最新例谈均值不等式的运用条件和技巧

合集下载

均值不等式及其应用详解

均值不等式及其应用详解

解:设DQ长为y(m),则
x 4 xy 200
2
A
M
N
B
故:
200 x y 4x
2
E
F
(2)解: x 0
s 4200x 210 4xy 80 2 y 400000 2 38000 4000 x x2
2
2
400000 S 38000 4000 x x2
分析二、 挖掘隐含条件
∵3x+1-3x=1为定值,且0<x<1 则1-3x>0; 3 1 可用均值不等式法 ∵0<x< ,∴1-3x>0 3 1 1 3 x 1 3 x 1 2 ∴y=x(1-3x)= 3x(1-3x)≤ ( ) 3 12 当且仅当 3x=1-3x 即x=1 时 y
3
2
x 4000 当且仅当 200吨时,每吨的平均成本最低
不等式定理及其重要变形:
(定理) a b 2ab(a, b R)
2 2
ab ab (推论) 2
( a, b R )


ab
ab 2 ( ) 2
1 例1、已知:0<x< ,求函数y=x(1-3x)的最大值 3 分析一、 原函数式可化为:y=-3x2+x, 利用二次函数求某一区间的最值
y 2x 3 x y 3 2 2
当且仅当
y 2 x 即: y 2 x 时取“=”号 x y
即此时
1 y 2x x 而 2 2 2 x y 1 2 y 2 2
ymin 3 2 2
本题小结: 用均值不等式求最值时,要注意检验最值存在的 充要条件,特别地,如果多次运用均值不等式求
最值,则要考虑多次“≥”(或者“≤”)中取

均值不等式应用

均值不等式应用

均值不等式应用在实际应用中,均值不等式有一些常用的技巧,可以帮助我们更方便地应用和理解它们。

1.对称性:均值不等式对于多个变量的情况,通常具有对称性。

这意味着可以通过交换变量的位置来得到等价的不等式。

例如,对于实数$a,b,c$,有$\sqrt{\frac{a^2+b^2}{2}} \geq \frac{a+b}{2}$ 和$\sqrt{\frac{b^2+c^2}{2}} \geq \frac{b+c}{2}$,可以通过交换$a$和$c$得到$\sqrt{\frac{a^2+c^2}{2}} \geq \frac{a+c}{2}$。

利用这个对称性,可以在一些情况下简化不等式的推导过程。

2.递增性:均值不等式通常对于多个变量的情况是递增的。

这意味着如果变量的取值不变,但其中一个变量增加了,那么均值不等式的左边将比右边更大。

例如,对于实数$a,b$,有$\sqrt{ab} \leq \frac{a+b}{2}$,如果将$b$增加为$b+c$,则有$\sqrt{a(b+c)} \leq \frac{a+b+c}{2}$。

利用这个递增性,可以在一些情况下通过增加变量的值来简化不等式的推导过程。

3.平方技巧:当不等式中涉及到平方时,可以通过对不等式同时两边取平方来简化推导过程。

例如,对于实数$a,b$,有$\sqrt{a^2b^2} \leq\frac{a^2+b^2}{2}$,两边同时平方得到$a^2b^2 \leq\frac{(a^2+b^2)^2}{4}$,再进行化简推导。

需要注意的是,平方技巧可能会引入额外的解,因此在使用此方法时需要注意检查这些额外的解是否符合原始问题的要求。

4.归纳思想:对于具有多个变量的复杂不等式问题,可以利用归纳思想逐步推导出目标不等式。

具体来说,可以先考虑两个变量的情况,再逐步增加变量的个数,通过观察和推导相应的不等式,逐步得到目标不等式的结论。

这种思想在解决一些较为复杂的均值不等式问题时非常有帮助。

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧均值不等式是数学中的一种重要的不等式关系,用于描述一组数据的平均值与其他性质之间的关系。

它可以应用于各种问题,如最值问题、优化问题等。

使用均值不等式来求解最值问题的方法和技巧有以下几个方面。

1.确定使用哪种均值不等式:均值不等式有许多种,如算术均值不等式、几何均值不等式、平方均值不等式等。

不同的均值不等式适用于不同的情况。

在解题时,要根据具体情况选择适合的均值不等式。

通常,当问题中涉及到平方和、乘积、根号等运算时,选择平方均值不等式;当问题中涉及到和、平均数等运算时,选择算术均值不等式;当问题中涉及到几何平均数、平方根等运算时,选择几何均值不等式。

2.清晰确定问题的条件和目标:在解决最值问题时,首先要清晰地确定问题的条件和目标。

条件是指问题中已知的信息,目标是指要求解的最值。

只有明确了条件和目标,才能有针对性地选择适合的均值不等式,并通过变换和推导进行求解。

3.运用不等式性质进行变换:在使用均值不等式进行求解时,可以根据题目中给出的条件进行变换,使得问题更容易求解。

如将含有平方和的表达式进行整理,将含有乘积的表达式进行拆分等。

变换后可利用不等式的性质,如对称性、单调性、对数性质等来推导和求解。

4.找到合适的等号成立条件:根据均值不等式的性质,等号成立的条件通常与数据的性质相关。

找到合适的等号成立条件不仅是验证结果的正确性,还可以通过这些条件求解最值问题。

例如,在求解两个数的平方和的最小值时,可通过设等号成立条件来求解。

5.结合其他方法进行求解:在使用均值不等式解决最值问题时,有时候也需要结合其他方法和技巧进行求解。

例如,可以结合求导、代数方法、几何方法等来解决一些复杂的最值问题。

这样可以提高问题的求解效率和准确性。

综上所述,运用均值不等式求解最值问题需要根据题目的条件和目标选择合适的不等式,进行变换和推导,并找到合适的等号成立条件。

同时,也可以结合其他方法和技巧进行求解。

例谈均值不等式的运用条件和技巧

例谈均值不等式的运用条件和技巧

例谈均值不等式的运用条件和技巧运用均值不等式“1212,,,n n a a a a a a R n++++∈≥K K 若则当且仅当n a a a ===K 21(2)n n N ≥∈且时等号成立”求最值是中学数学求最值的基本方法之一,许多外形与它截然相异的函数式,常常也能利用它巧妙地求出最值.且运用均值定理求最值是历年来高考的热点内容,因此必须熟练掌握他的运用条件和运用技巧.一、重视运用过程中的三个条件:“一正、二定、三相等”,三者缺一不可。

(1) 注意“正数”例1、求函数1y x x=+的值域 .误解:12x x +≥=Q (当且仅当1x =时取等号),所以值域为[)2,+∞. 这里错误在于使用均值定理ab b a 2≥+时忽略了条件:+∈R b a ,正确解法:1()0,2(1)a x x x x >+≥==当时仅当时取等号;11()0,0()()2(1)2b x x x x x x x<->-+-≥==-∴+≤-当时而仅当时取等号所以函数的值域是{}22y y y ≤-≥或. (2) 注意“相等”例2、设+∈R x ,求函数213x x y +=的最小值. 误解:拿到很容易想到用均值定理,所以有3min 3322232312312,=∴=⋅⋅≥++=∈+y xx x x x x y R x Θ. 这里的错误是没有考虑等号成立的条件.显然要212x x x ==,这样的x 不存在,故导致错误.此题用均值定理,需要拆项,同时要等号成立,需要配一个系数.正确解法:时取等号)23322123(182312323312323xx x x x x x x y ==⋅⋅≥++=. 所以2183,3183min 3==y x . 例3、的最大值求且有设by ax y x b a R y x b a +=+=+∈,6,3,,,,2222.误解:2222222219,()(1)2222a xb y ax by ax by a b x y ++≤≤∴+≤+++=Q K K 所以by ax +的最大值为29. 这里(1)取等号的条件是仅当b y a x ==,;由条件知这是不可能的,所以不可能取到上述的最大值.正确解法:2222222222,()()()a x b y axby a b x y ax by +≥∴++≥+Q 仅当ax by=时取等,所以222236ax by ax by a b x y =⎧⎪+≤=+=⎨⎪+=⎩时取等号.如取23)(,3,26max =+====by ax y x b a (3)注意“定值”例4、已知的最大值求y x R y x y x 2,,,12+∈=+.误解:12),(27)2()3(332=+=+=++≤y x y x y x y x x y x 又时取等当, 271,312≤==∴y x y x 时. 以上过程只能说明当271312===y x y x 时.但没有任何理由说明,2712≤y x 这种似是而非的错误解法,关键在于运用重要不等式放缩后的式子不是定值,致使得不出正确的结果.正确解法:272)322(41)34(41441,,332=+⨯=++≤⋅⋅⋅=∴∈+y x y x x y x x y x R y x Θ, 所以仅当24212,,,213627x y x y x y x y =⎧==∴⎨+=⎩即时取等号最大值为.二、常用的处理方法和技巧(1) 拆项:为了创设使用不等式的条件,有时需将一些项作适当的变形,拆为多项之积,从而达到凑积或和为定值的目的。

均值不等式的正确使用及例题

均值不等式的正确使用及例题

均值不等式的正确使用及例题利用不等式求最值,要注意不等式成立的条件、等号成立的条件以及定值的条件,初学不等式时容易用错,现通过比较来说明均值不等式的正确使用。

(一)均值不等式有许多变形式子,使用哪一个不等式要选准 均值不等式是指),(2+∈≥+R b a ab b a ,它的变形式子有2)2(b a ab +≤,222b a ab +≤,≤+2)(b a)(222b a +等。

由此可知,在求ab 的最大值时至少有两个不等式可供选择,那么选择哪一个更好呢?通过比较发现,若已知b a +是定值,求ab 的最大值可使用第一个不等式;若已知22b a +是定值,求ab 的最大值可用第二个不等式,若求b a +的最大值可用第三个不等式。

(二)使用均值不等式求最值,定值是前提例1. 已知正数a 、b 满足3222=+b a ,求12+b a 的最大值。

(三)连续使用不等式(连续放缩)求最值,等号必须同时成立例2. 已知0>>b a ,求)(42b a b a -+的最小值。

二. 均值不等式的应用(一)用于比较大小例1.若b a >1>,b a P lg lg ⋅=,)lg (lg 21b a Q +⋅=,2lg b a R +=,则( ) A .P R <Q <B. Q P <R <C. P Q <R <D. R P <Q < 例2.若)0(21>++=a aa p ,≤-=1(arccos t q )1≤t 则下列不等式恒成立的是( ) A. q p >≥π B. 0≥>q p C. q p ≥>4 D. 0>≥q p(二)用于求取值范围例3. 若正数a 、b 满足3++=b a ab ,则ab 的取值范围是 。

(三)用于证明不等式例4. 已知i 、m 、n 是正整数,且<1n m i <≤,求证:.)1()1(m n n m +>+三. 均值不等式中等号不成立时最值的求法利用均值不等式求最值是高中数学中常用方法之一,应注意“一正二定三相等”。

例谈均值不等式的运用

例谈均值不等式的运用

a
a
a
)-2%
)-2
, 即)%3时, 等号成立.
又) +
l " a 恒成立, 所 以 a$ 4 , 故 a 的取值范围为 )-2
78
十 • ?炎 , ? 高中版
2017年 1 2 月
解法探究
教学 参谋
a! 4 .
题型四: “乘项 ” 构造使用不等式的条件 例4 已知#> 0 , %> 0 ,且 丄 + 上 = 1 (求 的 最 小 值 . # % # (2 # ^ , 所以 2 # ^ ! % #% #%
co s2" , 得#%= sin 2 ".c o s2" = 丄 sin 2 2", 即0 < # % ! 丄 , 再令 4 4
#%=.,得 0 < . ! 丄 ,为 此 等 价 构 造 新 函 数 / ( ) = . + 丄 4 t — .! + ), 求它的最小值.以下同策略一. 策略三 :由#+%=-1得%=-1-#, 又因为%<0,即-1-#<0, 得 -1<#<0,所 以 #%+1=-#-#2- —^ , 为此等价构造新函 #% #+#2 数 2 (#)=-#-#22#+ 2 (-1<#<0), 求 其 最 小 值 .2’ (#)=-1 #+#2
1, 所以#% " 36 , 当且仅当丄( 土, 即%(9#时 , 等号成立. # % 又#> 0 , % >0 , # + % " 2 # # % ( 12 , 当且仅当#(%时等号成 立, 故#&%的最小值为 12. 误解原因: 两次等号成立的条件不能同时成立, 故 结果有误" 1 9 正 解 :因为#> 0 , % >0 ,所以#+%=(#+%) |— & = 10+ \# % /

均值不等式的证明方法及应用word文档良心出品

均值不等式的证明方法及应用word文档良心出品

均值不等式的证明方法及应用摘要均值不等式在不等式理论中处于核心地位,是现代分析数学中应用最广泛的不等式之一。

应用均值不等式,可以使一些较难的问题得到简化处理。

本文首先系统全面地总结了均值不等式的十种证明方法,其中包括柯西法、数学归纳法、詹森不等式法、不等式法、几何法、排序法、均值变量替换法、构造概率模型法、逐次调整法、泰勒公式法;其次, 结合相关例题给出均值不等式在证明不等式、比较大小、求最值、证明极限的存在性、判断级数敛散性、证明积分不等式方面的应用。

关键词:均值不等式;数学归纳法;最值;极限;积分不等式页20共页1第PROOFS AND APPLICATIONS ON A VERAGE VALUE INEQUALIT YABSTRACTAverage value inequality occupies a core position in inequality theory and is one of themake inequality can modern mathematics. Using average inequalities most widely used insome difficult problems simple. In this paper, ten proof methods of average value inequalityinduction, mathematical method, summarized, including Cauchy are first systematicallyJensen inequality, inequality method, geometry method, sorting method, variable substitutionadjustment successive model method, constructing method of average value, probabilitymethod, Taylor formula method, respectively. Secondly, we give applications of average valueinequality combining the corresponding examples on comparing the size, solving maximumand minimum, proving the existence of the limit, judging convergence of series and provingintegral inequality.Key words average value inequality; mathematical induction; maximum and minimum;:limit; integral inequality页20共页2第目录前言--------------------------------------------------------------------- 41 均值不等式的证明方法--------------------------------------------------- 51.1 柯西法------------------------------------------------------------ 51.2 数学归纳法-------------------------------------------------------- 61.3 詹森不等式法------------------------------------------------------ 71.4 不等式法---------------------------------------------------------- 71.5 几何法------------------------------------------------------------ 81.6 排序法------------------------------------------------------------ 91.7 均值变量替换法---------------------------------------------------- 91.8 构造概率模型法---------------------------------------------------- 91.9 逐次调整法------------------------------------------------------- 101.10 泰勒公式法------------------------------------------------------ 102 均值不等式的应用------------------------------------------------------ 122.1 均值不等式在证明不等式中的应用----------------------------------- 122.2均值不等式在比较大小问题中的应用--------------------------------- 132.3 均值不等式在求最值问题中的应用----------------------------------- 132.3.1 均值不等式求最值时常见错误 --------------------------------- 14 2.3.2 均值不等式求最值“失效”时的对策 --------------------------- 16 2.4 均值不等式在证明极限的存在性时的应用----------------------------- 172.5 均值不等式在判断级数敛散性中的应用------------------------------- 192.6 均值不等式在证明积分不等式中的应用------------------------------- 193 结论------------------------------------------------------------------ 21参考文献:--------------------------------------------------------------- 22 致谢-------------------------------------------------------------------- 23页20共页3第前言不等式在数学的各个领域和科学技术中都是不可缺少的基本工具, 而均值不等式是重中之重. 通过学习均值不等式,不仅可以帮助我们解决一些实际问题,还可以培养逻辑推理论证能力和抽象思维能力,以及养成勤于思考、善于思考的良好学习习惯. 因此,研究均值不等式的证明方法及应用,是一个既有理论意义又有广泛现实意义的问题.均值不等式的证明及运用均值不等式来解决数学中的某些问题,在数学研究中历历可见. 如,比较大小、求函数的最值、证明不等式常利用均值不等式的方法进行解答.均值不等式还是高等数学中最基本的运算之一,作为最基本不等式,在解决高等数学问题中也发挥着重要的作用. 运用均值不等式可以使复杂的问题简单化,繁琐的问题清晰化.??1最先运用了均值不等式,证明了球和圆柱的相关问题.此后科著名数学家阿基米德学家们对均值不等式的证明方法进行了深入的研究,并在此基础上把均值不等式应用到了其他领域. 当前, 我国许多学者对均值不等式的证明方法及应用进行了大量的研究??8??142?.如,陈益琳在学生利用均值不等式解题时遇到的常见问题作了总结性的工作.??9冉凯对均值不等式在数学分析中的应用做了探讨. 均值不等式在解决许多问题中发挥着重要的作用.本文将对均值不等式的证明方法及应用进行归纳和总结.页20共页4第1 均值不等式的证明方法. ,我们给出均值不等式首先是个正数,则定理1 设a,...,,aan n12a??a?a??n12,1?1aaa??n n21n.上式当且仅当时等号成立a?aa??n12我们把以后简称均值不等式. 上述不等式我们称之为算术—几何平均不等式,a??a?a n12分别记做个数的算术平均数和几何平均数,和分别叫做这aaa?n n n12n??????)aa?AGAaa(G.式即为和,(1-1)nnnn.下面给出均值不等式的几种证明方法柯西法1.12. ,由于.,得有当时0?a0,a?a?2aa(a?a)??0a2n?21212211)aa??a)?(a?a?a?a?(a,当时4?n42241331aaa4aa?aa?2aa?4aa?2a.4433423112142)?aa?aaa?a)?(?(a?a?时,当8?n85413627.aaaa?8aaaa?a4aaaa?4aaa8448541123747825663n令次之后将会得到, 这样的步骤重复a?a??a??n1221?A?aa,a?a,a?;a???a?2nnnn?111?n2n有1nn A)?nnA?(2?1nA?aa?(aAa?a)aA??222nn1122n2即n n2?nna?a??a n12?a?aa.n n21n这个归纳法的证明是柯西首次提出的,我们将它称之为柯西法.页20共页5第1.2 数学归纳法证法一当时,不等式显然成立. 2n?假设当时,命题成立. kn?则当时,1k?n?a?a??a?a11?k2k.,a?aG?a?A1k?1K?1?2K?1k11k?因为具有全对称性,所以不妨设ai a?min{a|i?1,2,,k,k?1}a?max{a|i?1,2,,k,k?1}.,ii11k??????AA0a?a?aa?A?.于是以及显然 ,,1?11kK?1?K1k?K?11A(a?a?A)?aa. 1kKK?1?111?k?1所以(a?a??a?A)AA?kA(k?1)121?K1k?1K?1KK?1???A?1?K kkk)(a?a?Aa??a?2?11kKk?1.=)A?a??aa?(a k1K1k?112?k?k k?aa(a?a?AA)A,得即两边乘以1Kkkk??1112?1?KK?1?1k??GaAaa(aa)aaA(a??A)?.2K?k1k112kK?1k?11k?1?1K?A?G.从而,有11K??K??aGa)?A(. 所以,由数学归纳法,均值不等式对一切成立,即n nn 证法二当时,不等式显然成立;2?n假设当时成立.kn?k1?G?G?k?(k?1)a,于是则当有1n?k?k时,1??1kk?1k1k?111G?1)a?(k1k?1k?)??G(GaG(G?) kk22k1k?1kk?1k?k a?(k?1)Ga?(k?1)G11k??k11?1k?1k?)??)(A?(G .kk2k2k2k?G?(k?1)A?(k?1)GG?A.,所以所以1?k1?1k?k1?1?kk页20共页6第当且仅当且时等号成立. G1)(k?k?G?aa?G?1?k?1kkk?1k??.G a A(a)?由数学归纳法知,均值不等式对一切成立,即n nn1.3 詹森不等式法f(x)xII,对任意)若的凸函数为区间,上式引理1(Jensen不等?in???,则,且1?)n1,?0(i?2,,ii1?i nn????x)()f(?fx (1-3)iiii1i?i?1成立.下面利用詹森不等式证明均值不等式.a?0(i?1,2,n,)令由,于易令 ,,知在是凸函数.)(0,f(0)x)ln f(x)??x??(x?i1?,1有下式,则由引理?i na?a??a1ln(?n12.)a??ln?(ln a?ln a)?n21nn则?a?a?a11a ln(n21,)a ln(a(ln)?a?ln a?)?a?ln nn2121nnn因此1a??a?a a ln(n21)a?ln(a),nn21n即a?a??a n12,a?aa?n n21n aa?a??.当且仅当时等号成立n121.4 不等式法x?1?ex进行推导在均值不等式的证明中,可以运用一个特殊的不等式.xx e)?ef(x?f(x)应用迈克劳林展开式并取拉格朗日余项得:设,对1?xx2x1?xe?e?, 2页20共页7第x?.当因此, 时,等号成立,, 其中, .. x1e??00xx?00???1x?. 下面给出均值不等式的证明过程n?0?x.,使取一组数,.令A(1?x)a?xn1,2,,k?knkkk1?k x,可得全为零时,取等号)则由(e??(1x)x k kk111nnn??nx???k,AeAG?(a)??(1?x)A?nn??nknknn??1k?k?1k?1)G(aA(a)?.所以nn 1.5 几何法x ex G?y)e(G,可见这条切线,,作函数的图像它是凸曲线,并在点处作切线e?y n n G na ea i Gi .所因此,可以得以到见在函数的下面(图),0?e?)n,i?1,2,3,(11?n G n)??aa?a(ea n12nA eaea Gnnn21?nA?G e)((e?()?)?,,即且从上述证明中可知,,于是n nn G GGG nnnn G??a?a?a.时,等号成立当且仅当nn121-1图页20共页8第排序法1.6aaaaaaaaa n12112?n1211??xx??x?x,取其中的一个,做序列: ,…,,n112n?n1n2?GGGG nnnnaxaaxx nn2211???1?b?xxb?xb?,则,…,,,…,,排列. :n11n1?2n GbbGbG n2n1nn111???0?0x?x??x?则由排序原理可知不妨设..n12xxx2n1xxxx111n321??????x???x??n?x , 21n xxbxbbb2n3n112aaa aa??a?n21n????n21,,即aa?a?n n12GGG n nnn)(a(a)?GA.所以nn 1.7 均值变量替换法. 本节运用数学归纳和变量替换相结合的方法证明均值不等式. 易证时,不等式显然成立2n?. 假设当时,不等式成立kn?1?k?x)1,?A(i?2,,nx?axx必有一个,不全为零设则当,则1?n?k0?设时,.1ik?iii i1i?x?x?0, ,另一个为负,不妨设 ,由于为正)?x?A(A?x)Aaa?(?x)(A?x1i2?k?11211k?1211kk?从而(A?x?x)?a??a?A k?131k?12?(A?x?x)aaa k1k?11k42?3k?1kk1?Gaa1?k21??aaa.kk14?3k AA1k?k?1?1k?1k,即 .所以GA?GA?1?1kk?1?1k?k??a)?G(Aa aa?a??0x?成立.,)时取等号故原不等式当且仅当易证,(时即n12inn1.8 构造概率模型法首先给出证明过程中要用到的一个引理.页20共页9第有则存在,变量,并且数学期望引理2 设是一个随机EXX??22?,.41)(?EXEX)EX?E(ln X ln1.其中,建立概率模型,设随机变量的概率分布为,n,i?1,2,X0?a?)?aP(X ii n,由引理2可知111nnn???aaaa,,ln??ln aa lnln n n12iii n nn1ii?1?i?1a??a?an12.成立即a?a?a n n12n1.9 逐次调整法}a?min{a}a?max{a,a,...,aa易见中必存在最值数,不妨设,. in221i1a?(a?a)a22121不变.,但是增大.于是,用,即取代AGaa,a]?a[nn122122n)?a)(a(a?a11?2121a????(a?a),i3n n22n1i?)aa)(a?(a?2121a?a?aaa? .nn3n1n222n因此,次(有限次对于各个).,这种代换至多进行1-n aa?221)?aa??AAA?G?aaa?(A.nnnn2nn3nnnn12G?Aa?a??a时,当且仅当,取等号.即n1nn21.10 泰勒公式法1x log?(x)fa?1,x?0)(0?x处展开,有,将在设,则0?)??f''(x)xf(a02ln ax''(xf)2'0)?x)?(x)x?f(x)(x?xxf()?f(.00002因此有?',n2,)b),(i?1,?x(a,a?a,)xx)(x?()f(fx)?(x?f,n1,取000i0i n1?i nnn111???'a)(i?1,2,,?(fa()?()a?f)(aan)f.从而iiiii nnn1i?11i?i?页20共页10第??????'a()a)a)?(?a?f(a)?nf((a)?fnf故,iiiiii nnn11i??1i??11ii?1?ii1nn111)??a?a(a??n12aaa nnnnnn111)loglog???log?(log)(f()a?af,即.因此有n n21iiaaaa nnn11i?i?1111)a?a?(a?)a(a???a nn12n12)a(a?a)(a?aa1)?log?log(0?a loglog?,即 ,亦即nn n12n12aaaa na?a??a n21.,故有)1,n2,,0,a(?i?aa?a?n in12n页20共页11第2 均值不等式的应用2.1 均值不等式在证明不等式中的应用一般不等式的证明,常常考虑比较法,综合法,分析法,这是高中比较常用的方法,但有些不等式运用上述方法不好入手,故考虑均值不等式或者均值不等式与综合法相结合,这样处理,常常使复杂问题简单化,从而达到证明的目的.下面举几个例子予以说明.111. 且.求证例1已知为互不相等的正数,?b?c??a?c,a,b1abc?abc1111/b?1/c1/a?1/c1/a?1/b111???b??c??????a.证明bcacab222abc.故原不等式得证22b?a?b?1?aba?.证明例22222ab?2b??ba2b2a1??a1?.,证明由均值不等式得,,????2222ba??ab??1ab?原不等式得,即有,以上三式相加得,. bab?a?a?b1??22.证1,两弦和的半径为均与直径例3设圆交,记与和的交o CD?45CDEFEFABAB 2点分别为和Q,求证 .1?PD?QF2PC?QE?2P1?2图证明如图,设为弦的中点,连接,,则△为等腰直角三角形,POMCOCDMOM?12且.MOMP?222222222CO2?MO?)MC?MC)?(MPMCPDPC??(?)?MCMP?2(?MP)2(页20共页12第211??.??2??22??122. 同理,??QEQF2由均值不等式得,2222QF?PCPD?QE?QFQE?PD??PC?222222)??PDQF)?((PCQE?211?122.??22.即,原不等式得证1?QE?2PD?QF2PC? 2.2均值不等式在比较大小问题中的应用准确巧妙地运用均值不等式是快速解决这比较大小问题是高中数学中常见的问题,.类问题的关键ba?1之间试判断若,,,,例4lg R)Q?(lg a?lg b?bp lg a??lg RP,Q,1a?b?22.的大小关系由均值不等式,得解1.Pb?)b?lg a?lg Q?(lg a?lg21a?b.Q??lg b)abR?lg?lg?(lg a22.即由于,所以不能取等号,Pa?bQ?R?ba?,2.3 均值不等式在求最值问题中的应用是重要知识点解决一些取值范围问题时运用非常广泛,均值不等式在求函数最值,达到解,,我们应因题而宜地进行变换,并注意等号成立的条件在实际应用问题中之一.熟练运用该,利用熟悉知识求解是常用的解题技巧,,题的目的变换题目所给函数的形式.,对于提高思维的灵活性和严密性大有益处技巧例5求下列函数的值域:页20共页13第112;(1) (2). y?y?3x?x?2xx21122?x3x? =6y?3?2,解 (1)因为. 所以,. 值域为)6,+?[22xx2211?xy??2x??2时,(2)当. 0?x xx111-2?x??)?y?x??2???(x值域为,故时当,.??)]?[2,(-?,-20x?xxx . 的最大值求函数例6若,)x3x(8?3f(x)?2?0?x)3xx?(8?3????xf,的最大值是.解因为, 所以,故4x(8?3x?3fx) ??20??x24.使r h 和底面半径的比为何值时,例7制作容积一定的有盖圆柱形罐头, 当圆柱高)用的材料最省? (不计加工损耗VVV2V322222??????, 解 ,设圆当且仅当rr2???2?rh22r?Vr??32?2?S rrrr233???即圆柱形的高与底面此时有,故即 , 时, 材料最省. h2rrV?2?r2:1?h:r.使用的材料最省时,半径之比为2:1均值不等式求最值时常见错误2.3.1;(3)定正;(2)运用均值不等式解题是一项重要内容,运用这种方法有三个条件:(1)或不等式之间进行缩小, .在此运用过程中,往往需要对相关对象进行适当地放大、相等.,而且错误不易察觉,在此过程中,学生常常因为忽视条件成立而导致错误传递等变形.,就这一问题列举几个例子进行说明因此1??. 求的值域例81y?x??x1?x我们常常写成在解题时,分析111??31????1??12x??yx?1?x,1?1x?x?1x1????y?3,与1x?忽视均值不等式中,虽然.故但的积是常数,不一定是正数1?x1?x.下面给出正确解法因此解法是错误的的各项为“正”致错, .页20共页14第111???11?3??1?2y?x??x?x?1,当且仅时解当,当1 ?xx?11x?1x?1,即时等号成立; ?1x?2?x x?1111???1??x?1?y??x?211?1?x??,,所以,当时1?y?1?x1?x1?x1?x????. ?????,?13,当且仅当时取等号,所以原函数的值域为0?x2?5x的最小值.例9求?y24x?分析在解题时,我们常常写成22?4?1?5x1x122?2??2xy??x4??4?,22224?4?44xxx?x?1 22??x4,即2.可是在当且仅当中,这是不可,所以的最小值是3x??y2?y24?x能的,所以等号不成立,这个问题忽视均值不等式中等号成立条件.故原式的最小值不是2.下面给出正确解法.11122?y?x4??y??ty?t在(),中,令, 则解在易证4??tx2t?tt24x?152,,即当且仅当,取时上递增,所以的最小值是,?2?y2x??4)??[2,0xt??222号.”“?例10若正数满足,求的最大值.xyy,x6y?x?22yx???即,仅当且常常写成,当且解分析在题时,我们y?x6?x?2y?xy?? 2??xy其实很有道理, 4.初看起来可得时取号, 将其代入上式,,的最大值为2??xy”?“在用均值不等式求最值时,在各项为正的前提下,应先考虑定值,再考虑等号是否成立.2y?x??xy这个问题忽视了均值不等4.的最大值不是所以不是定值中但在,,y?x?xy??2??.下面给出正确解式中积或和是定值的条件.页20共页15第2392y1x?1??取此时)当且仅当时(解因, y?2x?3,yx?”“????2y?xxy???22222??9??. , 所以号?xy max22.3.2 均值不等式求最值“失效”时的对策.运用均值不等式是求最值的一种常用方法, 但由于其约束条件苛刻,在使用时往往顾此失彼,从而导致均值不等式“失效”. 下面例说几种常用的处理策略. 4.,求的最大值例11已知?xy?lg 1?0 ?x lg x从而有,因为,所以,解00??lg xx lg? 1?0 ?x??4??,44????y??2?lg x??lg x??14y??4?x??lg. 即即,当且仅当时等号成立,故?x 4y??max lg x1004??4lg x为定值,本题满足但因为,,所以此时不能直接应用均0?lg x 10 ?x?lg x值不等式,需将负数化正后再使用均值不等式.1????x0的最大值.例12求)x(1 ? 2y?x??2??21x1?2211x???????解,??12x1?2x???2x??y?x??8222??11y?x?. 故当且仅当,即时等号成立.x2?1?2x max48本题不是定值,但可通过平衡系数来满足和为定值.)2x?x?(164?y?a.13已知求的最小值,例0b?a???bba?646464??3??ba?b?b??3?y?a?6412?a?b,,解当且仅当??????bb?a?bbbaa?by?12.时等号成立,即.故4? 8a?b min页20共页16第64?a.但可通过添项、减项来满足积为定值不是定值本题 ,??bba?4?.,求的最小值例14 已知?x?y sin?0 ?x x sin33141??. 解5????y?sin x?sin x???2sin x??1x sin x sinsin x sin x??31. .故且,即当且仅当时等号成立5y?3??x sin1x?sin min x sin x sin44故可通过拆项来满足等号., 本题虽有为定值但不可能成立?sinsin x?xxx sinsin.成立的条件25xx??45???xf______.则15 已知,有例?x4?2x255??????. BAC1. 最小值最小值最大值1 最大值)D(442??21?x?2151?4x?x1?????????x?2x????1f,,解当且仅当??2x????2xx?2x2?42?22x??? . 时等号成立.故选即)(D3?x便可创造出使用均值不等式但对函数式进行分离,本题看似无法使用均值不等式,.的条件 2.4 均值不等式在证明极限的存在性时的应用需证明数列单调极限概念是高等数学中的重要概念,在证明数列极限的存在性时,.下面举例说明而在此过程中便运用了均值不等式的相关内容及数列有界..1n.例16证明重要极限的存在性e)?lim(1?n??n1n.}单调递增先证数列证明 {)?(1n1??11?1?a?a?1?aa??,,则由均值不等式,令得1n?n21n11111?(1?)?[(1).1???(1))?1](1?.nn1nnn?1n?个n个n11n?1)?(1?,即1n?nn?1页20共页17第11n?1n.所以)?? (1?)(1nn?11n}单调递增{.所以数列)(1?n1n}有上界{.再证数列)(1?n11nk?1({为正整数)}以下面的证明可以看到一个更强的命题:数列)(1?)??(1Mk nk为上界.11n?1k?1., 当先证不等式, 时)(1?)??(1k?n nkk设,.1a?a????a?a?a n2k?11?2k k?1k1knk1n?k?)?1?([(k?1)??(n?k)]?,由均值不等式1n?k?1n?1k?1n?1kn11n?1k1?n?11k?. ,因此,所以)?)?)?()(1(1(?k?1n?1nk11111nn?1nk?1.所以,,其次由有)?(1?)?)???1?1(1(1(1?)nnnnk11k?1n},的上界{.均是数列当时,任取一个正整数)M?(1?)(1?kn?k kn111nnk?1仍然成立时,不等式又数列{.}单调递增,所以,当)??(1(1?)?)(1kn?nnk111nnk?1(为正整数). 因此,对于数列 {恒有}, 任)(1?(1?))??(1)(n1,2?k nnk11k?1n}的上界均是数列意选定一个值,{.)?(1M?(1?)k kn11nn} 极限存在{.极限值单调有界,由单调有界定理,所以数列{数列} )?(1(1?)nn1n.,即为e)?lim(1?e n??x1n?1}极限存在且其极限是证明数列{.例17)?(1e n1n?1}{(1?)x?.证明令n n n??11)(n?n?1n1n11?n2?nn?21n?1n??([)(?)?]??().x2n?n?1n?nx1?21?nn????xx0?x有下界,则数列. 又,所以数列单调减少.nnn页20共页18第111??n1n?)1?(?)((l)?im?1?l1im. ??nnn??????nn11n, 所以因为和的极限都存在)?(1(1?)nn111??n1n?e?(1?(1?lim(1?)))??lim. ??nnn????n??n11?n 数列{.}极限存在且其极限是因此, )?(1e n n1?n lim.18 证明例??n:)有由均值不等式(1-1证明1????1?n?1n n n?n?n?n?11??n??个?2n2n?n?22, 1???nn2nn n?1lim?n?0?1.从而有 ,故n??n2.5 均值不等式在判断级数敛散性中的应用均值不等式的应用很广泛,在证明级数的敛散性时也有很重要的应用.????aaa.收敛,证明级数已知正项级数也收敛例191n?nn1n??n11a?0,由均值不等式,有因为,,已知级数证明)aaa?(?a)(n?1,2,n1n?1nn?n2????111????)aaa(a?a从而级数与都收敛,收敛,所以级数再由比也收敛,?aa收敛较判别法,知级数.1nnn?n?1n2221n??1n?1n?1n?1n?nn?12.6 均值不等式在证明积分不等式中的应用积分不等式是一种特殊的不等式,而均值不等式又是证明不等式的重要方法.因此,在积分不等式的证明中我们自然会想到运用均值不等式来进行证明. ??ba,上是正值可积的, ,在20例证明函数且,则nk?1,2,(f)x b0?a?页20共页19第??nnnn????.1111bbbb??????dxf(x)dx)?f()ff(x)?dx(x)dxxf(x)?f(x??????n1n221??????aaaa a??a?an12,证明有利用.a?a?a n n21n)xf()(xf(x)f???dx)xf()dx)dx(ffx(x n12aaa??f(x))xf(x)f(1??n.n21?bbbn12??????bbb n???dx))f(xdxff((x)dxx????n21aaa111????????nnn??)xf()x)f(xf(??b???????n12于是dx?????????bbba???dxx)ff(x)dxf(x)dx(??????????????n21aaa???????dxx(x)dx)f(ff(x)dx1??n21aaa,1?????bbb????bbb n???dxxdx)f(f(x)dx)f(x????n21aaa1111bbbb????????nnnn????. 即dx(x)f)?f(x)ff(x)dx?(xf(x)dx)?dxxf(??????nn2112??????aaaa1?1dx)(x ln f?.在上非负连续,证明例21设dx)(?xfe)(fx[0,1]00证明由题设知在上可积,将等分,作积分和n()fx[0,1][0,1]1nnn i1ii1??????)?lim(f)f(xdx. ,)f)?limlnln f(x)dx?lim(ln f(??nn nnn0??n0??n??n??1i?1i?1?i11nn11????n??)e?ef lim(?. 所以??1?i0??n??n??1?i a?a?...?a n12?a?aa得由均值不等??n i?1)f(limln n??i??n?dxx)ln f(n式,???.n n12n1nn i1i??n1dxx)f((f)?lim)f(lim???nnn0????nn??1?i1i?1?1dx)ln f(x?.故dx)e?(fx00页20共页20第3 结论均值不等式是数学中的重要内容,对培养数学思维发展有很大帮助.本文重在梳理均值不等式的相关证明方法和应用.如,运用均值不等式时,一定时刻谨记一正、二定、三相等原则,具体问题具体分析,有时可以通过转化达到运用均值不等式解题的目的.本文系统地归纳总结均值不等式的各种证明方法及其在具体解题分析和论证推理过程中的应用.通过本论文的撰写,更深刻地理解均值不等式在证明问题和解题中的重要作用.页20共页21第参考文献:[1]中译本(朱恩宽、李文铭等译):《阿基米德全集》[M]. 西安:陕西科学技术出版社,1998.[2]陈侃.算术-几何平均值不等式的证明[J].巢湖学院学报,2008,6(3):129-130.[3]熊桂武 .概率方法在不等式证明中的应用[J].重庆师范大学学报,2003,12:89-91.[4]敦茂.算术平均值与几何平均值不等式的各种证法[J].云梦学刊,1980,1(3):65-80.[5]Norman schaumberger.A coordinate approach to the AM-GM inequality[J].Mathematics Magazine,1991,64:273.[6]刘鸿雁.由Jensen不等式导出某些重要不等式[J].成都大学学报,2003,22(3):32-35.[7]匡继昌.常用不等式[M].济南:山东科学技术出版社,2004.[8]陈益琳.高中教学导练(高二)[M].北京:冶金工业出版社,2004.[9]冉凯.均值不等式在数学分析中的应用[J].青海师专学报,1997,4(2):35-38.[10]赵建勋.浅谈均值不等式的应用[J].高中数学教与学,2011,5(3):7-10.[11]蓝兴苹.均值不等式的推广与应用[J].云南民族大学学报,2006,15(4):22-24.[12]高飞、朱传桥《高中数学教与学》[M]. 济南:山东科学技术出版社,2007.[13]章国凤.均值不等式在高等数学中的应用[J].广西教育学院学报,2008,05(1):151-152.[14]陈复华.均值不等式在微积分中的应用及其它[J].湖北民族学院学报(自然科学版),1994,2(3):88-89.页20共页22第致谢毕业论文暂告收尾,这也意味着我在鞍山师范学院四年的学习生活既将结束。

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧均值不等式是一个常用的不等式工具,在解决很多求最值问题时会起到很大的帮助。

它的核心思想是通过找到相应的均值来构造不等式,从而得到最值的估计。

下面,我将详细介绍均值不等式的方法和技巧。

1.算术平均-几何平均不等式(AM-GM不等式):AM-GM不等式是最常见的均值不等式,它表明对于任意非负实数x1,x2, ..., xn,有如下不等式成立:(x1 + x2 + ... + xn) / n ≥ √(x1 * x2 * ... * xn)这个不等式的意义在于,对于一组非负实数的和,取平均值一定大于等于这组数的乘积的正平方根。

这个不等式常常被用于证明其他数学结论的基础。

2.幂平均不等式:幂平均不等式是一组关于算术平均和几何平均之间关系的不等式。

对于任意非负实数x1, x2, ..., xn,以及实数p,q,有如下不等式成立:[(x1^p + x2^p + ... + xn^p) / n]^(1/p) ≥ [(x1^q + x2^q + ... + xn^q) / n]^(1/q)这个不等式是一个广义的不等式,AM-GM不等式就是其特例(p=q=1)。

使用幂平均不等式可以推导出很多常见的不等式,如柯西不等式、余弦不等式等。

3.杨辉不等式:杨辉不等式是一组与二项式系数相关的不等式。

对于任意自然数n,以及实数a,b,有如下不等式成立:(a+b)^n≥C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n这个不等式是二项式定理的推广,它可以用来证明其它不等式,如二项式不等式、二项式平均不等式等。

4.切比雪夫不等式:切比雪夫不等式是一组关于平均值和取值范围之间关系的不等式。

对于任意一组具有有限均值μ的实数x1, x2, ..., xn,有如下不等式成立:P(,x1-μ,≥k)≤(σ/k)^2其中,σ是x1, x2, ..., xn的标准差,即σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / n这个不等式的意义在于,对于平均值给定的一组数,其离平均值较远的数出现的概率是受标准差的限制的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例谈均值不等式的运用条件和技巧
例谈均值不等式的运用条件和技巧
运用均值不等式“121212
,,
,,n
n n n a a a a a a R a a a n
+++
+∈≥若则
当且仅当
n a a a === 21(2)n n N ≥∈且时等号成立”求最值是中学数学求最值的基本方法之一,许多外形与它截然相异的函数式,常常也能利用它巧妙地求出最值.且运用均值定理求最值是历年来高考的热点内容,因此必须熟练掌握他的运用条件和运用技巧.
一、重视运用过程中的三个条件:“一正、二定、三相等”,三者缺一不可。

(1) 注意“正数”
例1、求函数1
y x x
=+的值域 .
误解:12x x +
≥=(当且仅当1x =时取等号),所以值域为[)2,+∞.
这里错误在于使用均值定理ab b a 2≥+时忽略了条件:+∈R b a ,
正确解法:1()0,2(1)a x x x x >+
≥=当时仅当时取等号;
11
()0,0()()2(1)2
b x x x x x x x <->-+-≥==-∴+≤-当时而仅当时取等号所以函数的值域是{}22y y y ≤-≥或. (2) 注意“相等”
例2、设+∈R x ,求函数21
3x
x y +
=的最小值. 误解:拿到很容易想到用均值定理,所以有
3min 3322232312312,=∴=⋅⋅≥+
+=∈+y x
x x x x x y R x .
这里的错误是没有考虑等号成立的条件.显然要2
1
2x x x =
=,这样的x 不存在,故导致错误.此题用均值定理,需要拆项,同时要等号成立,需要配一个系数.
正确解法:时取等号)
233221
23(182312323312323x
x x x x x x x y ==⋅⋅≥++=
. 所以2
18
3,3183min 3
=
=y x . 例3、的最大值求且有设by ax y x b a R y x b a +=+=+∈,6,3,,,,2222.
误解:2222222219
,()(1)2222
a x
b y ax by ax by a b x y ++≤≤∴+≤+++=
所以by ax +的最大值为
2
9
. 这里(1)取等号的条件是仅当b y a x ==,;由条件知这是不可能的,所
以不可能取到上述的最大值.
正确解法:22222222
22,()()
()a x b y axby a b x y ax by +≥∴++≥+仅当
ax by =时取等,所以222236ax by ax by a b x y =⎧⎪
+≤=+=⎨⎪+=⎩
时取等号.
如取23)(,3,2
6
max =+===
=by ax y x b a (3)注意“定值”
例4、已知的最大值求y x R y x y x 2,,,12+∈=+.
误解:12),(27
)2()3(
3
32
=+=+=++≤y x y x y x y x x y x 又时取等当, 27
1
,312≤==∴y x y x 时.
以上过程只能说明当27
1
312===y x y x 时.但没有任何理由说明,2712≤y x 这种似是而非的错误解法,关键在于运用重要不等式放缩后的式子不是定值,致使得不出正确的结果.
正确解法:
27
2
)322(41)34(41441,,332=+⨯=++≤⋅⋅⋅=
∴∈+y x y x x y x x y x R y x , 所以仅当24212
,,,213627x y x y x y x y =⎧==∴⎨+=⎩即时取等号最大值为.
二、常用的处理方法和技巧
(1) 拆项:为了创设使用不等式的条件,有时需将一些项作适当的变形,拆
为多项之积,从而达到凑积或和为定值的目的。

为了使等号成立,常遵循“平均分拆”的原则. 例5、求函数)0(3
22>+=x x
x y 的最小值. 解: x
x x y 23
2322+
+
=时取等号)x x x x x 232(36232323232332==⋅⋅≥,
所以仅当min x y =
=(目标求和的最值,所以凑积为定值,因此拆x
3
为相同两项,同时使得含变量的因子x 的次数和为零)
(2) 裂项:常用于分式形式,且分子所含变量因子的次数比分母的含变量因
子的次数大或相等时用此方法。

例6、设1->x ,求函数1
)
2)(5(+++=
x x x y 的最小值.
[(1)4][(1)1]
14
15
1
4
59(11
x x y x x x x x ++++=
+=++++≥=+=+解:取等号)
所以仅当9,1min ==y x 时.
(先尽可能的让分子变量项和分母相同,然后裂项转化为求和的最值,进而凑积为定值。

即使得含变量的因子1+x 的次数和为零,同时取到等号) (3) 添项:求和的最小值时,为了使积为定值,需添加某个项. 例7、求函数2
2216
3x
x y ++
=的最小值.
2222
163(2)66216
3(2)2y x x x x =++-≥=++=+解:当且仅当取等号
所以当638,233
4
min -=-±
=y x (求和的最值,尽可凑积为定值,因此添加6,再减法6,即使得含变量的因子22x +的次数和为零,同时取到等号).
例8、若y x y
x y x +=+>>则且,19
1,0,0.的最小值.
解:
1999()()191016(y x y x
x y x y x y x y x y +=++=+++≥+==时取等号)
所以仅当⎩⎨
⎧==⇒⎪⎪⎩⎪
⎪⎨⎧=+=1241919y x y
x y x
x y 时y x +的最小值为16.
[所以求变量出现在分子,已知条件变量在分母,为此添上1(即乘1即乘
y
x 9
1+),变为求和的最值,因此凑积为定值,即使得含变量的因子x y 的次数
和为零,同时取到等号]
注意:例8这种解法也叫用“1”的技巧.
4、凑系数:为了求积的最大值,常将因式放入根号内,同乘或同除以某个正数,使含变量的各因子之和为常数.
例9、求函数)10(122<<-=x x x y 的最大值. 解:
9
32)3122(4)1(224)1(1322
222
22422
=-++≤-⋅⋅=-=-=x x x x x x x x x x y (仅当2212x x -=时取等号)因此仅当9
3
2,36max ==y x . (把变量都放在同一条件下的根号里,求积的最值,凑和为定值,因此配变量x 次数相同且系数和为零,且取到等号)
例10、已知,20<<x 求函数)4(62x x y -=的最大值.
解:)4)(4(218)4(360,20222222x x x x x y y x --⋅⋅=-=∴>∴<<
,+
∈R
x 224x x ≤==-取等号)
因此仅当.3
3
32,332max ==
y x (求积的最值,凑和为定值,因此首先配变量x 次数相同,故把变量放到根号内使次数升高,再配次数相同和系数和为零,且取到等号)
5、分子变量常数化:常用于分式形式,且分子所含变量因子的次数比分母的含变量因子的次数小时用此方法.
例、11设求函数4332
+=x x y 的最大值.
解:由题2
2
3
2
4223434
3x x x x
x x x y ++=
+=+=
而,+∈R x 取等号)23224
2(34223422x x x x x x x x ==⋅⋅≥++∴
所以仅当1,2max ==y x .
(分子变量因子次数比分母的小且变量因子不为零,可同时除以分子所含变量因子化为前面形式解)
6、取倒数:已知变量出现在分母,所求为变量积且出现在分子,可取倒数再如前面一样求解.
例12、已知13
4,,=+∈+y
x R y x ,求y x 2的最大值.
解:32223112231123
()(12123324x x y x y x x y x y
++
=⋅⋅⋅≤==时取等号)
因此仅当324)(,961343
2max 2=⎩⎨⎧==⇒⎪⎪⎩⎪
⎪⎨⎧=+=y x y x y
x y x。

相关文档
最新文档