必修三-算法与程序框图(优秀教案!)
人教课标版(B版)高中数学必修3第一章 算法初步算法与程序框图教案17

(四)算法案例 案例 1 辗转相除法与更相减损术 案例 2 秦九韶算法 案例 3 进位制 三.典型例题 例 1 写一个算法程序,计算 1+2+3+„+n 的值(要求可以输入任意大于 1 的正自然数) 思考: 在上述程序语句中我们使用了 WHILE 格式的循环语句, 能不能使用 UNTIL 循环? 例 2 把十进制数 53 转化为二进制数. (C 层)练习:将十进制数 2008 转化成二进制数 (AB 层)练习:用“除 k 取余法”将十进制数 53 转化成八进制数 例 3 利用辗转相除法求 3869 与 6497 的最大公约数与最小公倍数。 思考:上述计算方法能否设计为程序框图? 练习:P40 A(3) (4) 课 后 学 习 教 学 反 思 (ABC 层)P50 复习参考题 A 组 1(1) ,4 (AB 层)P50 复习参考题 A 组 3
三 维 教 学 目 标
过程与 方法
情感、 态度、 价值观
教 学 内 容 分 析 教 学
教学 重点 教学 难点 流 程 与
与算法对应的程序框图的设计及算法程序的编写
教
学
内
容
一.本章的知识结构
程 序 框 图 算法 算 法 语 句 排序 进位制 辗转相除法与更相减损术
秦九韶算法
二.知识梳理 (一)四种基本的程序框 (二)三种基本逻辑结构 (三)基本算法语句 1、输入语句 单个变量
INPUT “提示内容” ;变量
多个变量 2、输出语句 3 赋值语句
INPUT “提示内容 1,提示内容 2,提示内容 3,„” ;变量 1,变量 2, 变量 3,„ PRINT “提示内容” ;表达式 变量=表达式
4、条件语句 IF-THEN-ELSE 格式
人教版高中数学必修三(教案)1.1 算法与程序框图(3课时)

第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:A .确定区间[,]a b ,验证()()0f a f b <,给定精度ε;B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序. 算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解 →写出算法.③ 练习:举例更多的算法例子; → 对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程320x-=的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图. (学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注"是"或"否";循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题.第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1.2.二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:"循环体"是由语句组成的程序段,能够完成一项工作. 注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学"鸡兔同笼"趣题:①"鸡兔同笼",我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. ("站立法",命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:"砍足法", 假如砍去每只鸡、每只兔一半的脚,则"独脚鸡", "双脚兔". 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A组1题.。
人教版高中数学必修3第一章算法同步-《1.1.2程序框图》教案(1)

§1.1.2 程序框图教学目标:1.掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构2.掌握画程序框图的基本规则,能正确画出程序框图。
3.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
教学重点:经过模仿、操作、探索,经历通过设计程序框图表达求解问题的过程,重点是程序框图的基本概念、基本图形符号和3种基本逻辑结构教学难点:难点是能综合运用这些知识正确地画出程序框图。
教学过程引入:算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形方式来表示它。
程序框图基本概念:(1)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(2)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(3)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
下地连接起来,按顺序执行算法步骤。
如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。
例3、已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,并画出算法的程序框图。
人教B版高中数学必修三《 1.1 算法与程序框图 1.1.2 程序框图》_0

1. 1.2程序框图[教学目标]:1.掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。
2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
3.通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。
[教学重难点]:教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构。
教学难点:能综合运用这些知识正确地画出程序框图。
[教学过程]:一、.创设情境:[问题情境]我们都喜欢旅游,进入景区大门后,我们首先看到的是景点线路图,通过观看景点线路图能直观、迅速、准确的知道景区有哪几个景点,各景点之间按怎样的路径走,从而避免迷途或者漏掉景点的事情发生.二.新课探究:(1).右边的程序框图(如图所示),能判断任意输入的数x的奇偶性,请大家参考书本第六页的表格,填下表:(2).你能用语言描述一下框图的基本结构特征吗?三、基本概念:(1起止框是任何流程图都不可缺少的,它表明程序的开始和结束,(2表示数据的输入或结果的输出,它可用在算法中的任何需要(3它是采用来赋值、执行计算语句、传送运算结果的图形符号。
(4)判断框一般有一个入口和两个出口,有时也有多个出口,它是惟一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与“否”(也可用“Y ”与“N ”)两个分支。
四、算法的基本逻辑结构(1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
例1:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入公式,最后输出结果,只用顺序结构就能够表达出算法。
新人教版高中数学必修三教案(全册)

新人教版高中数学必修三教案(全册)第一章算法初步1.1算法与程序框图1.1 算法与程序框图(共3课时)1.1.1算法的概念(第1课时)【课程标准】通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义.【教学目标】1.理解算法的概念与特点;2.学会用自然语言描述算法,体会算法思想;3.培养学生逻辑思维能力与表达能力.【教学重点】算法概念以及用自然语言描述算法【教学难点】用自然语言描述算法【教学过程】一、序言算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.二、实例分析例1:写出你在家里烧开水过程的一个算法.解:第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.(以上算法是解决某一问题的程序或步骤)例2:给出求1+2+3+4+5的一个算法.解:算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10; 第四步:将第三步中的运算结果10与5相加,得到15.算法2 可以运用公式1+2+3+…+错误!未找到引用源。
=错误!未找到引用源。
直接计算 第一步:取错误!未找到引用源。
=5;第二步:计算错误!未找到引用源。
; 第三步:输出运算结果.(说明算法不唯一)例3:(课本第2页,解二元一次方程组的步骤)(可推广到解一般的二元一次方程组,说明算法的普遍性) 例4:用“待定系数法”求圆的方程的大致步骤是: 第一步:根据题意,选择标准方程或一般方程;第二步:根据条件列出关于错误!未找到引用源。
人教版高中数学必修3教材全套教案

第一章 算法初步1、1 算法与程序框图 1、1、1 算法得概念授课时间:第 周 年 月 日(星期 )教学分析算法在中学数学课程中就是一个新得概念,但没有一个精确化得定义,教科书只对它作了如下描述:“在数学中,算法通常就是指按照一定规则解决某一类问题得明确有限得步骤、”为了让学生更好理解这一概念,教科书先从分析一个具体得二元一次方程组得求解过程出发,归纳出了二元一次方程组得求解步骤,这些步骤就构成了解二元一次方程组得算法、教学中,应从学生非常熟悉得例子引出算法,再通过例题加以巩固、 三维目标1、正确理解算法得概念,掌握算法得基本特点、2、通过例题教学,使学生体会设计算法得基本思路、3、通过有趣得实例使学生了解算法这一概念得同时,激发学生学习数学得兴趣、 重点难点教学重点:算法得含义及应用、教学难点:写出解决一类问题得算法、教学过程导入新课思路1(情境导入)一个人带着三只狼与三只羚羊过河,只有一条船,同船可容纳一个人与两只动物,没有人在得时候,如果狼得数量不少于羚羊得数量狼就会吃羚羊、该人如何将动物转移过河?请同学们写出解决问题得步骤,解决这一问题将要用到我们今天学习得内容——算法、 思路2(情境导入)大家都瞧过赵本山与宋丹丹演得小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步? 答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上、 上述步骤构成了把大象装进冰箱得算法,今天我们开始学习算法得概念、 思路3(直接导入)算法不仅就是数学及其应用得重要组成部分,也就是计算机科学得重要基础、在现代社会里,计算机已成为人们日常生活与工作中不可缺少得工具、听音乐、瞧电影、玩游戏、打字、画卡通画、处理数据,计算机就是怎样工作得呢?要想弄清楚这个问题,算法得学习就是一个开始、 推进新课 新知探究 提出问题 (1)解二元一次方程组有几种方法? (2)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组得步骤、(3)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组得步骤、(4)请写出解一般二元一次方程组得步骤、 (5)根据上述实例谈谈您对算法得理解、 (6)请同学们总结算法得特征、 (7)请思考我们学习算法得意义、 讨论结果:(1)代入消元法与加减消元法、 (2)回顾二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 得求解过程,我们可以归纳出以下步骤: 第一步,①+②×2,得5x=1、③ 第二步,解③,得x=51、 第三步,②-①×2,得5y=3、④ 第四步,解④,得y=53、 第五步,得到方程组得解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(3)用代入消元法解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤: 第一步,由①得x=2y -1、③第二步,把③代入②,得2(2y -1)+y=1、④ 第三步,解④得y=53、⑤ 第四步,把⑤代入③,得x=2×53-1=51、 第五步,得到方程组得解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(4)对于一般得二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似得求解步骤: 第一步,①×b 2-②×b 1,得(a 1b 2-a 2b 1)x=b 2c 1-b 1c 2、③ 第二步,解③,得x=12212112b a b a c b c b --、第三步,②×a 1-①×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1、④ 第四步,解④,得y=12211221b a b a c a c a --、第五步,得到方程组得解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x(5)算法得定义:广义得算法就是指完成某项工作得方法与步骤,那么我们可以说洗衣机得使用说明书就是操作洗衣机得算法,菜谱就是做菜得算法等等、在数学中,算法通常就是指按照一定规则解决某一类问题得明确有限得步骤、现在,算法通常可以编成计算机程序,让计算机执行并解决问题、(6)算法得特征:①确定性:算法得每一步都应当做到准确无误、不重不漏、“不重”就是指不就是可有可无得,甚至无用得步骤,“不漏” 就是指缺少哪一步都无法完成任务、②逻辑性:算法从开始得“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”就是“后一步”得前提,“后一步”就是“前一步”得继续、③有穷性:算法要有明确得开始与结束,当到达终止步骤时所要解决得问题必须有明确得结果,也就就是说必须在有限步内完成任务,不能无限制地持续进行、(7)在解决某些问题时,需要设计出一系列可操作或可计算得步骤来解决问题,这些步骤称为解决这些问题得算法、也就就是说,算法实际上就就是解决问题得一种程序性方法、算法一般就是机械得,有时需进行大量重复得计算,它得优点就是一种通法,只要按部就班地去做,总能得到结果、因此算法就是计算科学得重要基础、应用示例思路1例1 (1)设计一个算法,判断7就是否为质数、(2)设计一个算法,判断35就是否为质数、算法分析:(1)根据质数得定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不就是质数,否则7就是质数、算法如下:(1)第一步,用2除7,得到余数1、因为余数不为0,所以2不能整除7、第二步,用3除7,得到余数1、因为余数不为0,所以3不能整除7、第三步,用4除7,得到余数3、因为余数不为0,所以4不能整除7、第四步,用5除7,得到余数2、因为余数不为0,所以5不能整除7、第五步,用6除7,得到余数1、因为余数不为0,所以6不能整除7、因此,7就是质数、(2)类似地,可写出“判断35就是否为质数”得算法:第一步,用2除35,得到余数1、因为余数不为0,所以2不能整除35、第二步,用3除35,得到余数2、因为余数不为0,所以3不能整除35、第三步,用4除35,得到余数3、因为余数不为0,所以4不能整除35、第四步,用5除35,得到余数0、因为余数为0,所以5能整除35、因此,35不就是质数、变式训练请写出判断n(n>2)就是否为质数得算法、分析:对于任意得整数n(n>2),若用i表示2—(n-1)中得任意整数,则“判断n就是否为质数”得算法包含下面得重复操作:用i除n,得到余数r、判断余数r就是否为0,若就是,则不就是质数;否则,将i得值增加1,再执行同样得操作、这个操作一直要进行到i得值等于(n-1)为止、算法如下:第一步,给定大于2得整数n、第二步,令i=2、第三步,用i除n,得到余数r、第四步,判断“r=0”就是否成立、若就是,则n不就是质数,结束算法;否则,将i得值增加1,仍用i表示、第五步,判断“i>(n-1)”就是否成立、若就是,则n就是质数,结束算法;否则,返回第三步、例2 写出用“二分法”求方程x2-2=0 (x>0)得近似解得算法、分析:令f(x)=x2-2,则方程x2-2=0 (x>0)得解就就是函数f(x)得零点、“二分法”得基本思想就是:把函数f(x)得零点所在得区间[a,b](满足f(a)·f(b)<0)“一分为二”,得到[a,m]与[m,b]、根据“f(a)·f(m)<0”就是否成立,取出零点所在得区间[a,m]或[m,b],仍记为[a,b]、对所得得区间[a,b]重复上述步骤,直到包含零点得区间[a,b]“足够小”,则[a,b]内得数可以作为方程得近似解、解:第一步,令f(x)=x2-2,给定精确度d、第二步,确定区间[a,b],满足f(a)·f(b)<0、第三步,取区间中点m=2ba、第四步,若f(a)·f(m)<0,则含零点得区间为[a,m];否则,含零点得区间为[m,b]、将新得到得含零点得区间仍记为[a,b]、第五步,判断[a,b]得长度就是否小于d或f(m)就是否等于0、若就是,则m就是方程得近似解;否则,返回第三步、当d=0、005时,按照以上算法,可以得到下表、于就是,开区间(1、414 062 5,1、417 968 75)中得实数都就是当精确度为0、005时得原方程得近似解、实际上,上述步骤也就是求2得近似值得一个算法、例1 一个人带着三只狼与三只羚羊过河,只有一条船,同船可容纳一个人与两只动物,没有人在得时候,如果狼得数量不少于羚羊得数量就会吃羚羊、该人如何将动物转移过河?请设计算法、分析:任何动物同船不用考虑动物得争斗但需考虑承载得数量,还应考虑到两岸得动物都得保证狼得数量要小于羚羊得数量,故在算法得构造过程中尽可能保证船里面有狼,这样才能使得两岸得羚羊数量占到优势、解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回、第二步:人带一只狼过河,自己返回、第三步:人带两只羚羊过河,并带两只狼返回、第四步:人带一只羊过河,自己返回、第五步:人带两只狼过河、强调:算法就是解决某一类问题得精确描述,有些问题使用形式化、程序化得刻画就是最恰当得、这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现得情况,体现思维得严密性与完整性、本题型解决问题得算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂得情境经常遇到这样得问题,设计算法得时候,如果能够合适地利用某些步骤得重复,不但可以使得问题变得简单,而且可以提高工作效率、知能训练设计算法判断一元二次方程ax2+bx+c=0就是否有实数根、解:算法步骤如下:第一步,输入一元二次方程得系数:a,b,c、第二步,计算Δ=b2-4ac得值、第三步,判断Δ≥0就是否成立、若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法、强调:用算法解决问题得特点就是:具有很好得程序性,就是一种通法、并且具有确定性、逻辑性、有穷性、让我们结合例题仔细体会算法得特点、拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0、22元;如果通话时间超过3分钟,则超出部分按每分钟0、1元收取通话费,不足一分钟按一分钟计算、设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话得费用、 解:算法分析:数学模型实际上为:y 关于t 得分段函数、 关系式如下:y=⎪⎩⎪⎨⎧∉>+-+∈>-+≤<).,3(),1]3([1.022.0),,3(),3(1.022.0),30(,22.0Z t T T Z t t t t 其中[t -3]表示取不大于t -3得整数部分、 算法步骤如下:第一步,输入通话时间t 、第二步,如果t≤3,那么y=0、22;否则判断t ∈Z 就是否成立,若成立执行 y=0、2+0、1×(t -3);否则执行y=0、2+0、1×([t -3]+1)、 第三步,输出通话费用c 、 课堂小结(1)正确理解算法这一概念、(2)结合例题掌握算法得特点,能够写出常见问题得算法、 作业课本本节练习1、2、1、1、2 程序框图与算法得基本逻辑结构整体设计授课时间:第 周 年 月 日(星期 )三维目标1.熟悉各种程序框及流程线得功能与作用、2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题得过程、在具体问题得解决过程中,理解程序框图得三种基本逻辑结构:顺序结构、条件结构、循环结构、 3、通过比较体会程序框图得直观性、准确性、 重点难点数学重点:程序框图得画法、 数学难点:程序框图得画法、教学过程第1课时 程序框图及顺序结构导入新课思路1(情境导入)我们都喜欢外出旅游,优美得风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真就是急死人,有得同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图、旅游图瞧起来直观、准确,本节将探究使算法表达得更加直观、准确得方法、今天我们开始学习程序框图、 思路2(直接导入)用自然语言表示得算法步骤有明确得顺序性,但就是对于在一定条件下才会被执行得步骤,以及在一定条件下会被重复执行得步骤,自然语言得表示就显得困难,而且不直观、不准确、因此,本节有必要探究使算法表达得更加直观、准确得方法、今天开始学习程序框图、 推进新课 新知探究 提出问题(1)什么就是程序框图?(2)说出终端框(起止框)得图形符号与功能、(3)说出输入、输出框得图形符号与功能、(4)说出处理框(执行框)得图形符号与功能、(5)说出判断框得图形符号与功能、(6)说出流程线得图形符号与功能、(7)说出连接点得图形符号与功能、(8)总结几个基本得程序框、流程线与它们表示得功能、(9)什么就是顺序结构?讨论结果:(1)程序框图又称流程图,就是一种用程序框、流程线及文字说明来表示算法得图形、在程序框图中,一个或几个程序框得组合表示算法中得一个步骤;带有方向箭头得流程线将程序框连接起来,表示算法步骤得执行顺序、(2)椭圆形框:表示程序得开始与结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入与输出得信息,又称为输入、输出框,它有一个入口与一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口与一个出口.(5)菱形框:就是用来判断给出得条件就是否成立,根据判断结果来决定程序得流向,称为判断框,它有一个入口与两个出口.(6)流程线:表示程序得流向.(7)圆圈:连接点.表示相关两框得连接处,圆圈内得数字相同得含义表示相连接在一起.(8)总结如下表、图形符号名称功能终端框(起止框)表示一个算法得起始与结束输入、输出框表示一个算法输入与输出得信息处理框(执行框)赋值、计算判断框判断某一条件就是否成立,成立时在出口处标明“就是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图得两部分(9)很明显,顺序结构就是由若干个依次执行得步骤组成得,这就是任何一个算法都离不开得基本结构、三种逻辑结构可以用如下程序框图表示:顺序结构条件结构循环结构应用示例例1请用程序框图表示前面讲过得“判断整数n(n>2)就是否为质数”得算法、解:程序框图如下:强调:程序框图就是用图形得方式表达算法,使算法得结构更清楚,步骤更直观也更精确、这里只就是让同学们初步了解程序框图得特点,感受它得优点,暂不要求掌握它得画法、 变式训练观察下面得程序框图,指出该算法解决得问题、 解:这就是一个累加求与问题,共99项相加,该算法就是求100991431321211⨯++⨯+⨯+⨯ 得值、 例2 已知一个三角形三条边得边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积得算法,并画出程序框图表示、(已知三角形三边边长分别为a,b,c ,则三角形得面积为S=))()((c p b p a p p ---),其中p=2cb a ++、这个公式被称为海伦—秦九韶公式) 算法分析:这就是一个简单得问题,只需先算出p 得值,再将它代入分式,最后输出结果、因此只用顺序结构应能表达出算法、 算法步骤如下:第一步,输入三角形三条边得边长a,b,c 、 第二步,计算p=2cb a ++、 第三步,计算S=))()((c p b p a p p ---、第四步,输出S 、 程序框图如下:强调:很明显,顺序结构就是由若干个依次执行得步骤组成得,它就是最简单得逻辑结构,它就是任何一个算法都离不开得基本结构、 变式训练下图所示得就是一个算法得流程图,已知a 1=3,输出得b=7, 求a 2得值、 解:根据题意221a a +=7, ∵a 1=3,∴a 2=11、即a 2得值为11、 知能训练有关专家建议,在未来几年内,中国得通货膨胀率保持在3%左右,这将对我国经济得稳定有利无害、所谓通货膨胀率为3%,指得就是每年消费品得价格增长率为3%、在这种情况下,某种品牌得钢琴2004年得价格就是10 000元,请用流程图描述这种钢琴今后四年得价格变化情况,并输出四年后得价格、 解:用P 表示钢琴得价格,不难瞧出如下算法步骤: 2005年P=10 000×(1+3%)=10 300; 2006年P=10 300×(1+3%)=10 609; 2007年P=10 609×(1+3%)=10 927、27; 2008年P=10 927、27×(1+3%)=11 255、09; 年份 2004 2005 2006 2007 2008 钢琴得价格10 00010 30010 60910 927、2711 255、09程序框图如下:强调:顺序结构只需严格按照传统得解决数学问题得解题思路,将问题解决掉、最后将解题步骤 “细化”就可以、“细化”指得就是写出算法步骤、画出程序框图、 拓展提升如上给出得就是计算201614121++++ 得值得一个流程图,其中判断框内应填入得条件就是______________、 答案:i>10、课堂小结(1)掌握程序框得画法与功能、(2)了解什么就是程序框图,知道学习程序框图得意义、(3)掌握顺序结构得应用,并能解决与顺序结构有关得程序框图得画法、 作业习题1、1A 1、第2课时条件结构导入新课思路1(情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:您有牙齿就是我们一伙得,鸟们喊道:您有翅膀就是我们一伙得,蝙蝠一时没了主意、过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法与程序框图中也经常用到这一思想方法,今天我们开始学习新得逻辑结构——条件结构、思路2(直接导入)前面我们学习了顺序结构,顺序结构像就是一条没有分支得河流,奔流到海不复回,事实上多数河流就是有分支得,今天我们开始学习有分支得逻辑结构——条件结构、提出问题(1)举例说明什么就是分类讨论思想?(2)什么就是条件结构?(3)试用程序框图表示条件结构、(4)指出条件结构得两种形式得区别、讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a得符号,但条件没有给出,因此需要进行分类讨论,这就就是分类讨论思想、(2)在一个算法中,经常会遇到一些条件得判断,算法得流程根据条件就是否成立有不同得流向、条件结构就就是处理这种过程得结构、(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作得结构就称为条件结构(或分支结构),如图1所示、执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件就是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个就是空得,即不执行任何操作,如图2、(4)一种就是在两个“分支”中均包含算法得步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种就是在一个“分支”中均包含算法得步骤A,而在另一个“分支”上不包含算法得任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后得步骤、应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长得三角形就是否存在,并画出这个算法得程序框图、算法分析:判断以3个任意给定得正实数为三条边边长得三角形就是否存在,只需验证这3个数中任意两个数得与就是否大于第3个数、这个验证需要用到条件结构、算法步骤如下:第一步,输入3个正实数a,b,c、第二步,判断a+b>c,b+c>a,c+a>b就是否同时成立、若就是,则存在这样得三角形;否则,不存在这样得三角形、程序框图如右图:强调:根据构成三角形得条件,判断就是否满足任意两边之与大于第三边,如果满足则存在这样得三角形,如果不满足则不存在这样得三角形、这种分类讨论思想就是高中得重点,在画程序框图时,常常遇到需要讨论得问题,这时要用到条件结构、例2 设计一个求解一元二次方程ax 2+bx+c=0得算法,并画出程序框图表示、 算法分析:我们知道,若判别式Δ=b 2-4ac>0,则原方程有两个不相等得实数根 x 1=a b 2∆+-,x 2=ab 2∆--; 若Δ=0,则原方程有两个相等得实数根x 1=x 2=ab2-; 若Δ<0,则原方程没有实数根、也就就是说,在求解方程之前,可以先判断判别式得符号,根据判断得结果执行不同得步骤,这个过程可以用条件结构实现、又因为方程得两个根有相同得部分,为了避免重复计算,可以在计算x 1与x 2之前,先计算p=ab2-,q=a 2∆、解决这一问题得算法步骤如下: 第一步,输入3个系数a ,b ,c 、 第二步,计算Δ=b 2-4ac 、第三步,判断Δ≥0就是否成立、若就是,则计算p=ab2-,q=a 2∆;否则,输出“方程没有实数根”,结束算法、第四步,判断Δ=0就是否成立、若就是,则输出x 1=x 2=p ;否则,计算x 1=p+q ,x 2=p-q ,并输出x 1,x 2、程序框图如下:例3 设计算法判断一元二次方程ax 2+bx+c=0就是否有实数根,并画出相应得程序框图、 解:算法步骤如下:第一步,输入3个系数:a ,b ,c 、 第二步,计算Δ=b 2-4ac 、第三步,判断Δ≥0就是否成立、若就是,则输出“方程有实根”;否则,输出“方程无实根”、结束算法、 相应得程序框图如右:强调:根据一元二次方程得意义,需要计算判别式Δ=b 2-4ac 得值、再分成两种情况处理:(1)当Δ≥0时,一元二次方程有实数根;(2)当Δ<0时,一元二次方程无实数根、该问题实际上就是一个分类讨论问题,根据一元二次方程系数得不同情况,最后结果就不同、因而当给出一个一元二次方程时,必须先确定判别式得值,然后再用判别式得值得取值情况确定方程就是否有解、该例仅用顺序结构就是办不到得,要对判别式得值进行判断,需要用到条件结构、 例4 (1)设计算法,求ax+b=0得解,并画出流程图、 解:对于方程ax+b=0来讲,应该分情况讨论方程得解、我们要对一次项系数a 与常数项b 得取值情况进行分类,分类如下: (1)当a≠0时,方程有唯一得实数解就是ab -; (2)当a=0,b=0时,全体实数都就是方程得解; (3)当a=0,b≠0时,方程无解、联想数学中得分类讨论得处理方式,可得如下算法步骤: 第一步,判断a≠0就是否成立、若成立,输出结果“解为ab -”、 第二步,判断a=0,b=0就是否同时成立、若成立,输出结果“解集为R ”、第三步,判断a=0,b≠0就是否同时成立、若成立,输出结果“方程无解”,结束算法、 程序框图如右:强调:这就是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足得条件才执行该条件对应得操作、知能训练设计算法,找出输入得三个不相等实数a 、b 、c 中得最大值,并画出流程图、 解:算法步骤:第一步,输入a ,b ,c 得值、第二步,判断a>b 就是否成立,若成立,则执行第三步;否则执行第四步、第三步,判断a>c 就是否成立,若成立,则输出a ,并结束;否则输出c ,并结束、 第四步,判断b>c 就是否成立,若成立,则输出b ,并结束;否则输出c ,并结束、 程序框图如右:例5 “特快专递”就是目前人们经常使用得异地邮寄信函或托运物品得一种快捷方式、某快递公司规定甲、乙两地之间物品得托运费用根据下列方法计算: f=⎩⎨⎧>⨯-+⨯≤).50(,85.0)50(53.050),50(,53.0ωωωω其中f (单位:元)为托运费,ω为托运物品得重量(单位:千克)、 试画出计算费用f 得程序框图、分析:这就是一个实际问题,根据数学模型可知,求费用f 得计算公式随物品重量ω得变化而有所不同,因此计算时先瞧物品得重量,在不同得条件下,执行不同得指令,这就是条件结构得运用,就是二分支条件结构、其中,物品得重量通过输入得方式给出、 解:算法程序框图如右图: 拓展提升有一城市,市区为半径为15 km 得圆形区域,近郊区为距中心15—25 km 得范围内得环形地带,距中心25 km 以外得为远郊区,如右图所示.市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点得坐标为(x,y),求该点得地价.分析:由该点坐标(x ,y),求其与市中心得距离r=22y x +,确定就是市区、近郊区,还就是远郊区,进而确定地价p .由题意知,p=⎪⎩⎪⎨⎧>≤<≤<.25,20,2515,60,150,100r r r解:程序框图如下: 课堂小结(1)理解两种条件结构得特点与区别、(2)能用学过得两种条件结构解决常见得算法问题、 作业习题1、1A 组3、3课时循环结构授课时间:第周年月日(星期)导入新课思路1(情境导入)我们都想生活在一个优美得环境中,希望瞧到得就是碧水蓝天,大家知道工厂得污水就是怎样处理得吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准、污水处理装置就是一个循环系统,对于处理需要反复操作得事情有很大得优势、我们数学中有很多问题需要反复操作,今天我们学习能够反复操作得逻辑结构——循环结构、思路2(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支得河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支得河流最后归入大海;事实上很多水系就是循环往复得,今天我们开始学习循环往复得逻辑结构——循环结构、提出问题(1)请大家举出一些常见得需要反复计算得例子、(2)什么就是循环结构、循环体?(3)试用程序框图表示循环结构、(4)指出两种循环结构得相同点与不同点、讨论结果:(1)例如用二分法求方程得近似解、数列求与等、(2)在一些算法中,经常会出现从某处开始,按照一定得条件反复执行某些步骤得情况,这就就是循环结构、反复执行得步骤称为循环体、(3)在一些算法中要求重复执行同一操作得结构称为循环结构、即从算法某处开始,按照一定条件重复执行某一处理得过程、重复执行得处理步骤称为循环体、循环结构有两种形式:当型循环结构与直到型循环结构、1°当型循环结构,如图(1)所示,它得功能就是当给定得条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P就是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构、继续执行下面得框图、2°直到型循环结构,如图(2)所示,它得功能就是先执行重复执行得A框,然后判断给定得条件P就是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P就是否成立、继续重复操作,直到某一次给定得判断条件P时成立为止,此时不再返回来执行A框,离开循环结构、继续执行下面得框图、见示意图:当型循环结构直到型循环结构(4)两种循环结构得不同点:直到型循环结构就是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环、当型循环结构就是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环、两种循环结构得相同点: 两种不同形式得循环结构可以瞧出,循环结构中一定包含条件结构,用于确定何时终止执行循环体、应用示例思路1例1 设计一个计算1+2+……+100得值得算法,并画出程序框图、算法分析:通常,我们按照下列过程计算1+2+……+100得值、。
人教A版高中数学必修3第一章.2算法与程序框图优秀课件

流程线 连接 程序框
连接点 连接程序框图的两部分
新课 1、程序框图基本概念: (1)程序框图的概念:
程序框图又称流程图,是一种用规定 的图形、指向线及文字说明来准确、 直观地表示算法的图形。 (2)程序框图的组成: 一个程序框图包括以下几部分: 表示相应操作的程序框; 带箭头的流程线; 程序框内必要文字说明。
(3)基本程序框的符号及其功能
程序框
名称
功能
终端框(起止 表示一个算法的起始和结束 框)
输入、输出框 表示算法的输入和输出的信 息
处理框(执行 框) 判断框
流程线
赋值、计算
判断一个条件是否成立,用 “是”、“否”或“Y”、 “N”标明 表示从某一框到另一框的流
一、对程序框图的认识和理解 例 2. (1)下列关于程序框图的说法正确的是( ) A.程序框图是描述算法的语言 B.程序框图中可以没有输出框,但必须要有输入框给 变量赋值 C.在程序框图中,一个判断框可能同时产生两种结果 D.程序框图与流程图不是同一个概念 【解】由于算法设计时要求返回执行的结果,故必须要有输 出框,对于变量的赋值可通过处理框完成,故算法设计时不 一定要有输入框,因此 B 错;一个判断框产生的结果是唯一 的,故 C 错;程序框图就是流程图,所以 D 错.故选 A. 【答案】 A
1.1.2算法的基本结构和 程序框图(1)
复习回顾
1.算法的概念:算法实际上是解决问题的一种程序
性方法,它通常解决某一个或一类问题,在用算法解决
问题时,显然体现了特殊与一般的数学思想. 2.算法的性质有:①有限性,②确定性,③有序性,
④不唯一性,⑤可行性.解答有关算法的概念判断题应
根据算法的这五大特点.
2、简单程序框图的画法:
必修三-算法与程序框图(优秀教案!)

算法与程序框图教学目标:明确算法的含义,熟悉算法的三种基本结构。
教学重点:算法的基本知识与算法对应的程序框图的设计.教学难点:与算法对应的程序框图的设计及算法程序的编写.教学过程:1.算法的定义:广义的算法是指完成某项工作的方法和步骤,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.流程图的概念:流程图是用一些规定的图形、指向线及简单的文字说明来表示算法几程序结构的一种图形程序.它直观、清晰,便于检查和修改.其中,图框表示各种操作的类型,图框中的文字和符号表示操作的内容,带箭头的流程线(指向线)表示操作的先后次序.构成流程图的图形符号及其作用3.规范流程图的表示:①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画,流程线要规范;③除判断框外,大多数框图符号只有一个进入点和一个退出点.④在图形符号内描述的语言要非常简练、清楚.4、算法的三种基本逻辑结构:课本中例题的讲解得出三种基本逻辑结构:顺序结构、条件结构、循环结构(1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
例1:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
算法分析:这是一个简单的问题,只需先算出p的值,再将它代入公式,最后输出结果,只用顺序结构就能够表达出算法。
解:程序框图:点评:顺序结构是由若干个依次执行的步骤组成的,是任何一个算法都离不开的基本结构。
(2)条件结构:根据条件选择执行不同指令的控制结构。
例2:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在,画出这个算法的程序框图。
算法分析:判断分别以这3个数为三边边长的三角形是否存在,只需要验收这3个数当中任意两个数的和是否大于第3个数,这就需要用到条件结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法与程序框图
教学目标:明确算法的含义,熟悉算法的三种基本结构。
教学重点:算法的基本知识与算法对应的程序框图的设计.
教学难点:与算法对应的程序框图的设计及算法程序的编写.
教学过程:
1.算法的定义:广义的算法是指完成某项工作的方法和步骤,现代意义的算法是指可以用计算机来解决的某一类问题的程序和步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.
2.流程图的概念:流程图是用一些规定的图形、指向线及简单的文字说明来表示算法几程序结构的一种图形程序.它直观、清晰,便于检查和修改.其中,图框表示各种操作的类型,图框中的文字和符号表示操作的内容,带箭头的流程线(指向线)表示操作的先后次序.
构成流程图的图形符号及其作用
程序框名称功能
起止框表示一个算法的起始和结束,是任何算法程序框图不可缺少的。
输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。
处理框赋值、计算。
算法中处理数据需要的算式、公式等,它们分别写在不同的用以处理数据的处理框内。
判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时在出口处标明则标明“否”或“N”。
流程线算法进行的前进方向以及先后顺序循环框用来表达算法中重复操作以及运算连结点连接另一页或另一部分的框图注释框帮助编者或阅读者理解框图
p=(2+3+4)/2输出s 3.规范流程图的表示: ①使用标准的框图符号;
②框图一般按从上到下、从左到右的方向画,流程线要规范; ③除判断框外,大多数框图符号只有一个进入点和一个退出点. ④在图形符号内描述的语言要非常简练、清楚.
4、算法的三种基本逻辑结构:
课本中例题的讲解得出三种基本逻辑结构:顺序结构、条件结构、循环结构
(1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
例1:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入公式,最后输出结果,只用顺序结构就能够表达出算法。
解:程序框图:
2
点评:顺序结构是由若干个依次执行的步骤组成的,是任何一个算法都离不开的基本结构。
(2)条件结构:根据条件选择执行不同指令的控制结构。
例2:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在,画出这个算法的程序框图。
算法分析:判断分别以这3个数为三边边长的三角形是否存在,只需要验收这3个数当中任意两个数的和是否大于第3个数,这就需要用到条件结构。
程序框图:
开始 s=√p(p-2)(p-3)(p-4) 结束
开始
输入a,b,c
a+b>c , a+c>b, b+c>a是否
否同时成立?
是
存在这样的三角形不存在这样的三角形
结束
(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构分为两类:
(1)一类是当型循环结构,如图(1)所示,它的功能是当给定的条件P1成立时,执行A框,A框执行完毕后,再判断条件P1是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P1不成立为止,此时不再执行A框,从b离开循环结构。
(2)另一类是直到型循环结构,如图(2所示,它的功能是先执行,然后判断给定的条件P2是否成立,如果P2仍然不成立,则继续执行A框,直到某一次给定的条件P2成立为止,此时不再执行A框,从b点离开循环结构。
A A
P1?
P2?不成立
不成立
成立
b b
当型循环结构直到型循环结构
两种循环结构有什么差别?
当型:先判断后执行
先判断指定的条件是否为真,若条件为真,执行循环条件,条件为假时退出循环。
直到型;先执行后判断
先执行循环体,然后再检查条件是否成立,如果不成立就重复执行循环体,直到条件
成立退出循环。
注意:
1.对于算法的理解不能仅局限于解决数学问题的方法,解决任何问题的方法和步骤都应该是算法.算法具有概括性、抽象性、正确性等特点,要通过具体问题的过程和步骤的分析去体会算法的思想,了解算法的含义.
2.在学习程序框图时要掌握各程序框的作用,准确应用三种基本逻辑结构,即顺序结构、条件分支结构、循环结构来画程序框图,准确表达算法.画程序框图是用基本语句来编程的前提.
例3:设计一个计算1+2+…+100的值的算法,并画出程序框图。
算法分析:只需要一个累加变量和一个计数变量,将累加变量的初始值为0,计数变量的值可以从1到100。
解:程序框图:
开始
i=1
Sum=0
i=i+1
Sum=sum+i
i≤100?
否是
输出sum
结束
课堂练习:
1:输入矩形的边长求它的面积,画出程序框图。
2:求x的绝对值,画出程序框图。
3:画出求21+22+23+…2100的值的程序框图。
课后练习:
1.下列关于算法的描述正确的是( )
A .算法与求解一个问题的方法相同
B .算法只能解决一个问题,不能重复使用
C .算法过程要一步一步执行
D .有的算法执行完以后,可能没有结果 2.计算下列各式中的S 值,能设计算法求解的是( )
①S =1+2+3+…+100;②S =1+2+3+…+100+…;③S =1+2+3+…+n (n ≥1,n ∈N)
A .①②
B .①③
C .②③
D .①②③ 3.下列关于算法的说法正确的是( ) A .一个算法的步骤是可逆的 B .描述算法可以有不同的方式
C .算法可以看成按照要求设计好的有限的确切的计算序列并且这样的步骤能解决当前问题
D .算法只能用一种方式显示
4.下列各式中T 的值不能用算法求解的是( ) A .T =12
+22
+32
+42
+…+100
2
B .T =12+13+14+15+…+150
C .T =1+2+3+4+5+…
D .T =1-2+3-4+5-6+…+99-100
5.下列四种叙述能称为算法的是( )
A .在家里一般是妈妈做饭
B .做米饭需要刷锅、淘米、添水、加热这些步骤
C .在野外做饭叫野炊
D .做饭必须要有米
6.关于一元二次方程x 2
-5x +6=0的求根问题,下列说法正确的是( ) A .只能设计一种算法 B .可以设计两种算法
C .不能设计算法
D .不能根据解题过程设计算法
7.对于解方程x 2
-2x -3=0的下列步骤:
①设f (x )=x 2
-2x -3
②计算方程的判别式Δ=22
+4×3=16>0 ③作f (x )的图象
④将a =1,b =-2,c =-3代入求根公式
x =
-b ±Δ
2a
,得x 1=3,x 2=-1. 其中可作为解方程的算法的有效步骤为( )
A .①②
B .②③
C .②④
D .③④ 8.解决某个问题的算法如下: 第一步,给定一个实数n (n ≥2).
第二步,判断n 是否是2,若n =2,则n 满足条件;若n >2,则执行第三步. 第三步,依次从2到n -1检验能不能整除n ,若都不能整除n ,则n 满足条件. 则满足上述条件的实数n 是( )
A .质数
B .奇数
C .偶数
D .约数 9.如下图所示的程序框图,其功能是( )
A .输入a ,b 的值,按从小到大的顺序输出它们的值
B .输入a ,b 的值,按从大到小的顺序输出它们的值
C.求a,b的最大值
D.求a,b的最小值
10.给出如图的程序框图,那么输出的S等于( )
A.2450 B.2550 C.5050 D.4900
第9题图第10题图
11.已知数字序列:2,5,7,8,15,32,18,12,52,8.写出从该序列中搜索18的一个算法.
第一步,输入实数a.
第二步,________.
第三步,输出a=18.
12.求1×3×5×7×9×11的值的一个算法是:
第一步:求1×3得到结果3.
第二步:将第一步所得结果3乘5,得到结果15.
第三步:________________________________________________________________.
第四步:再将105乘9得到945.
第五步:再将945×11,得到10395,即为最后结果.
11.输入3个实数按从大到小的次序排序。
12.给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大
1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推. 要求计算这50个数的和. 将上面给出的程序框图补充完整. (1)_____________________ (2)_____________________
(第12题图)
(2)
结 束 i= i +1 (1) 开 始 是
输出 s 否
i = 1 P = 1 S= 0
S= s + p。