第十六章 二次根式单元测试题
(word完整版)第十六章 二次根式单元测试题

姓名: 班级: 学号: 成绩:一.选择题:(每小题3分,共15分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3 B.m <3 C .m≥3 D.m >32.以下运算错误的是( )A =B =C .2=D 2=3.下列二次根式中,最简二次根式是 ( )A .23aB .31 C .153 D .143 4.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x 。
A .2个 B .3个 C .4个 D .5个5、若A =)A 、23a +B 、22(3)a +C 、22(9)a +D 、29a +二、填空题:(每空2分,共22分)6。
当x 时,式子1+x 有意义,当x 时,式子422--x x 有意义;7。
已知:()022=+++y x x ,则=-xy x 2 ; 8. 化简:=24 ;=3a ;=322 ; 9。
比较大小:23-______32-;10。
若x x x x --=--3232成立,则x 满足_____________________; 11. ()=-231 ,()=-25334 ;12. 要切一块面积为64002cm 的正方形大理石地板砖,则它的边长要切成 ㎝; 三.解答题: 13. 3222233--+ 14。
222333---15.⋅-121).2218( 16。
(4(3-16.已知:32-=x ,32+=y ,求代数式22y x +的值;17.有这样一类题目:如果你能找到两个数m 、n,使22m n a +=并且mn =则将a ±变成()2222m n mn m n +±=±(22232212111+=++=++=+==+ 仿照上例化简下列各式:(1)347+ (2)42213-18。
19。
.883x 252的值式或为相反数,求二次根与已知y x y y x -----20。
人教版八年级下册数学第十六章《二次根式》测试卷有答案

八年级下册数学《二次根式》单元测试卷评卷人得分一、单选题1的值是一个整数,则正整数a 的最小值是()A .1B .2C .3D .52有意义的x 的取值范围是()A .x≠1B .x >1C .x≤1D .x≥13在实数范围内有意义,则x 的取值范围是()A .x≥1B .0<x≤1C .x >0D .0≤x≤14.在数轴上实数a ,b 的位置如图所示,化简的结果是()A .﹣2a ﹣bB .﹣2a+bC .﹣2bD .﹣2a5.当x <0时,化简|x|的结果是()A .-1B .1C .1-2xD .2x -16.下列根式中不是最简二次根式的是()AB C D .7()A .B .12a 2bC .aD .8=()A .x≥1B .x≥﹣1C .﹣1≤x≤1D .x≥1或x≤﹣1评卷人得分二、填空题9.若一个长方体的长为cm cm ,则它的体积为_____cm 3.10.当x=_____有最小值,其最小值是_____.11的整数部分为a,小数部分为b,则22ba b+的值等于________.12.如果整数x>﹣3,那么使函数y=有意义的x的值是(只填一个)13cm cm,则这个直角三角形的面积为______cm2.14.写出一个与_______.15.当a________0时,|a|=-2a.16____________.评卷人得分三、解答题17.已知:a、b、c是△ABC的三边长,化简(a+b+c)2-(b+c−a)2+(c−b−a)2. 18.计算:(2)(1+(1+2.19.计算:)-.2021.先阅读,后回答问题:x有意义?有意义需(1)x x-≥0,由乘法法则得:10xx⎧≥⎪⎨-≥⎪⎩或10xx⎧≤⎪⎨-≤⎪⎩,解之得:x≥1或x≤0,即当x≥1或x≤0时,有意义。
体会解题思想后,解答,x为何值是有意义?参考答案1.B【解析】【分析】根据二次根式的乘法法则计算得到a的最小值即可.【详解】∴正整数a是最小值是2.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.2.D【解析】【分析】根据被开方式大于且等于零列式求解即可.【详解】由题意得x-1≥0,∴x≥1.故选D.【点睛】)0a≥的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.3.B【解析】【分析】根据二次根式有意义的条件,可得结果.【详解】在实数范围内有意义,∴1-x≥0,x>0,∴0<x≤1,故选B.【点睛】本题考查了二次根式有意义的条件,注意x≠0是解题的关键.4.D观察数轴可知:000a b a b a b a b <∴+<-<,,,,∴=-(a+b )+(b-a)=-2a ,故选D.【点睛】本题考查了数轴以及绝对值、二次根式的化简等,正确地观察数轴得到a 、b 间的关系是解题的关键.5.C 【解析】【分析】解题.【详解】原式=|x|+=|x|+|x-1|∵x <0∴原式=-x+1-x =1-2x .故选C .【点睛】,再根据x 的范围去绝对值.6.C 【解析】【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或,故不是最简二次根式.故选C 7.D 【解析】【分析】原式利用二次根式乘法法则计算即可得到结果.【详解】原式,故选:D.【点睛】本题考查了二次根式的乘除法,熟练掌握二次根式乘法法则是解题的关键.8.A【解析】=成立,∴1010xx+≥⎧⎨-≥⎩,解得1x≥故选A.=成立的条件是:0a≥且0b≥. 9.12.【解析】解:由题意得:=12.故答案为12.10.-540【解析】【分析】根据二次根式的有意义的条件即可求出答案.【详解】=0,∴4x+5=0,∴x=-5 4.故答案为:-54,0.【点睛】本题考查了二次根式,解题的关键是正确理解二次根式有意义的条件.11.-12【解析】【分析】由于3<4,由此即可确定a 值,然后就可以确定b ,代入所求代数式即可求出结果.【详解】∵3<4,∴a=3,-3,∴22ba b +=2=.【点睛】本题考查了确定无理数的整数部分和小数部分,然后把确定的值代入分式计算即可解决问题12.0(答案不唯一)【解析】试题分析:根据题意可以求得使得二次根式有意义的x 满足的条件为π﹣2x≥0,即x≤,,又因为整数x >﹣3,从而可以写出一个符和要求的x 值即可.考点:二次根式有意义的条件.13 2.【解析】分析:分两边长都为直角边和cm cm 的边长为直角边两种情况求解即可.详解:(1)当两边长都为直角边时,该三角形面积为:12=2;(2cm cm 的边长为直角边时,根据勾股定理求得该三角形另一条直角边为cm ,所以该三角形的面积为122=cm 2.故答案为2cm 2cm 2.点睛:本题主要考查了勾股定理的应用,解决问题时运用分类讨论的数学思想. 14.(答案不唯一)【解析】【分析】与的积为有理数的无理数,则被开方数中含有因数3即可.如【详解】被开方数中含有因数3即可.如2(答案不唯一).【点睛】本题考查了实数的运算,掌握无理数的定义是解题的关键.15.≤【解析】【分析】根据二次根式的性质得出|a-(-a)|,绝对值的意义去绝对值符号即可求出答案.【详解】∵a≤0,∴|a|=|a-(-a)|=|2a|=-2a,故答案为≤.【点睛】本题考查了对绝对值,二次根式的性质等知识点的理解和掌握,能正确去绝对值符号是解题的关键.16【解析】【分析】直接利用二次根式乘法运算法则化简得出答案.【详解】.【点睛】此题主要考查了二次根式的乘法运算,正确掌握二次根式乘法运算法则是解题关键. 17.3a+b﹣c.【解析】试题分析:根据二次根式的性质可得:(++p2−+−2+−−2=|+ +U﹣|+﹣U+|﹣﹣U,根据三角形三边关系可得:a+b-c>0,b+c-a>0,c-b-a<0,然后化简绝对值.试题解析:∵a,b,c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|,=a+b+c﹣(b+c﹣a)+(b+a﹣c),=a+b+c﹣b﹣c+a+b+a﹣c,=3a+b﹣c.18.(1);(2)2+.【解析】【分析】(1)先利用二次根式的除法法则计算,再把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式化简合并即可.【详解】(1)原式=-=-+=;(2)原式=1-5+1+5=2+【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.19.+【解析】【分析】先化简,然后去括号合并同类二次根式即可.【详解】原式=(-(-=+【点睛】本题考查了二次根式的加减运算,应先把各个二次根式化成最简二次根式,然后再去括号合并同类二次根式即可.20.33-22.【解析】【分析】首先进行分母有理化和二次根式的化简运算,然后进行合并运算.【详解】22-233+=33-22.【点睛】本题考查了二次根式的加减运算,要注意运算的技巧和先后顺序.21.2x ≥或12x <-.【解析】试题分析:根据题目信息,列出不等式组求解即可得到x 的取值范围.试题解析:要使有意义需2021x x -≥+,由乘法法则得⎩⎨⎧>+≥-01202x x 或⎩⎨⎧<+≤-01202x x ,解之得:第11页2x ≥或12x <-,即当2x ≥或12x <-时,有意义.考点:1.二次根式有意义的条件;2.阅读型.。
八年级数学下册《第十六章 二次根式》单元测试题含答案(人教版)

八年级数学下册《第十六章二次根式》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式是二次根式的是()A.√2B.√n C.√−16D.√2732.下列x的取值中,可以使√7−x有意义的是()A.0 B.16 C.20 D.20233.在下列二次根式中,是最简二次根式的是()A.√4B.√0.8C.√2D.√154.若√(b−3)2=3−b,则()A.b>3B.b<3C.b≥3D.b≤35.下列计算正确的是()A.3√5−√5=3B.√2×√3=√6C.√2+√3=√5D.√12÷√3=4 6.√50·√a的值是一个整数,则正整数a的最小值是()A.1 B.2 C.3 D.57.下列计算正确的是()A.√(−1)2=±1B.√27÷√3=9C.√14√6=√213D.13√18−3√89=√28.如图,从一个大正方形中裁去两个小正方形,则留下部分的面积为()A.11cm2B.4√6cm2C.2√6cm2D.√11cm2二、填空题9.计算√84÷√21的结果是.10.若式子√2−x在实数范围内有意义,则x的取值范围是.11.√3+√27=.12.已知xy<0,化简二次根式x√−yx2的正确结果为.13.已知√a−3+√2−b=0,则√a √6√b=.三、解答题14.计算:(1)√27+3√13−√24×√2(2)(√5−2)(2+√5)−(√3−1)215.已知a=2+√5,b=2-√5,求a2+b2+ab的值.16.若矩形的面积是(6+2√6)cm²,一边长是√6cm,求它的周长.17.在解决问题“已知a=√2−1,求3a2﹣6a﹣1的值”时,小明是这样解答的:∵a=√2−1=√2+1(√2+1)(√2−1)=√2+1∴a﹣1=√2∴(a﹣1)2=2,即a2﹣2a+1=2∴a2﹣2a=1∴3a2﹣6a=3∴3a2﹣6a﹣1=2.请你根据小明的解答过程,解决下面的问题:若a=3−√7,求2a2﹣12a+1的值.18.已知二次根式√x+2.(1)求使得该二次根式有意义的x的取值范围;(2)已知√x+2是最简二次根式,且与√52可以合并.①求x的值;②求√x+2与√52的乘积.参考答案1.A2.A3.D4.D5.B6.B7.C8.B9.210.x≤211.4√312.√−y13.4√3314.(1)解:原式=3√3+√3−2√6×√2=4√3−4√3=0(2)解:原式=(√5)2−22−4+2√3=−3+2√3 15.解:∵a=2+√5,b=2-√5∴a-b=2+√5-2+√5=2√5ab=(2+√5)×(2-√5)=22-(√5)2=-1∴a2+b2+ab=(a-b)2+3ab=(2√5)2+3×(-1)=17.16.解:∵矩形的面积是(6+2√6)cm2,一边长是√6cm ∴另一边长为:(6+2√6)÷√6=(√6+2)cm∴矩形的周长为:2×(√6+2)+2√6=(4√6+4)cm.=3+√717.解:a=3−√7∴a−3=√7∴ 2a2﹣12a+1=2(a-3)2-17=2×(√7)2-17=14-17=-3.18.(1)解:∵二次根式√x+2有意义∴x+2≥0解得x≥−2;(2)解:①√52=√102∵√x+2与√102能合并,并且√x+2是最简二次根式∴x+2=10解得x=8;②由①可得√x+2×√52=√10×√102=5.。
人教版初中数学八年级下册《第十六章 二次根式》单元测试题(含答案

《第十六章二次根式》单元测试题一、选择题(本大题共10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一项符合题意)1.要使代数式x +1x -1有意义,则x 的取值范围是( ) A .x ≥-1且x ≠1 B .x ≠1C .x >-1且x ≠1 D .x ≥-1 2.下列各等式成立的是( )A .(-3)2=-3 B.2-2=-2C .(5 3)2=15 D.(-3)2=33.下列运算正确的是( )A.2+3=6B.3×2=6C.()3-12=3-1 D.52-32=5-3 4.计算412+3 13-8的结果是( ) A.3+2B.3C.33D.3- 2 5.若a =2 2+3,b =2 2-3,则下列等式成立的是( ) A .ab =1 B .ab =-1C .a =b D .a =-b6.已知k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n7.实数a ,b 在数轴上对应点的位置如图1所示,且|a |>|b |,则化简a 2-|a +b |的结果为( )图1A .2a +bB .-2a +bC .2a -bD .b 8.若y =x -2+2-x3-3,则(x +y )x 的值为( )A .2B .-3C .7-4 3D .7+4 39.一个等腰三角形两边的长分别为75和18,则这个三角形的周长为( ) A .10 3+3 2B .5 3+6 2C .10 3+3 2或5 3+6 2D .无法确定10.按图2所示的程序计算,若开始输入的x 值为2,则最后输出的结果是( )图2A .14B .16C .8+5 2D .14+ 2二、填空题(本大题共7小题,每小题3分,共21分)11.若最简二次根式a 与-32a -5能够合并,则a =________. 12.若整数x 满足|x |≤3,则使7-x 为整数的x 的值为________. 13.计算:8-2(3-2)0+⎝⎛⎭⎫12-1=_________.14.当a =15时,代数式2a -3-5a +7a +3的值为________. 15.计算:(54-1496)÷27=________.16.已知x =3+1,y =3-1,则x 2+2xy +y 2=________. 17.若a =2+1,则a 3-5a +2019=________. 三、解答题(本大题共5小题,共49分) 18.(9分)计算: (1)20+55-13×12; (2)512÷1550×1532;(3)(3 2-1)(1+3 2)-(3 2-1)2.19.(8分)已知a =2-2,b =2+2,求a 3b +a 2b 2a 2+2ab +b 2÷a 2-aba 2-b 2的值.20.(10分)已知x =7+4 3,y =-7+4 3,求下列各式的值. (1)1x +1y ;(2)x y +y x .21.(10分)若无理数A 的整数部分是a ,则它的小数部分可表示为A -a .例如:π的整数部分是3,因此其小数部分可表示为π-3.若x 表示47的整数部分,y 表示它的小数部分,求代数式(47+x )y 的值.22.(12分)一个三角形三边的长分别为a ,b ,c ,设p =12(a +b +c ),根据海伦公式S =p (p -a )(p -b )(p -c )可以求出这个三角形的面积.若a =2,b =3,c =2 2,求: (1)三角形的面积S ; (2)长为c 的边上的高h .详解详析1.[解析] A 要使代数式有意义,应满足⎩⎪⎨⎪⎧x +1≥0,x -1≠0,解得x ≥-1且x ≠1.2.[解析] D 选项A 的被开方数为负数,无意义;2-2=122=⎝⎛⎭⎫122=12;()5 32=52×()32=25×3=75;()-32=|-3|=3.3.[解析] B A 项,2+3已是最简形式,不能再合并,故错误; B 项,3×2=6,故正确;C 项,()3-12=(3)2-2×3×1+1=3-2 3+1=4-2 3,故错误; D 项,52-32=16=42=4,故错误.故选B. 4.[解析] B 412+3 13-8=4×22+3×33-2 2= 3. 5.[解析] B ab =(2 2+3)(2 2-3)=(2 2)2-32=8-9=-1. 故选B. 6.[解析] D135=k 15=15×9=3 15,所以k =3;450=15m =15×15×2=15 2,所以m =2;180=6n =36×5=6 5,所以n =5.所以m <k <n .7.[答案] D8.[解析] C 由二次根式有意义的条件,得⎩⎪⎨⎪⎧x -2≥0,2-x ≥0,解得x =2.于是y =- 3.所以(x+y )x =(2-3)2=7-4 3.故选C.9.[解析] A 因为75=5 3,18=3 2.当5 3为腰长时,三角形的周长为10 3+3 2;当5 3为底边长时,因为3 2+3 2=6 2=72,5 3=75,72<75,所以不能构成三角形,故三角形的周长为10 3+3 2.10.[解析] C 将2代入x (x +1)运算:2(2+1)=2+ 2.∵2+2<15,∴将2+2再次代入x (x +1)运算:(2+2)(2+2+1)=(2+2)(3+2)=8+5 2.∵8+5 2>15,∴将8+5 2输出.故选C.11.[答案] 5[解析] 由题意,知a 与-3 2a -5的被开方数相同,所以a =2a -5,解得a =5.12.[答案] -2或3[解析] 当x 取-2或3时,原式的值为整数,分别等于3或2. 13.[答案] 2+2[解析] 先把零指数幂和负整数指数幂按公式a 0=1(a ≠0),a -p =1a p (a ≠0)化简,8-2(3-2)0+⎝⎛⎭⎫12-1=2 2-2+2=2+2.14.[答案] 4 3[解析] 将a =15代入代数式得27-75+108,化简结果为4 3. 15.[答案]2 23[解析] 原式=(3 6-14×4 6)÷3 3=2 6÷3 3=2 23.16.[答案] 12[解析] 由x =3+1,y =3-1,得x +y =2 3,∴x 2+2xy +y 2=(x +y )2=(2 3)2=4×3=12.17.[答案] 2021[解析] ∵a 2=(2+1)2=3+2 2,∴原式=a (a 2-5)+2019=(2+1)(3+2 2-5)+2019=2(2+1)(2-1)+2019=2+2019=2021.18.解:(1)原式=2 5+55-33×2 3=3-2 =1.(2)原式=⎝⎛⎭⎫5×5×1512×150×32=5 36100=3.(3)方法一:原式=(3 2)2-12-[(3 2)2-2×3 2+12] =(3 2)2-1-(3 2)2+6 2-1 =6 2-2.方法二:原式=(3 2-1)[(1+3 2)-(3 2-1)] =(3 2-1)×2 =6 2-2.19.解:a 3b +a 2b 2a 2+2ab +b 2÷a 2-ab a 2-b 2=a 2b (a +b )(a +b )2·(a +b )(a -b )a (a -b )=ab ,当a =2-2,b =2+2时, 原式=(2-2)(2+2)=2.20.解:∵x =7+4 3,y =-7+4 3, ∴x +y =(7+4 3)+(-7+4 3) =7+4 3-7+4 3=8 3, xy =(7+4 3)(-7+4 3) =(4 3)2-72=48-49=-1. (1)1x +1y =x +y xy =8 3-1=-8 3. (2)x y +y x =x 2+y 2xy =(x +y )2-2xy xy=(8 3)2-2×(-1)-1=-194.21.[解析] 解决该问题的关键在于确定出47的整数部分,然后再表示出它的小数部分,最后代入代数式求值.解:∵6<47<7, ∴47的整数部分为6, 即x =6,则47的小数部分y =47-6,∴(47+x )y =(47+6)(47-6)=(47)2-62=47-36=11. 22.解:(1)p =12(2+3+2 2)=32(2+1),p -a =3+22,p -b =32(2-1),p -c =3-22,S =p (p -a )(p -b )(p -c )=32(2+1)×3+22×32(2-1)×3-22=347.(2)∵S =12ch ,∴h =2S c =327÷2 2=3814.。
人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)

人教版八年级数学下册《第十六章二次根式》单元检测题(附带答案)总分150分时间120分钟一、选择题(本大题共10小题每小题3分共30分)1.下列的式子一定是二次根式的是()A.√−x−2B.√x C.√x2+2D.√x2−2思路引领:根据二次根式的被开方数是非负数对每个选项做判断即可.解:A、当x=0时﹣x﹣2<0 √−x−2无意义故本选项错误;B、当x=﹣1时√x无意义;故本选项错误;C、∵x2+2≥2 ∴√x2+2符合二次根式的定义;故本选项正确;D、当x=±1时x2﹣2=﹣1<0 √x2−2无意义;故本选项错误;故选:C.总结提升:本题考查了二次根式的定义.一般形如√a(a≥0)的代数式叫做二次根式.当a≥0时√a表示a的算术平方根.2.若√48n是正整数最小的正整数n是()A.6B.3C.48D.2思路引领:先将所给二次根式化为最简二次根式然后再判断n的最小正整数值.解:√48n=4√3n由于√48n是正整数所以n的最小正整数值是3故选:B.总结提升:此题考查二次根式的定义解答此题的关键是能够正确的对二次根式进行化简.3.如果√x(x−6)=√x⋅√x−6那么()A.x≥0B.x≥6C.0≤x≤6D.x为一切实数思路引领:根据二次根式的性质√ab=√a×√b(a≥0 b≥0)得出x≥0且x﹣6≥0 求出组成的不等式组的解集即可.解:∵√x(x−6)=√x⋅√x−6∴x≥0且x﹣6≥0∴x≥6故选:B.总结提升:本题考查了二次根式的乘除法的应用注意:要使√ab=√a×√b成立必须a≥0 b≥0.4.若式子√m+1|m−3|有意义 则实数m 的取值范围是( ) A .m ≥﹣1 B .m >﹣1 C .m >﹣1且m ≠3 D .m ≥﹣1且m ≠3思路引领:根据二次根式有意义的条件和分式有意义的条件列出不等式组 通过解不等式组即可求出答案.解:依题意得:{m +1≥0m −3≠0. 解得 m ≥﹣1且m ≠3.故选:D .总结提升:本题考查二次根式有意义的条件 分式有意义的条件 解题的关键是熟练运用二次根式的条件 本题属于基础题型.5.若x ﹣y =√2−1 xy =√2 则代数式(x ﹣1)(y +1)的值等于( )A .2√2+2B .2√2−2C .2√2D .2思路引领:将所求代数式展开 然后将(x ﹣y )和xy 的值整体代入求解.解:原式=(x ﹣1)(y +1)=xy +x ﹣y ﹣1=√2+√2−1﹣1=2√2−2;故选:B .总结提升:此题主要考查了整体代入在代数求值中的应用.6.实数a 、b 在数轴上的位置如图所示 且|a |>|b | 则化简√a 2−|a +b|的结果为( )A .2a +bB .﹣2a +bC .bD .2a ﹣b思路引领:现根据数轴可知a <0 b >0 而|a |>|b | 那么可知a +b <0 再结合二次根式的性质、绝对值的计算进行化简计算即可.解:根据数轴可知 a <0 b >0:|a |>|b |则a +b <0原式=﹣a ﹣[﹣(a +b )]=﹣a +a +b =b .故选:C .总结提升:本题考查了二次根式的化简和性质、实数与数轴 解题的关键是注意开方结果是非负数、以及绝对值结果的非负性.7.下列各数中与2+√3的积是有理数的是( )A .2+√3B .2C .√3D .2−√3思路引领:利用平方差公式可知与2+√3的积是有理数的为2−√3.解:(2+√3)(2−√3)=4﹣3=1;故选:D.总结提升:本题考查二次根式的混合运算;熟练掌握运算规律是解题的关键.8.如图正方形ABCD被分成两个小正方形和两个长方形如果两小正方形的面积分别是2和5 那么两个长方形的面积和为()A.√7B.2√10C.7D.√10思路引领:先根据两个小正方形的面积求出两个小正方形的边长从而可求大正方形的边长可得大正方形的面积再用大正方形的面积减去两个小正方形的面积即可得出两个长方形的面积和.解:∵两小正方形的面积分别是2和5∴两小正方形的边长分别是√2和√5∴大正方形的边长为(√2+√5)则大正方形的面积为(√2+√5)2=2+2√10+5=7+2√10∴两个长方形的面积和为7+2√10−2﹣5=2√10.故选:B.总结提升:本题考查完全平方公式以及二次根式解题时注意运用数形结合的思想.9.下列各式是最简二次根式的是()A.√13B.√12C.√a3(a≥0)D.√5 3思路引领:根据最简二次根式的定义判断即可.解:A、√13是最简二次根式故A符合题意;B、√12=2√3不是最简二次根式故B不符合题意;C、√a3=a√a(a≥0)不是最简二次根式故C不符合题意;D、√53=√153不是最简二次根式故D不符合题意;故选:A.总结提升:本题考查了最简二次根式熟练掌握最简二次根式的定义是解题的关键.10.若等腰三角形的两边长分别为√32和√50则这个三角形的周长为()A.9√2B.8√2或10√2C.13√2或14√2D.14√2思路引领:分腰长为√32和√50两种情况可求得三角形的三边再利用三角形的三边关系进行验证可求得其周长.解:当腰长为√32时则三角形的三边长分别为√32√32√50满足三角形的三边关系此时周长为13√2;当腰长为√50时则三角形的三边长分别为√32√50√50满足三角形的三边关系此时周长为14√2.综上可知三角形的周长为13√2或14√2.故选:C.总结提升:本题主要考查等腰三角形的性质掌握等腰三角形的两腰相等是解题的关键注意利用三角形的三边关系进行验证.二、填空题(本大题共8小题第11~12题每题3分第13~18题每题4分共30分.)11.比较大小:3√2>√17.(选填“>”、“=”或“<”)思路引领:求出3√2=√18再比较即可.解:3√2=√18>√17故答案为:>.总结提升:本题考查了实数的大小比较能选择适当的方法比较两个数的大小是解此题的关键.12.化简√(π−3)2=.思路引领:根据二次根式的性质解答.解:∵π>3∴π﹣3>0;∴√(π−3)2=π﹣3.总结提升:解答此题要弄清性质:√a2=|a| 去绝对值的法则.13.按如图所示的程序计算若开始输入的n值为√2则最后输出的结果是.思路引领:将n=√2代入n(n+1)比较>15还是≤15 若>15输出结果;若≤15 再输入直到结果大于15是输出结果即可.解:将n =√2代入n (n +1)得√2(√2+1)=2+√2<15∴将n =2+√2代入n (n +1)得(2+√2)(3+√2)=6+5√2+2=8+5√2>15故答案为8+5√2.总结提升:本题考查了实数的运算 找出运算的公式是解题的关键.14.已知a 、b 满足√(2−a)2=a +3,且√a −b +1=a ﹣b +1 则ab 的值为 .思路引领:直接利用二次根式性质进而分析得出a b 的值 进而得出答案.解:∵√(2−a)2=a +3若a ≥2 则a ﹣2=a +3 不成立故a <2∴2﹣a =a +3∴a =−12∵√a −b +1=a ﹣b +1∴a ﹣b +1=1或0∴b =−12或12 ∴ab =±14. 故答案为:±14. 总结提升:此题主要考查了二次根式的性质与化简 正确得出a 的值是解题关键.15.若x =√5−3 则√x 2+6x +5的值为 .思路引领:先将被开方数分解因式 再把x 代入二次根式 运用平方差公式进行计算.解:∵x =√5−3∴√x 2+6x +5=√(x +1)(x +5)=√(√5−2)(√5+2)=√1=1.总结提升:主要考查了二次根式的化简和因式分解以及平方差公式的运用.注意最简二次根式的条件是:①被开方数的因数是整数 因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备的二次根式叫最简二次根式.16.若√11−x +√6−x =7 则√11−x −√6−x 的值是 .思路引领:先变形得到√6−x =7−√11−x 两边平方后得到√11−x =277 则√6−x =227 然后计算√11−x −√6−x .解:∵√11−x +√6−x =7∴√6−x =7−√11−x两边平方得6﹣x =49﹣14√11−x +11﹣x∴√11−x =277∴√6−x =7−277=227∴√11−x −√6−x =277−227=57.故答案为:57. 总结提升:本题考查了二次根式的化简求值 利用整体的数学思想解决问题.17.对于实数p q 我们用符号min {p q }表示p q 两数中较小的数.例如:min {1 2}=1.因此 min {−√2,−√3}= −√3 ;若min {(x ﹣1)2 x 2}=1 则x = ﹣1或2 .思路引领:通过比较−√2与−√3的大小填空;通过先比较(x ﹣1)2与x 2的大小 然后根据新定义运算法则得到方程并解答.解:∵−√3<−√2∴min {−√2 −√3}=−√3;∵min {(x ﹣1)2 x 2}=1∵(x ﹣1)2﹣x 2=x 2﹣2x +1﹣x 2=1﹣2x∴当x <12时 则x 2=1∴x =﹣1或1(舍)当x >12时 则(x ﹣1)2=1解得:x =2或0(舍)综上所述:x 的值为﹣1或2.故答案为:−√3;﹣1或2.总结提升:此题主要考查了实数的比较大小新定义关键是正确理解题意和分情况讨论.18.小明做数学题时发现√1−12=√12;√2−25=2√25;√3−310=3√310;√4−417=4√417;…;按此规律若√a−8b=a√8b(a b为正整数)则a+b=73.思路引领:找出一系列等式的规律为√n−nn2+1=n√nn2+1(n≥1的正整数)令n=8求出a与b的值即可确定出a+b的值.解:根据题中的规律得:a=8 b=82+1=65则a+b=8+65=73.故答案为:73.总结提升:此题考查了二次根式的性质及化简找出题中的规律是解本题的关键.三、解答题(本大题共8小题共90分请在答题卡指定区域内作答解答时应写出文字说明、证明过程或演算步骤)19.(20分)计算:(1)2√8+13√18−34√32;(2)(−12)﹣1−√12+(1−√2)0﹣|√3−2|;(3)√48÷√3−√12×√12+√24;(4)(3+√5)(3−√5)﹣(√3−1)2.思路引领:(1)先把二次根式化为最简二次根式然后合并即可;(2)利用负整数指数幂、零指数幂和绝对值的意义计算;(3)利用二次根式的乘除法则运算;(4)利用平方差公式和完全平方公式计算.解:(1)原式=4√2+13×3√2−34×4√2=4√2+√2−3√2=2√2;(2)原式=﹣2﹣2√3+1﹣(2−√3)=﹣2﹣2√3+1﹣2+√3=﹣3−√3;(3)原式=√16−√6+2√6=4−√6+2√6=4+√6;(4)原式=32﹣(√5)2﹣(3﹣2√3+1)=9﹣5﹣(4﹣2√3)=4﹣4+2√3=2√3.总结提升:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可.在二次根式的混合运算中如能结合题目特点灵活运用二次根式的性质选择恰当的解题途径往往能事半功倍.20.(10分)(1)已知y=√2x−1−√1−2x+8x求√4x+5y−6的平方根;(2)当﹣4<x<1时化简√x2+8x+16−2√x2−2x+1.思路引领:(1)根据二次根式有意义的条件求出x的值进而得到y的值代入代数式求出代数式的值最后求平方根即可;(2)根据完全平方公式对原式进行变形根据二次根式的性质化简即可.解:(1)∵2x﹣1≥0 1﹣2x≥0∴2x﹣1=0解得x=1 2∴y=4∴原式=√4×12+5×4−6=4∴4的平方根是±2;故原式的平方根是±2;(2)∵﹣4<x<1∴原式=√(x+4)2−2√(x−1)2=|x+4|﹣2|x﹣1|=x+4+2(x﹣1)=x+4+2x﹣2=3x+2.总结提升:本题考查了二次根式有意义的条件平方根掌握二次根式有意义的条件:被开方数是非负数是解题的关键.21.(10分)已知x=1√5−2y=1√5+2.(1)求x2+xy+y2.(2)若x的小数部分为a y的整数部分为b求ax+by的平方根.思路引领:(1)先分母有理化求出x、y的值再求出x+y和xy的值最后根据完全平方公式进行变形代入求出即可;(2)先求出x、y的范围再求出a、b的值最后代入求出即可.解:(1)x=√5−2=√5+2)(√5−2)×(√5+2)=√5+2 y=√5+2=√5−2x+y=(√5+2)+(√5−2)=2√5xy=(√5+2)×(√5−2)=5﹣4=1x2+xy+y2=(x+y)2﹣xy=(2√5)2﹣1=19;(2)∵2<√5<3∴4<√5+2<5 0<√5−2<1∴a=√5+2﹣4=√5−2 b=0∴ax+by=(√5−2)(√5+2)+(√5−2)×0=5﹣4=1∴ax+by的平方根是±√1=±1.总结提升:本题考查了完全平方公式、分母有理化、估算无理数的大小、平方根等知识点能求出x+y和xy的值是解(1)的关键能估算出x、y的范围是解(2)的关键.22.(12分)观察、思考、解答:(√2−1)2=(√2)2﹣2×1×√2+12=2﹣2√2+1=3﹣2√2反之3﹣2√2=2﹣2√2+1=(√2−1)2∴3﹣2√2=(√2−1)2∴√3−2√2=√2−1(1)仿上例化简:√6−2√5;(2)若√a+2√b=√m+√n则m、n与a、b的关系是什么?并说明理由;(3)已知x=√4−√12求(1x−2+1x+2)•x2−42(x−1)的值(结果保留根号)思路引领:(1)根据题目中的例题可以解答本题;(2)根据题目中的例题可以将√a+2√b=√m+√n变形从而可以得到m、n、a、b的关系;(3)先化简x然后再化简所求的式子再将x的值代入即可解答本题.解:(1)√6−2√5=√5−2√5+1=√(√5−1)2=√5−1;(2)a=m+n b=mn理由:∵√a+2√b=√m+√n∴a+2√b=m+2√mn+n∴a=m+n b=mn;(3)∵x=√4−√12=√3−2√3+1=√(√3−1)2=√3−1∴(1x−2+1x+2)•x2−42(x−1)=x+2+x−2 (x−2)(x+2)⋅(x−2)(x+2)2(x−1)=2x(x−2)(x+2)⋅(x−2)(x+2)2(x−1)=x x−1=√3−1√3−1−1=√3−1√3−2=(√3−1)(√3+2)(√3−2)(√3+2)=﹣1−√3.总结提升:本题考查二次根式的化简求值、分式的混合运算解答本题的关键是明确题意利用题目中的例题解答问题.23.(8分)小莉在如图所示的矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片请你帮她求出图中空白部分的面积.思路引领:根据正方形的面积求出两个正方形的边长 从而求出AB 、BC 再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.解:∵两张正方形纸片的面积分别为16cm 2和12cm 2∴它们的边长分别为√16=4cm √12=2√3cm∴AB =4cm BC =(2√3+4)cm∴空白部分的面积=(2√3+4)×4﹣12﹣16=8√3+16﹣12﹣16=(﹣12+8√3)cm 2.总结提升:本题考查了二次根式的应用 解题的关键在于根据正方形的面积求出两个正方形的边长.24.(10分)一个三角形的三边长分别为5√x 5 12√20x 54x √45x. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 值 使它的周长为整数 并求出此时三角形周长的值.思路引领:(1)根据题目中的数据可以求得该三角形的周长;(2)根据(1)中的结果 选择一个符合题意的x 的值即可解答本题.解:(1)∵一个三角形的三边长分别为5√x 512√20x 54x √45x ∴这个三角形的周长是:5√x 5+12√20x +54x √45x=√5x +√5x +√5x 2=5√5x 2; (2)当x =20时 这个三角形的周长是:5√5x 2=5×√5×202=25. 总结提升:本题考查二次根式的性质与化简 解答本题的关键是明确二次根式的意义.25.(10分)阅读理解题:学习了二次根式后你会发现一些含有根号的式子可以写成另一个式子的平方如3+2√2=(1+√2)2我们来进行以下的探索:设a+b√2=(m+n√2)2(其中a b m n都是正整数)则有a+b√2=m2+2n2+2mn√2∴a=m+2n2b=2mn 这样就得出了把类似a+b√2的式子化为平方式的方法.请仿照上述方法探索并解决下列问题:(1)当a b m n都为正整数时若a﹣b√5=(m﹣n√5)2用含m n的式子分别表示a b得a=b =;(2)利用上述方法找一组正整数a b m n填空:﹣√5=(﹣√5)2(3)a﹣4√5=(m﹣n√5)2且a m n都为正整数求a的值.思路引领:(1)利用完全平方公式把(m﹣n√5)2展开即可得到用含m n的式子分别表示出a b;(2)利用(1)中的表达式令m=2 n=1 则可计算出对应的a和b的值;(3)利用(1)的结果得到2mn=4 则mn=2 再利用m n都为正整数得到m=2 n=1或m=1 n=2 然后计算对应的a的值即可.解:(1)∵a﹣b√5=(m﹣n√5)2∴a﹣b√5=m2﹣2√5mn+5n2∴a=m2+5n2b=2mn;(2)取m=2 n=1则a=4+5=9 b=4;(3)∵2mn=4∴mn=2而m n都为正整数∴m=2 n=1或m=1 n=2当m=2 n=1时a=9;当m=1 n=2时a=21.即a的值为9或21.故答案为m2+5n2 2mn;9 4 2 1.总结提升:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后进行二次根式的乘除运算再合并即可.在二次根式的混合运算中如能结合题目特点灵活运用二次根式的性质选择恰当的解题途径往往能事半功倍.26.(10分)阅读下列解题过程:√2+1=√2−1)(√2+1)×(√2−1)=√2−1(√2)2−12=√2−1;√3+√2=√3−√2)(√3+√2)(√3−√2)=√3−√2(√3)2−(√2)2=√3−√2.请回答下列问题:(1)归纳:观察上面的解题过程请直接写出下列各式的结果.①√7+√6=√7−√6;②√n+√n−1=√n−√n−1;(2)应用:求√2+1+√3+√2+√4+√3+√5+√4+⋯+√10+√9的值;(3)拓广:√3−1−√5−√3+√7−√5−√9−√7=﹣1.思路引领:(1)①直接利用找出分母有理化因式进而化简求出答案;②直接利用找出分母有理化因式进而化简求出答案;(2)直接利用找出分母有理化因式进而化简求出答案;(3)直接利用找出分母有理化因式进而化简求出答案.解:(1)①√7+√6=√7−√6)(√7+√6)(√7−√6)=√7−√6;②√n+√n−1=√n−√n−1)(√n+√n−1)(√n−√n−1)=√n−√n−1;故答案为:√7−√6;√n−√n−1;(2)√2+1+√3+√2+√4+√3+√5+√4+⋯+√10+√9=√2−1+√3−√2+√4−√3+⋯+√10−√9 =√10−1;(3)√3−1−√5−√3+√7−√5−√9−√7=√3+1 (√3−1)(√3+1)√5+√3(√5−√3)(√5+√3)√7+√5(√7−√5)(√7+√5)√9+√7(√9−√7)(√9+√7)=√3+12−√5+√32+√7+√52−√9+√72=√3+1−√5−√3+√7+√5−√9−√72=﹣1.故答案为:﹣1.总结提升:此题主要考查了分母有理化正确找出分母有理化因式是解题关键.。
(完整版)第十六章二次根式测试题

…○…………○…………内…………○…………装…………○…………订…………○…………线…………○…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………学校: 班级: 考号 姓名:第十六章二次根式测试题一、选择题(每题3分,共30分) 1.下列各式成立的是( )A.222-=-)(B.552-=-)( C.x =2x D.662=-)(2.如果a 是任意数,下列各式中一定有意义的是( ) A.a B.2a1C.12+aD.2a - 3.下列根式中,最简二次根式是 ( ) A.a 25 B.22b a + C.2aD.5.0 4.计算)2012)(3252(+-的结果是( ) A.32 B.16 C.8 D.45.等式(1)(1)11a a a a +-=+•-成立的条件是( ) A. 1a ≥- B. 1a ≤ C. 1<1a -≤ D. 11a -≤≤6.若x <2,化简x x -+-3)2(2的正确结果是 ( ) A.-1 B.1 C.2x-5 D.5-2x7.若13-m 有意义,则m 能取的最小整数值是 ( ) A.m=0 B.m=1 C.m=2 D.m=38.131x 3+-=+-x xx 成立的条件是( ) A.x ≥-1 B.x ≤3 C.-1≤x ≤3 D.-1<x ≤39.下列各式(1)752=+(2)x x 32x 5=-(3)72542508=+=+ (4)a a a 362733=+ 其中正确的是( )A.(1)和(3)B.(2)和(4)C.(3)和(4)D.(1)和(4)10.实数a ,b 在数轴上的位置如图所示,则化简222)(a b a b ---的结果是( )A.-2bB.-2aC.2(b-a)D.0二、填空题(每题4分,共28分)11.当123x -=时,代数式22x 2++x 的值是12.52-的绝对值是 ,2的倒数是 (填最简二次根式) 13.当x 时,52+x 有意义,若xx-2有意义,则x . 14.化简=⨯04.0225 ,=-22108117 15.=•y xy 82 ,=⨯2712 . 16.比较大小:32 13(填“>”、“=”、“<”) 17.若2(2)2a a -=-,则a 的取值范围是三、解答题(42分)装订线内不许答题 18.计算(1)272833-+- (2)222664÷-)((3)22525522552)())((---+(4)a a aa a 278148a 72+-19.如图,用一个面积为x 的正方形和四个相同的长方形拼成一个面积为8x 的正方形图案,求长方形的周长。
第十六章 二次根式 单元 测 试 题(含答案)

第16 章单元测试卷班级:姓名:得分:一.选择题(共10小题,每题4分,共40分)1.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.2.下列等式正确的是()A.()2=3 B. =﹣3 C. =3 D.(﹣)2=﹣33.下列运算正确的是()A.a2+a=2a3 B. =a C.(a+1)2=a2+1 D.(a3)2=a6 4. 下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C. D.5.下列二次根式中能与2合并的是()A.B.C. D.6.已知x+y=3+22,x-y=3-22,则x2-y2的值为( ) A.4 2 B.6 C.1 D.3-2 2 7.如果最简二次根式3a-8与17-2a可以合并,那么使4a-2x有意义的x的取值范围是( )A.x≤10 B.x≥10 C.x<10 D.x>10 8.甲、乙两人计算a+1-2a+a2的值,当a=5时得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是( )A.甲、乙都对 B.甲、乙都错C.甲对,乙错 D.甲错,乙对9.若a3+3a2=-a a+3,则a的取值范围是( )A.-3≤a≤0 B.a≤0C.a<0 D.a≥-310.已知一个等腰三角形的两条边长a,b满足|a-23|+b-52=0,则这个三角形的周长为( )A.43+5 2 B.23+5 2C.23+10 2 D.43+52或23+10 2二.填空题(共3小题,每题5分,共20分)11.等式=成立的x的取值范围为12.如图,数轴上点A表示的数为a,化简:a+= .13.与最简二次根式5是同类二次根式,则a= .14. 计算6﹣10的结果是三.解答题(共1小题)15.观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+16.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=.现已知△ABC的三边长分别为1,2,,求△ABC的面积。
16章二次根式全章测试题

第16章 二次根式一、选择题(每小题2分,共20分)1.有意义,那么x 的取值范围是( ) A.3x ≠ B.3x < C.3x > D.3x ≥2.12a -,那么( ) A.a <12 B.错误!未找到引用源。
≤12 C.a >12D.a ≥123.能够合并,那么a 的值为( )A.2B.3C.4D.54.已知3y =错误!未找到引用源。
, 则2xy 的值为( )A.15-B.15C.152-D.1525..对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是3 6.下列计算正确的是 ( )①69494=-⋅-=--))((;②69494=⋅=--))((;③145454522=-⋅+=-;④145452222=-=-; A .1个 B .2个 C .3个 D .4个7. 下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x .A .2个B .3个C .4个D .5个8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31C .153D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1D .ab b 二、填空题(每小题3分,共24分)11.实数范围分解因式:⑴52-x =⑵742-a = (3)2223y x-=12.比较大小;______错误!未找到引用源。
;23-______32-. 13.计算:(1)=-222425 (2)=⋅baa b 182____________;(3)=⋅b a 10253___________.14.已知a ,b 为两个连续的整数,且a b ,则a b -= . 15.若实数y x ,2(0y =,则xy 的值为 .16.已知,a b 为有理数,,m n 分别表示5的整数部分和小数部分, 且21amn bn +=,则2a b += .17.当x___________时,x 31-是二次根式;当a=3时,则=+215a ___________.18.已知:2420-=x ,则221x x +的值是___________;若xx x x --=--3232成立,则x 满足_____________________. 三、解答题(46分)19.⑴))((36163--⋅-; ⑵63312⋅⋅;⑶521312321⨯÷;⑷)(b a b b a 1223÷⋅.(5)1); (6)20.先化简,再求值:(1)((6)a a a a --,其中12a =(2)111x x ⎛⎫- ⎪+⎝⎭其中x .21. (6分)已知22x y ==+,求下列代数式的值:(1)222x xy y ++ ; (2)22x y -.22.(6分)一个三角形的三边长分别为54 (1)求它的周长(要求结果化简); (2)请你给出一个适当的x 值,使它的周长为整数,并求出此时三角形周长的值.23.(4分)已知,a b 为等腰三角形的两条边长,且,a b满足4b ,求此三角形的周长.24.(6分)阅读下面问题:1=;2=. (1的值;(2(n 为正整数)的值; (3⋅⋅⋅25.(8分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:23(1+=,善于思考的小明进行了一下探索:设2(a m ++ (其中,,,a b m n均为正整数),则有2222a m n +=++, ∴ 222,2a m n b mn =+=.这样小明就找到一种把部分a +. 请仿照小明的方法探索并解决下列问题:(1)当,,,a b m n均为正整数时,若2(a m ++,用含有,m n 的式子分别表示a ,b ,得a =______,b =__________. (2)利用所探索的结论,找一组正整数,,,a b m n 填空:.(答案不唯一)(3)若2(a m ++,且,,a m n 均为正整数,求a 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名: 班级: 学号: 成绩:
一.选择题:(每小题3分,共15分)
1.若m -3为二次根式,则m 的取值为 ( )
A .m≤3
B .m <3
C .m≥3
D .m >3
2.以下运算错误的是( )
A =
B =
C .2=
D 2=
3.下列二次根式中,最简二次根式是 ( )
A .23a
B .3
1 C .153 D .143 4.下列式子中二次根式的个数有 ( )
⑴3
1;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个
5、若A =
A 、23a +
B 、22(3)a +
C 、22(9)a +
D 、29a +
二、填空题:(每空2分,共22分)
6.当x 时,式子1+x 有意义,当x 时,式子
422--x x 有意义;
7. 已知:()022=+++y x x ,则=-xy x 2 ; 8. 化简:=24 ;=3a ;=322
;
9. 比较大小:23-______32-;
10. 若x x x
x --=--3232成立,则x 满足_____________________; 11. ()=-231 ,
()=-25334 ; 12. 要切一块面积为64002cm 的正方形大理石地板砖,则它的边长要切成 ㎝;
三.解答题: 13. 3222233--+ 14. 222333-
--
15.⋅-121).
2218(
16. (4(3-
16.已知:32-=x ,32+=y ,求代数式22y x +的值;
17.
m 、n ,使22m n a +=
并且mn =
则将a ±变成()2
222m n mn m n +±=±
(
22232212111+=++=+
+=+== 仿照上例化简下列各式:
(1)347+ (2)42213-
18.
19. .883x 252的值式或为相反数,求二次根与已知y x y y x -----
20.把下列各式化成最简二次根式: ⑴27
12135272
2-; ⑵b a c abc 4322-. .4
124)28(22+-+-x x x 化简:。