一次函数图象的应用(一)

合集下载

一次函数图像及应用

一次函数图像及应用

一次函数图像及应用一、函数图像的定义一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。

二、一次函数的图像及性质三、小试身手1、画出函数y=2x-1与y=-0.5x+1的图象2、直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为_________,•图象经过第________象限,y随x增大而_________.3、分别说出满足下列条件的一次函数的图象过哪几个象限?(1)k>0 b>0 (2)k>0 b<0(3)k<0 b>0 (4)k<0 b<04、在同一直角坐标系中画出下列函数图象,并归纳y=kx+b(k、b是常数,k≠0)中b对函数图象的影响.1.y=x-1 y=x y=x+12.y=-2x+1 y=-2x y=-2x-1练习巩固1、例1 小芳以200米/分的速度起跑后,先匀加速跑5分钟,每分提高速度20米/分,又匀速跑10分钟.试写出这段时间里她跑步速度y(米/分)随跑步时间x(分)变化的函数关系式,并画出图象.2、A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料费用分别为每吨20元和25元;从B城往C、D两乡运肥料费用分别为每吨15元和24元.现C乡需要肥料240吨,D乡需要肥料260吨.怎样调运总运费最少?3、从A、B两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,A、B两水库各可调出水14万吨.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.设计一个调运方案使水的调运量(万吨·千米)最少.4、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司其中一家签让合同.设汽车每月行驶x千米,应付给个体车主的月费用是y 1元,应付给出租车公司的月费用是y2元,y1、y2分别是x之间函数关系如下图所示.每月行驶的路程等于多少时,租两家车的费用相同,是多少元?四、课后习题1.当x <0时,函数y =-2x 的图象在A.第一象限B.第二象限C.第三象限D.第四象限2.直线x y 3-=过点(0,0)和点A.(1,-3)B.(1,3)C.(-1,-3)D.(3,-1)3.函数x y 2=与x y 3-=的共同特点是A.图象经过一、三象限B.图象经过二、四象限C.图象经过原点D.y 随着x 的增大而增大4.函数y =-x 21+1和y =x 21+1的图象交于一点,这点的坐标是A.(1,21) B.(-1,23) C.(1,0) D.(0,1)5.函数x m y )1(-=(1≠m ),y 随着x 的增大而增大,则A.m <0B.m >0C.m <1D.m >19.下面图象中,不可能是关于x 的一次函数y =mx -(m -3)的图象的是10.在同一个直角坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,下列说法正确的是A.通过点(-1,0)的是①和③B.交点在y轴上的②和④C.相互平行的是①和③D.关于x轴对称的是②和③32.某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示.由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.28033.如图,OA,BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快A.2.5米B.2米C.1.5米D.1米34.一游泳池长90米,甲、乙二人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,图中的实线和虚线分别为甲、乙与游泳池一边的距离随游泳时间的变化而变化图象.若不计转向时间,则从开始起到3分钟止他们相遇的次数为A.2次B.3次C.4次D.5次。

《一次函数图像的应用》典型例题

《一次函数图像的应用》典型例题

《一次函数图像的应用》典型例题例1 某气象研究中心观测一场沙尘暴从发生到结束的全过程。

开始时风速平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时。

一段时间,风速保持不变。

当沙尘暴遇到绿色植被区时,其风速平均每小时减少1千米/时,最终停止。

结合风速与时间的图像,回答下列问题:(1)在y 轴( )内填入相应的数值; (2)沙尘暴从发生到结束,共经过多少小时?(3)求出当25 x 时,风速y (千米/时)与时间x (小时)之间的函数关系式。

例 2 某批发商欲将一批海产品由A 地运往B 地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时、100千米/时.两货运公司的收费项目及收费标准如下表所示:注:“元/吨·千米”表示每吨货物每千米的运费,“元/吨·小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x (吨),汽车货运公司和铁路货运公司所要收取的费用分别为1y (元)和2y (元),试求1y 与2y 与x 的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,他应该选择哪个货运公司承担运输业务?例3某市20位下岗职工在近郊承包了50亩土地,这些地可种蔬菜、烟叶或小麦,种这几种农作物每亩所需职工数和产值预测如下表:请你设计一个种植方案,使每亩地都种上农作物,20位职工都有工作,且使农作物预计总产值最多.例4下表所示为装运甲、乙、丙三种蔬菜的重量及利润,某汽车公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,并且每辆汽车只能装一种蔬菜).(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何装运,可使公司获得最大利润?最大利润是多少?例5 我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0.3万元,每吨芒果售价为人民币0.5万元.现设销售这两种水果的总收入为人民币y万元,荔枝的产量为x吨(0<x<200).(1)请写出y关于x的函数关系式;(2)若估计芒果产量不小于荔枝和芒果总产量的20%,但不大于60%,请求出y值的范围.例6 A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台.已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.(1)设B市运往C村机器x台,求总运费W(元)关于x的函数关系式;(2)若要求总运费不超过9000元,共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?参考答案例1 分析 (1)沙尘暴开始时,风速平均每小时增加2千米,那么4小时后,风速达到8千米,后来的6个小时中,风速每小时增加4千米,那么6个小时风速增加24千米,达到32千米/时,后来风速平均每小时减少1千米,那么已达到32千米/时的沙尘暴要32个小时才平息。

初中数学一次函数的图象、性质、解析式及应用

初中数学一次函数的图象、性质、解析式及应用

初中数学一次函数的图象、性质、解析式及应用1、一次函数的定义:一般地,如果变量y与变量x有关系式y=kx+b(k,b是常数,且k≠0)那么y叫x的一次函数。

一次函数y=kx+b中,若b=0,此时变成y=kx(k≠0)称y是x的正比例函数。

2、一次函数的图象(1)一次函数y=kx+b的图象是一条直线,这条直线与y 轴相交于(0,b),这里b叫作直线y=kx+b的截距。

(2)y=kx(k≠0)的图象经过原点,y=kx+b(k≠0,b≠0)的图象不经过原点,与两坐标轴交点分别为(0,b),(,0)。

(3)对于直线,如果,且,那么这两条直线平行,反之也成立。

如果,那么这两条直线相交,反之也成立。

(4)直线y=kx+b可以看作是由直线y=kx平移而来。

(5)(k≠0)的图象的不同情形,即当k值、b值不同时图象所处的位置。

3、一次函数的性质一般地,一次函数y=kx+b(k,b为常数,k≠0)有下列性质当k>0时,y随x的增大而增大,图象是自左到右上升的直线当k<0时,y随x的增大而减小,图象是自左到右下降的直线4、用待定系数法求一次函数的解析式待定系数法:先设待求函数关系式(其中含有未知常数,系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。

用待定系数法求一次函数解析式的步骤:第一步:设关系式第二步:列方程(组)第三步:求出结果,写出关系式5、运用一次函数解决实际问题建立数学模型运用一次函数解决实际问题的一般步骤(1)通过实验,测量获得数量足够多的两个变量的对应值。

(2)建立合适的直角坐标系,在坐标系中,以各对应值为坐标描点,并画出函数图象。

(3)观察图象特征,判定函数类型。

(4)运用得到的经验公式,进一步求得所需要的结果。

例1、已知函数是一次函数,求m的值及函数关系式。

分析:一次函数满足:自变量的次数为1;自变量的系数不为0。

解析:∵是一次函数所以解得m=1所以函数关系式例2、下图不可能是关于x的一次函数的图象是()分析:一次函数中的m的取值应是一致的,应从一次函数的图象和性质出发A中,m>0,3-m>0,即A是0<m<3时的图象B中,直线经过原点,所以,m=3,即B是m=3时的图象C中,截距在x轴下方,∴3-m<0,m>3直线是呈下降趋势的,所以m<0,而无解,即C不可能D中,截距在x轴上方,所以3-m>0,m<3,图象呈下降趋势,故m<0即D是m<0时的图象解析:选C例3、已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,求直线y=kx+b的解析式。

一次函数的应用1.ppt

一次函数的应用1.ppt
8.如图是温度计的示意图,
左边的刻度表示摄氏温度, 0C
0F
右边的刻度表示华氏温度,
华氏(°F)温度y与摄氏温度
90 30
(℃)x之间的函数关系式为
80
( ).
(A)
y=
9 5
x+32
(B) y=x+40
20
70
60
(C) y= 5 x+32 (D) y= 95x+31
9
10
50
3、如果 y mxm28 是正比例函数,而且对于
题:
(1)洗衣机的进水时间是多4少分钟?清洗时洗衣
机中的水量是多4少0 升? y/升
(2)已知洗衣机的排 40
水速度为每分钟19升,
①求排水时y与x之间的
关系式;y=-19x+325 ②如果排水时间为2分
0
4
15
x/分
钟,求排水结束时洗衣机中剩下的水量. 2升
(2005陕西)阅读:我们知道,在数轴上,x=1表示一个 点,而在平面直角坐标系中,x=1表示一条直线;我们还 知道,以二元一次方程2x-y+1=0的所有解为坐标的点组 成的图形就是一次函数y=2x+1的图象,它也是一条直线 ,如图①. 观察图①可以得出:直线=1与直线y=2x+1的 交点P的坐标(1,3)就是方程组的解,所以这个方程组的 解为在直角坐标系中,x≤1表示一个平面区域,即直线x=1 以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域 ,即直线y=2x+1以及它下方的部分,如图③。
l2 l1
1 2 3 4 5 6 7 8 9 10 11 12 t /分
如图,l甲、l乙两条直线分别表示甲走路 与乙骑车(在同一条路上)行走的路程S与时间t的关系, 根据此图,回答下列问题:

2020-2021学年八年级数学人教版下册第19章一次函数应用之图像专题 (一)

2020-2021学年八年级数学人教版下册第19章一次函数应用之图像专题 (一)

2021 -2021学年人教版八年级|数学下册第19章一次函数应用之图像专题 (一 )1.小明家所在地的供电公司实行 "峰谷电价〞 ,峰时 (8:00~21:00 )电价为0.5元/度 ,谷时 (21:00~8:00 )电价为0.3元/度.为了解空调制暖的耗能情况 ,小明记录了家里某天0时~24时内空调制暖的用电量 ,其用电量y (度 )与时间x (h )的函数关系如下图.(1 )小明家白天不开空调的时间共h ;(2 )求小明家该天空调制暖所用的电费;(3 )设空调制暖所用电费为w 元 ,请画出该天0时~24时内w 与x 的函数图象. (标注必要数据 )2.如图 ,l 1表示振华商场一天的某型电脑销售额与销售量的关系 ,l 2表示该商场一天的销售本钱与电脑销售量的关系.观察图象 ,解决以下问题:(1 )当销售量x =2时 ,销售额=万元 ,销售本钱=万元;(2 )一天销售台时 ,销售额等于销售本钱;当销售量时 ,该商场实现赢利 (收入大于本钱 );(3 )分别求出l 1和l 2对应的函数表达式;(4 )直接写出利润w 与销售量x 之间的函数表达式 ,并求出当销售量x 是多少时 ,每天的利润到达5万元 ?3.敦煌到格尔木铁路开通后 ,l 1与l 2分别是从敦煌北开往格尔木的动车和从格尔木站开往敦煌北的高铁到敦煌北的距离与行驶时间的图象 ,两车同时出发 ,设动车离敦煌北的距离为y 1 (千米 ) ,高铁离敦煌北的距离为y 2 (千米 ) ,行驶时间为t (小时 ) ,y 1和y 2与t 的函数关系如下图:(1 )高铁的速度为km /h ;(2 )动车的速度为km /h ;(3 )动车出发多少小时与高铁相遇 ?(4 )两车出发经过多长时间相距50千米 ?4.甲、乙两地相距300千米 ,一辆货车和一辆轿车先后从甲地出发向乙地 ,轿车比货车晚出发1.5小时 ,如图 ,线段OA 表示货车离甲地的距离y (千米 )与时间x (小时 )之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米 )与时间x (时 )之间的函数关系 ,请根据图象解答以下问题:(1 )轿车到达乙地时 ,求货车与甲地的距离;(2 )求线段CD对应的函数表达式;(3 )在轿车行进过程 ,轿车行驶多少时间 ,两车相距15千米.5.为落实 "精准扶贫〞精神 ,市农科院专家指导贫困户李大爷种植优质百香果喜获丰收 ,上市20天全部销售完 ,专家对销售情况进行了跟踪记录 ,并将记录情况绘成图象 ,日销售量y (单位:千克 )与上市时间x (单位:天 )的函数关系如下图.(1 )观察图示 ,直接写出日销售量的最|大值为.(2 )根据图示 ,求李大爷家百香果的日销售量y与上市时间x的函数解析式 ,并求出第15天的日销售量.6.如图 ,自行车与摩托车从甲地开往乙地 ,OA与BC分别表示自行车、摩托车与甲地距离s (千米 )和自行车出发时间t (小时 )的关系.根据图象答复:(1 )摩托车每小时行驶千米 ,自行车每小时行驶千米;(2 )自行车出发后小时 ,两车相遇;(3 )求摩托车出发多少小时时 ,两车相距15千米 ?7.甲乙两位老师同住一小区 ,该小区与学校相距2000米.甲从小区步行去学校 ,出发10分钟后乙再出发 ,乙从小区先骑公共自行车 ,骑行假设干米到达还车点后 ,立即步行走到学校.乙骑车的速度为170米/分 ,甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分 ) ,图1中线段OA与折线B﹣C﹣D分别表示甲、乙离小区的路程y(米 )与甲步行时间x(分 )的函数关系的图象;图2表示甲、乙两人之间的距离s(米 )与甲步行时间x (分 )的函数关系的图象 (不完整 ).根据图1和图2中所给的信息 ,解答以下问题:(1 )求甲步行的速度和乙出发时甲离开小区的路程;(2 )求直线BC的解析式;(3 )在图2中 ,画出当20≤x≤25时 ,s关于x的函数的大致图象.8.甲乙两人沿相同的路线同时登山 ,甲、乙两人距地面的高度y(米 )与登山时间x(分钟 )之间的函数图象如下图 ,根据图象所提供的信息解答以下问题:=.(1 )甲距地面的高度y (米 )与登山时间x (分 )之间的函数关系式为:y甲(2 )假设乙提速后 ,乙的速度是甲登山速度的3倍 ,登山多长时间时 ,乙追上了甲 ?此时乙距A地的高度为多少米 ?9.某市端午节期间 ,甲、乙两队举行了赛龙舟比赛 ,两队在比赛时的路程s(米 )与时间t (分钟 )之间的图象如下图 ,请你根据图象 ,答复以下问题:(1 )这次龙舟赛的全程是多少米 ?哪队先到达终点 ?(2 )求甲与乙相遇时甲、乙的速度.10.某种机器工作前先将空油箱加满 ,然后停止加油立即开始工作.当停止工作时 ,油箱中油量为5L ,在整个过程中 ,油箱里的油量y (单位:L )与时间x (单位:min )之间的关系如下图.(1 )机器每分钟加油量为L ,机器工作的过程中每分钟耗油量为L.(2 )求机器工作时y关于x的函数解析式 ,并写出自变量x的取值范围.(3 )直接写出油箱中油量为油箱容积的一半时x的值.11.一辆慢车和一辆快车沿相同的路线由甲地到乙地匀速前进 ,甲、乙两地之间的路程为200km ,他们离甲地的路程y (km )与慢车出发后的时间x (h )的函数图象如下图.(1 )慢车的平均速度是km/h;(2 )分别求出表示快车、慢车所行驶的路程y (km )与时间x (h )的函数关系式; (不要求写出自变量的取值范围 )(3 )求慢车出发后多长时间两车第|一次相遇 ?(4 )快车到达乙地后 ,慢车距乙地还有多远 ?12.书籍是人类进步的台阶.为了鼓励全民阅读 ,某图书馆开展了两种方式的租书业务:一种是使用租书卡 ,另一种是使用会员卡 ,图中l1 ,l2分别表示使用租书卡和会员卡时每本书的租金y (元 )与租书时间x (天 )之间的关系.(1 )直接写出用租书卡和会员卡时每本书的租金y (元 )与租书时间x (天 )之间的函数关系式;(2 )小红准备租某本名著50天 ,选择哪种租书方式比拟合算 ?小明准备花费90元租书 ,选择哪种租书方式比拟合算 ?13.小明来到奥体中|心观看比赛.进场时 ,发现门票还在家里 ,此时离比赛开始还有25分钟 ,于是立即步行回家取票 ,同时 ,他爸爸从家里出发骑自行车以小明3倍的速度给小明送票 ,两人在途中相遇 ,相遇后爸爸立即骑自行车把小明送回奥体中|心.如图 ,线段AB、OB分别表示父子俩送票、取票过程中 ,离奥体中|心的距离S(米 )与所用时间t (分钟 )之间关系的图象 ,结合图象解答以下问题 (假设骑自行车和步行的速度始终保持不变 ):(1 )从图中可知 ,小明家离奥体中|心米 ,爸爸在出发后分钟与小明相遇.(2 )求出父亲与小明相遇时离奥体中|心的距离 ?(3 )小明能否在比赛开始之前赶回奥体中|心 ?请计算说明.14.一条笔直的公路上有甲、乙两地相距2400米 ,|王明步行从甲地到乙地 ,每分钟走96米 ,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发 ,运动的时间为t (分 ) ,与乙地的距离为s (米 ) ,图中线段EF ,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1 )李越骑车的速度为米/分钟;F点的坐标为;(2 )求李越从乙地骑往甲地时 ,s与t之间的函数表达式;(3 )求|王明从甲地到乙地时 ,s与t之间的函数表达式;(4 )求李越与|王明第二次相遇时t的值.15.一列快车从甲地匀速驶往乙地 ,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系 ,根据图象解决以下问题:(1 )甲、乙两地的距离为km;(2 )慢车的速度为km/h ,快车的速度为km/h;(3 )求当x为多少时 ,两车之间的距离为500km ,请通过计算求出x的值.参考答案1.解: (1 )小明家白天不开空调的时间为:18﹣8=10 (h ) ,故答案为:10;(2 )峰时所用电费为:3×3×0.5=4.5 (元 ) ,谷时所用电费为:11×3×0.3=9.9 (元 ) ,所以小明家该天空调制暖所用的电费为:4.5 +9.9=14.4 (元 );(3 )根据题意 ,可得该天0时~24时内w与x的函数图象如下:2.解: (1 )由图象可得 ,当销售量x=2时 ,销售额为2万元 ,销售本钱为3万元 ,故答案为:2 ,3;(2 )由图象可得 ,一天销售4台时 ,销售额等于销售本钱;当销售量大于4台时 ,该商场实现赢利 (收入大于本钱 ) ,故答案为:4 ,大于4台;(3 )设l1的表达式为y1=k1x ,将 (4 ,4 )代入得 ,4k1=4 ,解得k1=1 ,即l1的表达式为y1=x;设l2的表达式为y2=k2x +b ,将 (0 ,2 ) , (4 ,4 )分别代入y2=k2x +b ,得,解得 ,即l2的表达式为y2x +2;(4 )由题意可得 ,利润w与销售量x之间的函数表达式为w=xxx﹣2 ,当wx﹣2 ,解得x=14 ,答:利润w与销售量x之间的函数表达式是wx﹣2 ,当销售量x是14台时 ,每天的利润到达5万元.3.解: (1 )由图象可得 ,高铁的速度为300÷1.5=200 (km/h ) ,故答案为:200;(2 )由图象可得 ,动车的速度为300÷2=150 (km/h ) ,故答案为:150;(3 )设动车出发a小时与高铁相遇 ,200a +150a=300 ,解得a= ,即动车出发小时与高铁相遇;(4 )设两车出发经过b小时相距50千米 ,200a +150a=300﹣50或200a +150a=300 +50 ,解得a =或a =1 ,即两车出发经过小时或1小时相距50千米. 4.解: (1 )由图象可得 ,货车的速度为300÷5=60 (千米/小时 ) ,那么轿车到达乙地时 ,货车与甲地的距离是60×4.5=270 (千米 ) ,即轿车到达乙地时 ,货车与甲地的距离是270千米;(2 )设线段CD 对应的函数表达式是y =kx +b ,∵点C (2.5 ,80 ) ,点D (4.5 ,300 ) ,∴, 解得 ,即线段CD 对应的函数表达式是y =110x ﹣195 (2.5≤x ≤4.5 );(3 )当x =2.5时 ,两车之间的距离为:60×2.5﹣80=70 ,∵70>15 ,∴在轿车行进过程 ,两车相距15千米时间是在2.5~4.5之间 ,由图象可得 ,线段OA 对应的函数解析式为y =60x ,那么|60x ﹣ (110x ﹣195 )|=15 ,解得x 1=3.6 ,x 2=4.2 ,∵轿车比货车晚出发1.5小时 ,3.6﹣1.5=2.1 (小时 ) ,4.2﹣1.5=2.7 (小时 ) , ∴在轿车行进过程 ,轿车行驶2.1小时或2.7小时 ,两车相距15千米 ,答:在轿车行进过程 ,轿车行驶2.1小时或2.7小时 ,两车相距15千米.5.解: (1 )由图象可得 ,日销售量的最|大值为960千克 ,故答案为:960千克;(2 )当0≤x ≤12时 ,设y 与x 的函数关系式为y =kx ,12k =960 ,得k =80 ,即当0≤x ≤12时 ,y 与x 的函数关系式为y =80x ;当12<x ≤20时 ,设y 与x 的函数关系式为y =ax +b ,,得 ,即当12<x≤20时 ,y与x的函数关系式为y=﹣120x +2400 ,由上可得 ,y与x的函数关系式为y=;当x=15时 ,y=﹣120×15 +2400=600 ,答:李大爷家百香果的日销售量y与上市时间x的函数解析式为y=,第15天的日销售量是600千克.6.解: (1 )由图象可得 ,摩托车每小时行驶80÷ (5﹣3 )=40 (千米 ) ,自行车每小时行驶80÷8=10 (千米 ) , 故答案为:40 ,10;(2 )设自行车出发后a小时 ,两车相遇 ,10a=40 (a﹣3 ) ,解得 ,a=4 ,即自行车出发后4小时 ,两车相遇 ,故答案为:4;(3 )设摩托车出发b小时时 ,两车相距15千米 ,10 (b +3 )﹣40b=15或40b﹣10 (b +3 )=15 ,解得 ,bb=1.5 ,即摩托车出发0.5小时或1.5小时时 ,两车相距15千米.7.解: (1 )由图可知 ,甲步行的速度为:2000÷25=80 (米/分 ) ,乙出发时甲离开小区的路程是80×10=800 (米 ) ,答:甲步行的速度是80米/分 ,乙出发时甲离开小区的路程是800米;(2 ) (20﹣10 )×170=1700 (米 ) ,那么点C的坐标为 (20 ,1700 ) ,设直线BC对应的解析式为y=kx +b ,,得 ,即直线BC的解析式为y=170x﹣1700;(3 )∵甲步行的速度比乙步行的速度每分钟快5米 ,甲步行的速度是80米/分 ,∴乙步行的速度为80﹣5=75 (米/分 ) ,那么乙到达学校的时间为:20 + (2000﹣1700 )÷75=24 (分钟 ) ,当乙到达学校时 ,甲离学校的距离是:80× (25﹣24 )=80 (米 ) ,那么当20≤x≤25时 ,s关于x的函数的大致图象如以下图所示:=kx+b, 8.解: (1 )设甲距地面的高度y(米 )与登山时间x(分 )之间的函数关系式为y甲∵点 (0 ,100 ) , (20 ,300 )在函数y=kx +b的图象上 ,甲∴ ,解得 ,=10x +100 , 即甲距地面的高度y (米 )与登山时间x (分 )之间的函数关系式为y甲故答案为:10x +100;(2 )由图象可得 ,甲的速度为: (300﹣100 )÷20=10 (米/分 ) ,∵乙提速后 ,乙的速度是甲登山速度的3倍 ,∴乙提速后的速度为30米/分 ,设乙登山a分钟时追上甲 ,那么15÷1×2 +30× (a﹣2 )=10a +100 ,解得a=6.5 ,当a=6.5时 ,乙距A地的高度为:30× (6.5﹣2 )=135 (米 ) ,即乙提速后 ,乙的速度是甲登山速度的3倍 ,登山6.5分钟时 ,乙追上了甲 ,此时乙距A 地的高度为135米.9.解: (1 )由函数图象可得 ,这次龙舟赛的全程是1000米 ,乙队先到达终点;(2 )由图象可得 ,甲与乙相遇时 ,甲的速度是1000÷4=250 (米/分钟 ) ,乙的速度是: (1000﹣400 )÷(3.8﹣2.2 )=600÷1.6=375 (米/分钟 ) ,即甲与乙相遇时甲、乙的速度分别为250米/分钟、375米/分钟.10.解: (1 )由图象可得 ,机器每分钟加油量为:30÷10=3 (L ) ,机器工作的过程中每分钟耗油量为: (30﹣5 )÷ (60﹣10 )=0.5 (L ) ,故答案为:3 ,0.5;(2 )当10<x≤60时 ,设y关于x的函数解析式为y=ax +b ,,解得 , ,即机器工作时y关于x的函数解析式为yx +35 (10<x≤60 );(3 )当3x=30÷2时 ,得x=5 ,x +35=30÷2时 ,得x=40 ,即油箱中油量为油箱容积的一半时x的值是5或40.11.解: (1 )由图象可得 ,慢车的速度为:200÷5=40 (km/h ) ,故答案为:40;(2 )设慢车所行驶的路程y (km )与时间x (h )的函数关系式是y=kx ,5k=200 ,得k=40 ,即慢车所行驶的路程y (km )与时间x (h )的函数关系式是y=40x;设快车所行驶的路程y (km )与时间x (h )的函数关系式是y=ax +b , ,解得 ,即快车所行驶的路程y (km )与时间x (h )的函数关系式是y=100x﹣200;(3 )令40x=100x﹣200 ,解得x= ,即慢车出发后时两车第|一次相遇;(4 )将x=4代入y=40x ,得y=160 ,200﹣160=40 (km ) ,答:快车到达乙地后 ,慢车距乙地还有40km.12.解: (1 )设直线l对应的函数解析式为y=kx ,1200k=60 ,解得k=0.3 ,对应的函数解析式为yx ,即直线l1对应的函数解析式为y=ax +b ,设直线l2,解得 ,对应的函数解析式为yx +20 ,即直线l2由上可得 ,用租书卡时每本书的租金y(元 )与租书时间x(天 )之间的函数关系式是yx,用会员卡时每本书的租金y (元 )与租书时间x (天 )之间的函数关系式是yx +20;(2 )当x=50时 ,租书卡的租金为0.3×50=15 (元 ) ,会员卡的租金为0.2×50 +20=30 (元 ) ,∵15<30 ,∴小红准备租某本名著50天 ,选择租书卡租书方式比拟合算;当y=90时 ,租书卡可以租用90÷0.3=300 (天 ) ,会员卡可以租用 (90﹣20 )÷0.2=350 (天 ) ,∵300<350 ,∴小明准备花费90元租书 ,选择会员卡租书方式比拟合算.13.解: (1 )有图可知 ,小明家离体育馆3600米 ,父子俩在出发后15分钟相遇.其中小明路程与时间的图象用图中的线段OB表示 ,父亲路程与时间的图象用图中的线段AB表示.故答案为3600 ,15;(2 )设小明的速度为x ,父亲的速度为3x ,根据题意得 ,15 (x +3x )=3600 ,∴x=60米/分钟 ,∴小明与父亲相遇时距离体育馆还有60×15=900m ,答:父亲与小明相遇时离奥体中|心的距离为900m;(3 )由 (2 )知 ,小明的速度为60米/分钟 ,∴父亲的速度为180米/分钟 ,∴900÷180=5分钟 ,∴5 +15=20分钟<25分钟 ,∴小明能在比赛开始之前能赶回体育馆.14.解: (1 )由图象可得 ,李越骑车的速度为:2400÷10=240米/分钟 ,2400÷96=25 ,所以F点的坐标为 (25 ,0 ).故答案为:240; (25 ,0 );公众号:惟微小筑(2 )设李越从乙地骑往甲地时 ,s与t之间的函数表达式为s=kt ,2400=10k ,得k=240 ,即李越从乙地骑往甲地时 ,s与t之间的函数表达式为s=240t ,故答案为:s=240t;(3 )设|王明从甲地到乙地时 ,s与t之间的函数表达式为s=kt +2400 ,根据题意得 ,25k +2400=0 ,解得k=﹣96 ,所以|王明从甲地到乙地时 ,s与t之间的函数表达式为:s=﹣96t +2400;(4 )根据题意得 ,240 (t﹣2 )﹣96t=2400 ,解得t=20.答:李越与|王明第二次相遇时t的值为20.15.解: (1 )甲、乙两地的距离为720km ,故答案为:720;(2 )设慢车的速度为akm/h ,快车的速度为bkm/h ,根据题意 ,得 ,解得 ,故答案为80 ,120;(3 )由题意 ,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前: (80 +120 )x=720﹣500 ,解得x=1.1 ,相遇后:∵点C (6 ,480 ) ,∴慢车行驶20km两车之间的距离为500km ,∵慢车行驶20km需要的时间是=0.25 (h ) ,∴x=6 +0.25=6.25 (h ) ,故x=1.1 h或6.25 h ,两车之间的距离为500km.。

一次函数的函数图像与方程解析解的实际应用

一次函数的函数图像与方程解析解的实际应用

一次函数的函数图像与方程解析解的实际应用一次函数是数学中常见的一种函数类型,它可以表示为y = ax + b的形式,其中a和b为已知值,x和y为自变量和因变量。

在这篇文章中,我们将讨论一次函数的函数图像以及如何使用方程解析解来解决实际应用问题。

一、一次函数的函数图像一次函数的函数图像是一条直线,其斜率确定了直线的倾斜程度,截距则决定了直线与y轴的交点。

根据斜率的正负,可以判断直线是上升还是下降。

下面我们来看几个具体的例子。

1. 实例一:y = 2x + 1这个函数表示了一个斜率为2,截距为1的直线。

根据斜率的正值,我们知道这条直线上升。

当x增加1个单位时,y增加2个单位。

当x减小1个单位时,y减小2个单位。

通过这些关系,我们可以画出该函数的函数图像。

2. 实例二:y = -3x + 2这个函数表示了一个斜率为-3,截距为2的直线。

根据斜率的负值,我们知道这条直线下降。

当x增加1个单位时,y减小3个单位。

当x减小1个单位时,y增加3个单位。

同样地,我们可以通过这些关系画出该函数的函数图像。

通过观察这些例子,我们可以发现直线的倾斜程度(斜率)以及它与y轴的交点(截距)等信息可以从一次函数的解析解中推导出来。

这样,我们可以在解析解的基础上直观地了解一次函数的函数图像。

二、一次函数方程解析解的实际应用一次函数的解析解除了可以用来绘制函数图像之外,还可以应用于解决实际问题。

我们将通过以下两个实际应用问题来说明。

1. 实例一:销售收入问题假设一个公司以每件产品x销售价y的方式进行销售。

已知该公司每个月的固定成本是1000元,每件产品的可变成本是30元。

我们希望找到销售多少件产品时,公司能够实现盈亏平衡。

根据以上信息,我们可以写出一次函数的方程:总收入 = 总成本根据题意,总收入为yx,总成本为1000 + 30x。

将它们相等并整理方程,可得:yx = 1000 + 30x解这个一次方程,我们可以求得x的解析解。

一次函数的应用题【图象型】

一次函数的应用题(图象型)(一)收费类型1随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市对居民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示.图中表示人均月生活用水的吨数,表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按_____元收取;超过5吨的部分,每吨按_____元收取;(2)请写出与的函数关系式;(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?2今年我省部分地区遭遇干早,为鼓励市民节约用水,我市自来水公司按分段收费标准收费,右图反映的是毎月收取水费y(元)与用水量x (吨)之间的函数关系.(1)小聪家五月份用水7吨,应交水费元:(2)按上述分段收费标准,小聪家三、四月份分别交水费29元和19.8元,问四片份比三月份节约用水多少吨?3我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元水费,超过的部分每吨按b元(b>a)收费.设一户居民月用水y元,y与x之间的函数关系如图所示.(1)求a的值,(2)若某户居民上月用水8吨,应收水费多少元?求b的值,并写出当x大于10时,y与x之间的函数关系;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?4为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分 2.5超出75m3不超出125m3的部分a超出125m3的部分a+0.25(1)若甲用户3月份的用气量为60m3,则应缴费元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?5某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.(二)行程类型1甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).2设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设秒后两车间的距离为千米,关于的函数关系如图所示,则甲车的速度是米/秒.3早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()个4一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y千米与行驶时间x小时之间的函数图象如图所示,则下列说法中错误的是()A.客车比出租车晚4小时到达目的地B.客车速度为60千米/时,出租车速度为100千米/时C.两车出发后3.75小时相遇D.两车相遇时客车距乙地还有225千米【4的变式题】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为千米,出租车离甲地的距离为千米,两车行驶的时间为小时,、关于的函数图像如右图所示:(1)根据图像,直接写出、关于的函数关系式;(2)若两车之间的距离为千米,请写出关于的函数关系式;(3)甲、乙两地间有、两个加油站,相距200千米,若客车进入加油站时,出租车恰好进入加油站,求加油站离甲地的距离.5甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()6甲乙两车分别从A、B两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达B地,停止行驶.(1)A、B两地的距离----- 千米;乙车速度是;a= .(2)乙出发多长时间后两车相距330千米?7“五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离(千米)与汽车行驶时间(小时)之间的函数图像,当他们离目的地还有20千米时,汽车一共行驶的时间是8在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B 地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.9周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.(三)接水问题出水放水问题类型1一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图10所示. 当容器内的水量大于5升时,求时间x的取值范围.2一个装有进水管和出水管的容器,单位时间内进出的水量都是一定的.设从某刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到时间(分)与容器内存水量(升)之间的关系如图所示.(1)求进水管和出水管每分钟进水多少升?出水多少升?(2)当4≤x≤12时,求y关于的函数解析式(3)若12分钟过后只放水不进水,求y与x之间的函数关系及何时放完水?3教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?4课间休息时,同学们到饮水机旁依次每人接水0.25升,他们先打开了一个饮水管,后来又打开了第二个饮水管.假设接水的过程中每根饮水管出水的速度是匀速的,在不关闭饮水管的情况下,饮水机水桶内的存水量y(升)与接水时间x(分)的函数关系图象如图所示.请结合图象回答下列问题:(1)存水量y(升)与接水时间x(分)的函数关系式;(2)如果接水的同学有28名,那么他们都接完水需要几分钟?(3)如果有若干名同学按上述方法接水,他们接水所用时间要比只开第一个饮水管接水的时间少用2分钟,那么有多少名学生接完水?(四)工程类型1甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC-CD-DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.2如图是某工程队在"村村通"工程中,修筑的公路长度y (米)与时间x (天)之间的关系图象,根据图象提供的信息,可知修筑该公路的时间是_________天.【变式题】如图是某工程队在"村村通"工程中,修筑的公路长度y (米)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是_________米.3某路桥公司承包了一段路基工程,进入施工场地后,所挖筑路基的长度y(m)与挖筑时间x(天)之间的函数关系如图所示,请根据提供的信息解答下列问题.(1)求y与x的函数关系式.(2)用所求的函数解析式预测完成1620m的路基工程,需要挖筑多少天?4.甲,乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)·与挖掘时间x小时之间的关系如图所示,请根据图象所提供的信息解答下列问题: (1)乙队开挖到30米时,用了_________.小时。

一次函数图像应用1


回答下列问题 (1).连续干旱23天,储水量约为: 万米3 750 :
(2).蓄水量小于400 万米3 时,将发生 严重的干旱 警报.干旱 40天天后将 发出干旱警报? (3).按照这个规律,预计持续干旱 (23,750) 60天 天水库将干涸?
(40,400 )
1000
800
600
400
200
(60,0)
O
1
2
3
4
5
6
x/ 吨
(4)当销售量大于4吨 时,该公司赢利(收入大于成本); 小于4吨 当销售量 时,该公司亏损(收入小于成本); (5) l1对应的函数表达式是 y=1000x , y=500x+2000 l2对应的函数表达式是 。 y/元 l1 6000 l2
5000
4000
3000
2000
就是已知自变量t=10时求对应的
因变量的值------------数
800
600
400
体现在图象上就是找一个点,使点的横 坐标是10,对应在图象上找到此点纵坐 标的值(10,V)--------形
200
0
10
20
30
40
50
t/天
课堂自学 V/万米3
1200
由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而 减少.干旱持续时间 t( 天)与蓄水量V(万米3 的关系如图所示, )
⑵超过30千克后,每千克需 付多少元?
通过这节课的学习,你有什么收获? 1、知识方面:通过一次函数的图象获取相关
的信息;
2、数学思维:①数形结合,函数与方程的思想
②利用函数图像解决简单的实际问题
再 见
课堂自学

一次函数的应用课件(共31张PPT)

(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6

所拼得四边形的周长L

一次函数的应用(第1课时)北师大数学八年级上册PPT课件

你能归纳出待定系数法求函数解析式的基本步骤吗?
探究新知
归纳总结
求一次函数解析式的步骤: (1)设:设一次函数的一般形式 y=kx+b(k≠0)
(2)列:把图象上的点 x1, y1 ,x2 , y2 代入一次
函数的解析式,组成几个__一__次_____方程; (3)解:解几个一次方程得k,b; (4)还原:把k,b的值代入一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(2,0)与(0,6)分别代入y=kx+b,得:
0 2k b 6 b
解得:bk
3 6
这个一次函数的解析式为y=-3x+6.
巩固练习
变式训练
已知一次函数的图象过点(3,5)与(0,-4),求这个 一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(3,5)与(0,-4)分别代入,得:
5 3k b 4 b
解得
k 3 b 4
,
所以这个一次函数的解析式为 y=3x-4.
探究新知 素养考点 2 已知一点利用待定系数法求一次函数的解析式
例2 若一次函数的图象经过点 A(2,0)且与直线y=-x+3平行,
求其解析式.
解:设这个一次函数的解析式为y=kx+b.
因为一次函数图象与直线y= -x+3平行,所以k= -1.
解:(1)设v=kt, 因为(2,5)在图象上, 所以5=2k, k=2.5,即v=2.5t.
(2) v=7.5 米/秒
(2,5)
(2,5)
t/秒
探究新知
例 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量 x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当 所挂物体的质量为3千克时,弹簧长16厘米.请写出y与x之 间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数的应用(一)
张家口第五中学 赵中正
回顾与复习
在一次函数y=kx+b中 当k>0时,y随x的增大而增大, 当b>0时,直线交y轴于正半轴, 必过一、二、三象限; 当b<0时,直线交y轴于负半轴, 必过一、三、四象限; 当k<0时,y随x的增大而减小, 当b>0时,直线交y轴于正半轴, 必过一、二、四象限; 当b<0时,直线交y轴于负半轴, 必过二、三、四象限.
1. 从“数”的方面看,当一次函数y=0.5x+1的函数 值y=0时,相应的自变量的值即为方程0.5x+1=0解。 2. 从“形”的方面看,函数y=0.5x+1与x轴交点的 横坐标,即为方程0.5x+1=0的解。
全国每年都有大量土地 被沙漠吞没,改造沙漠,保 护土地资源已经成为一项十 分紧迫的任务.
在生活中,你还遇到过哪些可以 用一次函数关系来表示的实际问题? 选择你感兴趣的问题,编制一道数学 题与同学交流。
课外作业 : 习题6.6
1000
根据图象回答下列问题: (1)活动开始当天,全校有多少户 家庭参加了活动? (200户) (2)全校师生共有多少户?该活动 200 0 20 t(天) 持续了几天? (1000户,20天) (3)你知道平均每天增加了多少户? (40户) (4)活动第几天时,参加该活动的家庭数达到800户? (第15天) (5)写出参加活动的家庭数S与活动时间t之间的函数关系式。
· ·
·
·
( S 40t 200 )
深入探究
1.如图,
·
-2 (1)当y=0时,x=________________ ;
y=0.5x+1 (2)直线对应的函数表达式是________________.
议一议
一元一次方程0.5x+1=0与一次函数 y=0.5x+1有什么联系? y
3 2 1 -3 -2 -1 0 -1 1 2 3x
想一想
由于持续高温和连日无 雨,某水库的蓄水量随着时 间的增加而减少.干旱持续 时间t(天)与蓄水量V(万米3) 的关系如下图所示,回答下 列问题:
·· ·
(1)干旱持续10天,蓄水量为多少? 连续干ቤተ መጻሕፍቲ ባይዱ23天呢?
(2)蓄水量小于400万米3时,将发生 严重干旱警报.干旱多少天后将 发出严重干旱警报? (3)按照这个规律,预计持续干旱 多少天水库将干涸?
(3)如果从现在开始采取植树造林措施,每年改造4万千 米2沙漠,那么到第几年底,该地区的沙漠面积能减少 到176万千米2(第12年底) .
探究升级
从宣传活动开始,假设每天 参加该活动的家庭数增加数量相 同,最后都参加了活动,并且参 加该活动的家庭数 S( 户)与宣 传时间 t(天)的函数关系如图 所示。
S(户) 1000
根据图象回答下列问题:
·
20 t(天)
(6)若每户每天节约用水0. 1吨,那 么活动第20天可节约多少吨水? (第20天可节约100吨水) 200 (7)写出活动开展的第t天节约的 水量y与天数t的函数关系。 ( Y 4t 20 )
0
课堂小结
今天, 你有什么收获?
课外探究
当得知周边地区的干旱 情况后,育才学校的小明意 识到节约用水的重要性,当 天在班上倡议节约用水,得 到全班乃至全校师生的积极 响应。
做一做
从宣传活动开始,假设每天 参加该活动的家庭数增加数量相 同,最后全校师生都参加了活动, 并且参加该活动的家庭数 S( 户) 与宣传时间 t(天)的函数关系 S(户) 如图所示。
某地区现有土地面积100万 千米2,沙漠面积200万千米2,土 地沙漠化的变化情况如图所示. 根据图象回答下列问题: (1)如果不采取任何措施,那么 到第5年底,该地区沙漠面积 (10万千米2) 将增加多少万千米2?
(2)如果该地区沙漠的面积继续 按此趋势扩大,那么从现在开始,第几年底后,该地区 将丧失土地资源? (50年底后)
相关文档
最新文档