1•0=0.
另外 A-1(AB)=(A-1A)B=EB=B.
因此B=0.
在矩阵乘法之中我们知道若AB=0一般不能 得到A或B中至少有一个为零矩阵. 但当A, B 之中有一个为满秩方阵时, 由本例证明, 另 一个一定为零矩阵. 在以后的学习中我们还 会得到更一般的结论.
同理B-1 =A.
逆矩阵的性质
性质1 若A可逆,则A-1 可逆,且(A-1 )-1=A. 性质2 若A,B可逆, 则AB可逆,且(AB)-1=B-1 A-1. 性质3 若A可逆, 则 | A1 || A |1 1 .
| A| 性质4 若A可逆, 则(A-1)=(A)-1.
性质5 若A可逆, 数k0, 则 (kA)1 1 A1. k
线性代数-逆矩阵

可逆,由(2.3.3)式,
X (2E A)1 B (2E A) * B | 2E A |
1 3
0 3 0
2 2 1
11 2 2 1 1 3 0 3 3 1 0 3 1 1
2.3.2 正交矩阵 前面所讨论的矩阵都是在任意给定的
一个数域P上进行的,本段将介绍一种在实
其中
A
2
1
0 ,
X y ,
b 1.
,
1 1 0
z
1
由于
111
| A | 2 1 0 1 0,
110
从而A可逆,应用(2.3.5)式,有
x 1 1 1 1 2
y 2 1 0 1
z
1
1
0
1
0 1 1 2 2
0 1 2 1 3 ,
§2.3 逆矩阵 2.3.1 逆矩阵 上一节我们定义了矩阵的加法、减法
和乘法,那么对于矩阵是否也能定义除法 呢?回答是否定的.但是我们可以换个角度 去考虑这个问题.
在代数运算中,如果数a≠0,其倒数a-1 可由等式
a a 1 a 1 a 1
来刻画.在矩阵的乘法运算中,对于任意n阶 方阵A,都有
例2.3.2 设方阵A满足A2+3A-2E=O,证明 A+E可逆,并求(A+E)-1.
证 由A2+3A-2E=O,有
(A E)(A 2E) 4E O,
即 (A E)(A 2E) 4E,
于是
1
(A E)( (A 2E)) E.
,
4
, 根据定理2.3.2的推论,矩阵A+E可逆,且
( A E)1 1 ( A 2E) 4
例2.3.1 求方阵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、逆矩阵的概念
定义 7 设 A是 n 阶方阵,若存在 n 阶方
阵B,使得 AB=BA=E , ( 1) 则称矩阵 A 可逆,且称 B 是 A 的逆矩阵,记作 B=A-1. 如果不存在满足(1)的矩阵 B,则称矩阵 A 是不可逆的.
现在的问题是,矩阵 A 满足什么条件时可逆?
可逆矩阵的逆矩阵是否唯一,如何求逆矩阵? 可逆矩阵有什么性质?这是本节要讨论的问题.
( kA )
1
1 A 1 ; k
(AB)-1 = B-1A-1, (A1A2 · · ·Am)-1 = Am-1 · · ·A2-1A1-1 ;
(4) (AT)-1 = (A-1)T ;
1 (5) |A | |A| ;
1
(6) (Am)-1 = (A-1)m , m 为正整数.
证明
我们只证(3)和(4) 证明 我们只证(3)和(4)
|A| 0. 如果A 可逆,则
因而 例 9
1
定理2 n 阶矩阵 A 可逆的充要条件是 AB = BA = AB E, = BA AC == E, CA = AC E, = CA = E ,
其中A 为矩阵A 的伴随矩阵 11 .
证明 * 必要性 A12
* A A , (AC BA =ijBE = B B ( AC = BE ) = = ( BA B )C = )= EC (BA =) C C. = EC = C . 所构成的如下方阵 |A| 证毕 A A A
AXB=C.
解 由已知易得 X = A-1CB-1 , 1 2 2 1 0 1 1 0 , AP P , n P , n .. 求 A 例 13 设 P , , AP P , 求 A 下面求 A 和 B 的逆矩阵 . 单击这里可求逆 1 4 0 2 例 13 设
三、矩阵可逆的充要条件
矩阵是唯一的. 矩阵是唯一的. 矩阵是唯一的.
定理 1 定理 如果 n1 阶矩阵 如果 A n可逆,则它的逆 阶矩阵A可逆,则它的 定理 1 如果 n 阶矩阵 A 可逆,则它的逆
证明 设矩阵 证明 B与 设矩阵 C 都是 B与 A 的逆矩阵,则有 C 都是 A 的逆矩阵,
因而
等价的概念. 定理2不仅给出了矩阵可逆的充要条件,而 且给出了求矩阵逆矩阵的一种方法,称这种方法为 伴随矩阵法.
四、可逆矩阵的性质
设 A, B, Ai (i = 1, 2, · · ·, m) 为 n 阶可逆矩阵, k 为非零常数,则 A-1, kA, AB, A1A2 · · ·Am , AT 也都是可逆矩阵,且 (1) (A-1)-1 = A; (2) (3)
时绕原点旋转 角(逆时针为正,顺时针为负 ), 仿,有加法、减法、乘法三种运算 . 我们知道,复 设给定一个线性变换 数的乘法运算有逆运算,那么矩阵的乘法运算是否 就得到一个新的直角坐标系 (见图 2. 4). 平面上
y1 a11 x1 a12 x2 a1n xn , 也有逆运算呢? 如果有的话,这种运算如何定义, 任何一点 P 在两个坐标系中的坐标分别记为 y a x a x a x ,
行列式 |A| 的各个元素的代数余 1
若 可逆,则 AA An 2 22
21 n1
由
可得下述推论: 若 AB = E(或 BA = E),则
推论
B = A-1 .
||B|A =| E| 1, || B= | =|E|=1, 证明 |A证明
因而 A-1 存在,于是 因而 A-1 存在,于是
第三节
主要内容
引例
逆 矩 阵
举例
矩阵多项式 补充例题
逆矩阵的概念 矩阵可逆的充要条件 可逆矩阵的性质
一、引例
引例 1 矩阵与复数
引例 2 坐标旋转变换 复数可以用二维有序数组来表示,如复数 a+bi
可表示为 (a , b ),因此,从结构上看复数是矩阵的 引例 3 线性变换的逆变换 在平面直角坐标系 xOy 中,将两个坐标轴同 特殊情形 . 在第二节我们也看到,矩阵与复数相
-AB 1) = 1 1 (BB-1)A-1 1A1 (3) (AB )(B-1A( A ( BB )A (3) )( B ) =-A
= AEA-1 = AA-1 = E.
T -1 T
T - 1 -1 T
= AEA-1 = AA-1 = E.
T-1
T T
五、举例
a b 例 10 求二阶矩阵 A . c d 的逆矩阵 的逆矩阵 . 例 10 求二阶矩阵 解 矩阵 A 的行列式 | A | = ad – bc ,
1A 1 1 -1 1 1 B = EB A )B ( AB = A B = EB = ( A)B = =( A (A AB )= =A AE = )A .-1E = A-1 .
若 n 阶矩阵 A 的行列式不为零,即 |A| 0,
则称 A 为非奇异矩阵,否则称 A 为奇异矩阵. 说明,矩阵 A 可逆与矩阵A非奇素 , 即可得 A1 A* .
例 11 求方阵
1 A 2 3 2 2 4 3 1 3
的逆阵.
单击这里开始解答
矩阵的求逆模型
例 12 设
A 2 2 1 , B 0 0 1 3 1 4 3 A 1 0 0 , B 0 X 使其满足 0 求矩阵 0 0 1 1 2 3 1 3 例12 解矩阵方程 AXB = C ,其中 2 1 5 3 ,C 2 0 0 1 3 0 1 , C 2 1 1 0 0 . 4 3 1 0 1. 2 0
b d A . 求二阶矩阵的逆阵可用 “两调一除 ”的方法 . c a 其方法是 : 先将矩阵 A 中的主对角线上的 1 1 A* , 当 | A | 0 时,有 利用逆矩阵公式 A | A| 元素调换位置 , 再将次对角线上的元素调换其符号 ,
*
伴随矩阵 “两调一除”法