有界线性算子
第二章线性有界算子

下的矩阵为
1 0 1 1 1 2
1 0 0
求T在基1=(1,0,0)T, 2=(0,1,0)T, 3=(0,0,1)T下的矩
阵。 4.设T是线性空间V(F )上的线性变换,证明:
T的不同特征值对应的特征向量是线性无关的。 证明:设1,2,…,s为T的所有不同的特征 值,相应的特征向量分别为x1,x2, …,xs.
第二章 线性有界算子
1.判断下面定义的变换,哪些是线性的?哪些
不是?
(1)在R3中,x=(a1,a2,a3)T,Tx=(a21,a2+a3,a23)T;
(2)给定A0∈Rn×n,X∈Rn×n,TX=A0X-XA0; (3)线性空间Rn[x]中,T(f(x))=f(x+1)(f∈Rn[x]
2.在R3中,x1=(-1,0,2)T,x2=(0,1,2)T,x3=(3,-1,0)T是
2
5.设U,V是线性赋范空间,T:U→V是线性有界算
子,证明:N(T)={x∈U|Tx=}是U中闭子空间。
6 . 在 C[ a ,b ] 上定义 :
a t b a t b
( 1 )
( 1 ) x C [ a , b ], | | x | |max | x ( t ) | max | x ( t ) | 证 , :
( 1 )||x ||是 x 的范 ; 数 d (1 ) ( 2 ) 微分D 算 子 :C [ a ,b ] C [ a ,b ] 是线性有 . dt 7.设k(x,y)在区域0≤x,y≤1上连续,
( Tu )( y )k ( x ,y ) u ( x ) dx .
1
证明:T:C[0,1] →C[0,1]是线性连续算子。
P P P P 证明:P2P1是H上的正交投影算子 1 2 2 1
有界线性算子和连续线性泛函.ppt

❖ §1 ❖ §2 ❖ §3
有界线性算子和连续线性泛函 有界线性算子空间和共轭空间 广义函数大意
第一节 有界线性算子与 连续线性泛涵
1 线性算子和线性泛函的定义
设X和Y是两个同为实或复的线性空间, DT 是X的线
性子空间,T : DT Y ,x,y X ,及数α, β,成立 T αx βy αTx βTy,
(7)
III 有界线性算子和连续线性泛涵的例子
例6 赋范线性空间X上的相似算子Tx x 是有界线性 算子,且 T a ,特别
Ix 1 O 0
例7 设 X C[0,1] ,K (t, )是矩形 [0,1][0,1]上的二元连续函数,对每个x C[0,1]
定义
1
(Tx)(t) 0 K(t, )x( )d
的线性,则有
Tx T x x A(T ) (5)
引理1 设 T 是A(T )上有界线性算子,那么成立
T sup T (x) sup Tx
xA(T ) x 1
xA(T ) x 1
(6)
证明 因为
T sup Tx sup Tx sup T ( x )
x0
x
x xA(T )
xA(T )
x
xA(T )
Tx c x
(3)
则称 T是 A(T )到 Y 中的有界线性算子,当 A(T) X时,称 T 为X 到 Y中的有界线性
算子,简称为有界算子,对于不 满足条件(3)的算子,称为无界算子。本书主要 讨论有界算子。
定理1 设 T是赋范空间 X 到赋范空间 Y中的线性算子, 则 T 为有界算子的充要条件为 T 是 X 上连续算子。
lim
n
f
1.3线性有界算子,巴拿赫空间中的几个定理

§3线性有界算子,巴拿赫空间中的几个定理一、线性赋泛空间在前一节,对集合引入距离的概念,从而定义了极限下面再引入元素的加法及数乘的代数运算。
定义1:设为一集合,如果:(一)在中定义了加法,即对中的任意元素,存在相应的元素,记,称为的和,并适合:E E ,x y u E ∈u x y =+,x y E(1)(2)()(3)在中存在唯一的元素(称为零元素),对任何中的元素,有(4)在中存在唯一的元素,使称为的负元素,记为。
(二)在中定义了元素与数(实数或复数)的乘法,即在中存在元素,x y y x+=+()()x y z x y z ++=++z E ∈E θE x x xθ+=E 'x 'x x θ+='x x x −E E v记(为任何实数或复数,),称之为与元素的数积,适合:(5)(6)(是数)(7)(8)便称为线性空间(或向量空间),称中元素为向量。
若数积运算只对实数(复数)有意义,则称是实(复)线性空间。
v ax =a a x E ∈x ()()a bx ab x =,a b ()a b x ax bx+=+()a x y ax ay+=+E E E 1x x⋅=定义2:设是线性空间,是的非空子集。
如果对任何,对于中的元素都有及,那么,按中的加法及数积也成为线性空间,称为的线性子空间(或简称子空间)。
和是的两个子空间,称为平凡子空间。
若则称是的真子空间,每个子空间都含有零元素。
E M E αM ,x y x y M +∈x M α∈M E E E E {}0E M ≠M E定义3:设是线性空间的向量是个数,称为的线性组合。
若中之集的任意的有限个向量都线性无关,则称是的线性无关子集。
若是中的线性无关子集且对于中的每个非零向量都是中向量的线性组合,则称是的一组基若中存在由(有限)个线性无关向量组成的基,就说是维(有限维)线性空间,否则说是无限维空间。
E n E M M E A E E x A A E E n E n 12,,,n x x x …12,,,n ααα…11n n x x αα++…1,,n x x …引入距离,则不难验证,满足距离公理的三个条件,于是线性赋范空间就成为距离空间,今后对线性赋范空间总是按(*)式引入距离使之成为距离空间。
《Hilbert空间中有界线性算子的几类扩张问题研究》范文

《Hilbert空间中有界线性算子的几类扩张问题研究》篇一摘要:本文着重研究Hilbert空间中有界线性算子的几类扩张问题。
首先介绍了Hilbert空间和有界线性算子的基本概念和性质,然后分析了扩张问题的基本类型及其研究意义。
在此基础上,详细讨论了几类有代表性的扩张问题,包括最佳逼近扩张、插值扩张和自伴扩张等,并通过具体实例探讨了其求解方法和应用。
最后,总结了研究成果,指出了未来的研究方向。
一、引言Hilbert空间作为线性代数中一个重要的概念,在物理学、工程学、计算机科学等领域有着广泛的应用。
有界线性算子是Hilbert空间中重要的数学工具,其研究对于解决实际问题具有重要意义。
然而,在实际应用中,我们常常会遇到有界线性算子的扩张问题,即如何将一个已知的算子扩展到更大的空间或满足一定的条件。
因此,本文将针对Hilbert空间中有界线性算子的几类扩张问题进行深入研究。
二、Hilbert空间及有界线性算子基础本部分将介绍Hilbert空间的基本概念和性质,包括内积、范数、正交性等。
同时,介绍有界线性算子的定义、性质和表示方法,为后续的扩张问题研究奠定基础。
三、扩张问题的基本类型及其研究意义扩张问题主要包括最佳逼近扩张、插值扩张和自伴扩张等类型。
这些问题的研究对于解决实际问题具有重要意义。
例如,在信号处理、控制系统、量子力学等领域中,往往需要利用有界线性算子的扩张来描述系统的性质或实现特定的功能。
因此,对这几类扩张问题的研究具有重要的理论意义和应用价值。
四、最佳逼近扩张问题研究最佳逼近扩张问题是指在给定条件下,寻找一个与已知算子最接近的扩张算子。
本文将通过具体实例,介绍最佳逼近扩张问题的求解方法和应用。
此外,还将探讨其收敛性和稳定性等问题。
五、插值扩张问题研究插值扩张问题是指通过已知算子的插值条件来构造一个新的扩张算子。
本文将介绍插值扩张问题的基本类型和求解方法,包括线性插值、非线性插值等。
同时,将通过具体实例探讨其在实际问题中的应用。
第三章 有界线性算子-黎永锦

第3章 有界线性算子音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可 改善物质生活,但数学能给予以上的一切.Klein F .(克萊恩) (1849-1925,德国数学家)Banach S .在1922年建立了完备赋范线性空间的公理,证明了一些基本定理后,就讨论了定义在一个完备赋范线性空间上而取值为另一个完备赋范线性空间的算子,在这类算子中最重要的是连续加法算子,所谓加法算子是指对所有x ,y ,都有Ty Tx y x T +=+)(.容易证明,T 是连续加法算子时,必有Tx x T αα=)(成立.Banach S .证明了若T 是连续的加法算子,则存在常数0>M ,使得||||||||x M Tx ≤.另外他还证明了若}{n T 是连续加法算子序列,T 也是加法算子,且对任意X x ∈,都有Tx x T n n =∞→lim ,则T 也是连续的.Hahn H .在1922年证明了,若X 是一个完备赋范空间,}{n f 为X 上的一列线性连续泛函,且对任意X x ∈,)}({x f n 都有上界,则||}{||n f 一定是有界的.Banach S .和Steinhaus H .在1927年证明了,若n T 为完备赋范空间X 到赋范空间Y的线性连续算子,且对任意X x ∈,||}{||x T n 都有界,则||}{||n T 一定有界,这就是Banach 空间理论中最重要的定理之一,即一致有界原理.Neumann Von J ..在1929年至1930年还引进并讨论了算子的几种收敛性.在1932年,Banach S .出版了线性算子理论(aires e lin rations e op des orie e Th ''')一书,书中包括了当时有关赋范线性空间的绝大部分结果,而非常著名闭图像定理就是该书中一个定理的推论.3.1 有界线性算子算子就是从一个空间到另一个空间映射,算子可分为线性算子与非线性算子.定义3.1.1 设X 和Y 都是赋范空间,T 是从X 到Y 的算子,且满足(1) Ty Tx y x T +=+)(, X y x ∈,任意; (2) Tx x T αα=)(, K X x ∈∈α,任意.则称T 为X 到Y 的线性算子.明显地,若Y 是数域K ,则X 到K 的线性算子就是线性泛函.例 3.1.1 定义从∞l 到0c 算子)2()(i i i xx T =则对任意∈)(i x ∞l ,有0>M ,使得∞<≤M x i ||sup .故)0(02|2|→→≤i M x i i i .因此0)(c x T i ∈ ,即T 是∞l 到0c 的算子,并且Ty Tx y x y x y x T iii i iii βαβαβαβα+=+=+=+)2()2()2()( 所以T 是∞l 到0c 的线性算子.例 3.1.2 设T 是从0c 到nR 的算子,且对任意0)(c x x i ∈=,定义)(i y Tx =,这里n i ≤时,i i x y =, n i >时,0=i y ,则T 是从0c 到nR 的线性算子.类似于线性连续泛函,对于线性连续算子,容易看出下面定理成立.定理 3.1.1 设T 是赋范空间X 到Y 的线性算子,则T 在X 上连续当且仅当T 在某个X x ∈0处连续.线性算子的连续与有界性有着密切的联系.定义 3.1.2 设T 是赋范空间X 到Y 的线性算子,若存在数0>M ,使得||||||||x M Tx ≤,X x ∈对任意成立.则称T 是有界线性算子,否则称为无界的.类似于线性有界泛函,有下面的定理.定理3.1.2 设T 是赋范空间X 到Y 的线性算子,则T 是有界的当且仅当T 是连续的.由上面定理可知,当T 是X 到Y 的线性连续算子时,必有0>M ,使得||||||||x M Tx ≤由此对0≠x ,有+∞<≤M x Tx ||||||||. 定义3.1.3 若T 是X 到Y 的线性连续算子,则称||||||||sup||||0x Tx T x ≠= 为T 的范数.容易看出,||||sup ||||sup ||||sup ||||1||||1||||1||||Tx Tx Tx T x x x <≤====.例 3.1.3 设X 是赋范空间,I 是X 到X 的恒等算子,则I 是连续的,且1||||sup ||||sup ||||1||||1||||=====x Ix I x x .有限维赋范空间上的线性算子的连续性显得特别简单明了.定理 3.1.3 若X 是有限维赋范空间,Y 是任意赋范空间,则X 到Y 的任意线性算子T 都是连续的.证明 设X 是n 维赋范空间,},,{1n e e 是X 的Schauder 基,则对任意X x ∈,有∑==ni i i e x 1α.由于T 是线性的,故∑==ni i i Te Tx 1α).||||}(max{||||||||||||||||111∑∑∑===≤≤=ni ii i ni ini ii Te Te TeTx ααα对任意X x ∈,定义∑==ni ix 11||||||α,则1||||⋅是X 上的范数,因此1||||⋅与||||⋅等价,即存在0>C ,使得||||||||||11x C x ni i≤=∑=α令||}m ax {||i Te C M =,则||||||||x M Tx ≤所以,T 是X 到Y 的连续线性算子.若用),(Y X L 记所有从赋范空间X 到赋范空间Y 的线性连续算子,则),(Y X L 在线性运算x T x T x T T 2121)(βαβα+=+下是一个线性空间,在空间),(Y X L 中,由算子范数的定义有||||||||||||2121T T T T +≤+和||||||||||T T λλ=,以及0||||=T 时0=T 成立.因此),(Y X L 在算子范数||||⋅下是一个赋范空间,并且当Y 是Banach 空间时,),(Y X L 也是Banach 空间.定理 3.1.4 设X 是赋范空间,Y 是Banach 空间,则),(Y X L 是Banach 空间. 证明 设}{n T 为),(Y X L 的Cauchy 列,因此对任意0>ε,存在N ,使得N n m >,时ε<-||||n m T T对任意X x ∈,有||||||||||||||)(||||||x x T T x T T x T x T n m n m n m ε<⋅-≤-=-因此}{x T n 为Y 中的Cauchy 列,由Y 的完备性质可知,存在Y y ∈,使得y x T n n =∞→lim定义X 到Y 的算子, x T y Tx n n ∞→==lim ,易知T 是线性的.由于0||||||||||||||→-≤-n m n m T T T T ,因此||}{||n T 为R 中的Cauchy 列,从而存在0>M ,使得.,||||都成立对任意N n M T n ∈≤故||||||||lim ||||x M x T Tx n m ≤=∞→,从而T 是X 到Y的线性连续算子.由上面证明可知对任意0>ε,存在N ,使得N n m >,时,有都成立对任意X x x x T T x T x T n m n m ∈<⋅-≤-||,||||||||||||||ε.令∞→m ,则 因此ε<-=-∈≠||||||||||||,0x Tx x T SupT T n Xx x n对任意N n >成立,从而T T n →,所以,),(Y X L 是完备的. 由于数域K 完备,因此容易看到下面结论成立.推论3.1.1 对于任意赋范空间X ,),(K X L 一定完备.后面都将),(K X L 记为*X ,称之为X 的共轭空间,因此所有赋范空间X 的共轭空间*X 都是完备的.3.2 一致有界原理设X 和Y 是Banach 空间.}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,一致有界原理指的是若对于任意}|||{||,∧∈∈ααx T X x 是有界集,则}|||{||∧∈ααT 一定是有界集,即+∞<∧∈||||sup ααT .其实,这一定理的一些特殊情形,许多数学家早就注意到了,如Hellinger Lebesgue ,和Toeplitz 等,Hahn H .在1922年总结了他们的结果,证明了对Banach 空间X 上的一列线性泛函}{n f ,若任意|})({|,x f X x n ∈有界,则||}{||n f 一定有界.独立地,Banach S .证明了比Hahn H .更一般的情形,即设}{n T 是Banach 空间X 到Banach 空间Y 的一列算子,若对任意||}{||,x T X x n ∈有界,则||}{||n T 一定有界,最后在1927年Banach S .与Steinhaus H .利用Baire 在1899年证明的一个引理,证明了一致有界原理.||||||||x x T x T n ε<-引理 3.2.1 (Baire 引理) 设}{n F 是Banach 空间X 中的一列闭集,若≠∞=01)( n n F φ,则存在某个N 使得≠0N F φ.下面举两个例子.例 3.2.1 在R 中,]12,11[n n F n -+=, 则)2,1(1=∞= n n F 有内点,故必有某个≠0N F φ.例 3.2.2 在R 中,},,2,1{n F n =,则对任意n ,=0N F φ,且,,2,1{1=∞=n nF},1, +n n , 所以=∞=01)( n n F φ.在1912年,Helly 建立了],[b a C 上的一致有界性原理,Banach 空间上的一致有界性原理是Banach [1922],Hahn [1922]和t Hildebrand 给出的,Steinhaus H .1927年以B a n a c h 和他两个人的名义在《数学基础》第9卷上发表了该定理.它断言,在Banach 空间X 上,如果有一列算子n T ,能对每个X x ∈,数列),2,1||}({|| =n x T n 都有上界x M ,那么必存在常数M ,使得||}{||n T 有界.这个由各点x 的局部有界性推广到在一个单位球上整体地一致有界性的深刻定理就叫Steinhaus Banach -定理.定理 3.2.1 (一致有界原理) 设X 是Banach 空间,Y 是赋范线性空间,}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,若对任意X x ∈,有+∞<||}sup{||x T α则+∞<||}sup{||αT证明 对任意n ,令 ∧∈≤∈=αα}|||||{n x T X x F n ,则n F 是X 闭集,且X F n n =∞= 1,由于≠=∞=001)(X F n n φ,因此由Baire 引理可知存在某个N ,使得≠0N F φ,故存在n F x ∈0及0>r ,使得N F r x U ⊂),(0,因为N F 是闭集,所以N F r x B r x U ⊂=),(),(00因此对于任意X x ∈, 1||||=x ,有N F r x B rx x ⊂∈+),(00故对任意α,有N rx x T ≤+||)(||0α又由于||)(||||||||||00rx x T x T x rT +≤-ααα, 故+∞<+≤+≤∧∈||)||sup (1||)||(1||||00x T N r x T N r x T αααα令||)||sup (10x T N r M αα∧∈+=,则M 与x 无关,且+∞<M .所以+∞<≤==M x T T x ||||sup ||||1||||αα问题 3.2.1 在一致有界原理中,X 的完备性能否去掉? 例 3.2.3 设X 为全体实系数多项式,对任意X x ∈||max ||||,)(111i ni i ni i x tt x x αα≤<-====∑ ,则||)||,(⋅X 是赋范空间,但不完备,在X 上一致有界原理不成立.事实上,对任意X x ∈,x 可以写成11)(-=∑=i ni i tt x α,这里存在某个x N ,使得xN i >时,0=i α,在X 上定义一列泛函n f :∑==ni in x f 1)(α, 这里11)(-=∑==i ni i tt x x α由|||||||)(|1x n x f ni in ≤=∑=α可知),(R X L f n ∈,且对于任意X x ∈,有∑∑∞=--===1111i i i i mi i ttx αα故∑∑==≤=ni ini i n x f 11|||||)(|αα(对于固定的n x ,是固定的),因此+∞<≤∞<≤|||||)(|sup 1x m x f n n . 但对于任意N k ∈,取kt t t x +++= 1)(0,有1}1,,1,1,1m ax {||||0=⋅⋅⋅=x ,且.)(|})(sup{|||}sup{||00k x f x f f k n n =≥≥由k 的任意性可知}||sup{||+∞=n f ,因此,}{n f 不是一致有界的.推论3.2.1 设X 是赋范空间,X x ⊂∧∈}|{αα,若对任意*∈X f ,有+∞<∧∈|)(|sup ααx f ,则+∞<∧∈||||sup ααx .证明 定义R X T →*:α为)()(ααx f f T =则αT 是线性算子,且对固定的α,有|||||||||)(||)(|αααx f x f f T ⋅≤=故αT 是线性有界算子.由于+∞<=∧∈∧∈|)(|sup |)(|sup ααααx f f T ,对任意固定的*∈X f 都成立,并且*X 是完备的,所以由一致有界原理可知+∞<∧∈||||sup ααT但|||||)(|sup |)(|sup ||||1||||1||||ααααx x f f T T f f =====,所以+∞<∧∈||||sup ααx .Neumann Von J ..在赋范空间),(Y X L 中引进几种不同的收敛性.定义3.2.1 设X ,Y 是赋范空间,),(Y X L T n ∈, ),(Y X L T ∈,则(1) 若0||||→-T T n ,称n T 一致算子收敛于T ,记为T T n −→−⋅||||; (2) 若对任意 0||||,→-∈Tx x T X x n ,称n T 强算子收敛于T ,记为T T sn −→−; (3)若对任意X x ∈, *∈Y f ,有0|)()(|→-Tx f x T f n ,称n T 弱算子收敛于T ,记为T wT n −→−.由上面的定义容易看出,算子的收敛性有如下关系:定理 3.2.2 (1) 若T T n −→−⋅||||,则T T sn −→−;(2) 若T T s n −→−,则T T wn −→−.值得注意的是上定理中反方向的推导一般不成立.例3.2.4 在1l 中,定义11:l l T n →为),,,0,,0(21 ++=n n n x x x T则),(11l l L T n ∈,且对任意 1l x ∈,有∑∞+=++→==-1210||||),,,0,,0(||||||n i in n n xx x x x T θ因此θ−→−sn T ,但 1||),0,1,0,,0(||||||||sup ||||11||||==≥=-+= n n n x n e T x T T θ所以,n T 不一致收敛于零算子θ.定理 3.2.3 设X 是Banach 空间,X 是赋范空间),(Y X L T n ∈,若对任意}{,x T X x n ∈收敛,则一定存在),(Y X L T ∈,使得n T 强算子收敛于T .证明 由于}{x T n 的收敛对任意x 都成立,故可定义x T Tx n n ∞→=lim ,由n T 的线性可知T 是线性的.由于对任意}{,x T X x n ∈收敛,因此||}{||x T n 也是收敛的,从而+∞<||}sup{||x T n ,根据一致有界原理,有+∞<≤M T n }||sup{||,因而||||||||||||sup ||||lim ||||x M x T x T Tx n n n ≤≤=∞→.即),(Y X L T ∈,显然T T sn −→−.定理 3.2.4 设X , Y 是Banach 空间,),(Y X L T n ∈, 则}{n T 强算子收敛的充要条件为(1)存在0>C ,使得+∞<≤C T n ||}sup{||;(2)存在 X M ⊂,使得X M =且对于任意 }{,x T M x n ∈收敛.证明 若T T sn −→−,则(2)明显成立. 若对于任意 X x ∈,有Tx x T n n =∞→lim . 故+∞<||}sup{||x T n ,由一致有界原理可知||}{||n T |是有界的.反之,若(1),(2)成立, 对任意X x ∈及任意0>ε,由X M =知一定存在M y ∈,使得Cy x 3||||ε<-因为对任意M y ∈,}{y T n 收敛,所以存在N ,使得N n m >,时,有3||||ε<-y T y T n m故CCCCy x T y x T x T y T y T y T y T x T x T x T n m n n n m m m n m 333||||||||3||||||||||||||||||||||||εεεε++≤-++-≤-+-+-≤-.由于Y 是完备的,因而}{x T n 是收敛的,定义x T Tx n n ∞→=lim ,则),(Y X L T ∈,所以 T T sn −→−. 推论3.2.2 设X 是Banach 空间,Y 是赋范空间,),(Y X L T n ∈,若T T sn −→−,则 ||||lim ||||n n T T ∞→≤证明 由T T sn −→−可知,对任意X x ∈,有 x T Tx n n ∞→=lim由于是Banach 空间,并对任意X x ∈,有∞<||}sup{||x T n ,因此∞<||}s up {||n T,从而,||||||||lim ||||lim ||||lim ||||x T x T x T Tx n n n n n n ⋅≤==∞→∞→∞→,所以||||lim ||||n n T T ∞→≤.例题3.2.1设X 是有限维范空间,Y 是赋范空间,∧∈∈αα),,(Y X L T . 若对任意X x ∈,有+∞<∧∈||||sup x T αα,试不用一致有界原理证明+∞<∧∈||||sup ααT .证明 在X 上定义||}||sup ||,max{||||||1x T x x αα∧∈=. 由于(1)对任意X x ∈, +∞<≤1||||0x ;(2)当0||||1=x 时,0||||=x 从而0=x .且0=x 时,显然有0||||1=x ;(3)11||||||||||x x αα=;(4)||})(||sup ||,max{||||||1y x T y x y x ++=+α||}||sup ||,max{||||}||sup ||,max{||||}||sup ||||sup ||,max{||y T y x T x y T x T y x αααα+≤++≤11||||||||y x +=因此,1||||⋅是X 上的一个范数.由于X 是有限维范空间,因此范数||||⋅和1||||⋅是等价的,故存在0>C ,使得||||||||1x C x ≤,对所有的X x ∈都成立,因而||||||||sup x C x T <∧∈αα,所以+∞<∧∈||||sup ααT .3.3 开映射定理与逆算子定理定义 3.3.1 设X 和Y 是赋范空间,Y X T →:, 若T 把X 中的开集映成Y 中的开集,则称T 为开映射.例 3.3.1 设X 是实赋范空间,则X 上的任意非零线性泛函f f ,一定是X 到R 的开映射.问题 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈, 问T 何时一定是开映射?定理 3.3.1 (开映射定理)设X 和Y 是Banach 空间,),(Y X L T ∈,若T 是满射,即Y TX =,则T 是开映射.开映射定理的证明要用到下面的引理, 它是Schauder 在1930年得到的.引理 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈,若Y TX =,则存在0>ε,使得)1,0(),0(TU U ⊂ε.引理的几何意义是如果)1,0(U 是X 中的开球,则)1,0(TU 为Y 中的点集,且Y 中的0点一定是)1,0(TU 的内点.开映射定理的证明设U 是X 中的任意开集,则对任意TU y ∈0,存在U x ∈0,使得00Tx y =,下面只须证明0Tx 为)(U T 的内点.由于U 是开集,因此存在0>r ,使得U r x U ⊂),(0,故),0(),0()},0(|{)},0(|{),(00000r TU y r TU Tx r U x Tx Tx r U x x x T r x TU TU +=+=∈+=∈+=⊃.由上面引理可知,存在0>ε,使得)1,0(),0(TU U ⊂ε,因此),0(),0(r TU r U ⊂ε, 所以),(),0(),0(000εεr y U r U y r TU y TU =+⊃+⊃,即0y 为TU 的内点, 因而 TU 为 Y 的开集.推论3.3.2 若X 是Banach 空间,则对所有f f X f ,0,≠∈*一定是开映射.证明 不失一般性,不妨设R K =,则由于0≠f ,因此存在X x ∈0,使得1)(0=x f ,故对任意R ∈α,有X x y ∈=0α,使得αα==)()(0x f y f ,因而f 是X 到R 的满射.所以,由开映射定理可知f 为开映射.思考题3.3.1 若f 是开映射,则1-f存在时是否1-f 一定连续?定义 3.3.2 若X ,Y 为赋范空间,),(Y X L T ∈,若对任意y x X y x ≠∈,,时,必有Ty Tx ≠,则算子X TX T →-:1, 称为T 的逆算子.明显地,若),(Y X L T ∈,1-T 存在,则1-T 也是线性的.例题 3.3.1 设X ,Y 是赋范空间,),(Y X L T ∈,则),(1X Y L T ∈-,当且仅当存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,且此时一定有S T=-1. 证明 若),(1X Y L T ∈-,令1-=T S ,明显地,有Y X I T T S T I T T T S =⋅=⋅=⋅=⋅--11,反之,如果存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,则对任意y x ≠,有Ty S y x Tx S ⋅=≠=⋅,因此Ty Tx ≠,故T 是单射,从而1-T 存在.对任意Y y ∈,有X Sy ∈故y y I Sy T Y ==)()(,令Sy x =,则y Tx =,因而T 是满射,明显地,1-T 是线性的,因此1-T 为Y 到X 的线性算子,又因为S S T T S T T I T Y =⋅⋅=⋅=---)()(111,所以 S T =-1),(X Y L ∈.逆算子定理是Banach S .在1929年给出的,利用开映射定理,容易证明逆算子定理成立.定理3.3.5. (Banach 逆算子定理)设X ,Y 是Banach 空间,),(Y X L T ∈,若T 是双射,则1-T 存在,且),(1X Y L T ∈-.证明 由于T 是一一对应,且满的,因此1-T 存在且是线性的.由于X ,Y 是Banach 空间,且Y TX =,因而由开映射定理可知T 开映射,从而对任意开集X U ⊂,有TU U T =--11)(也是开集,所以1-T 连续,即),(1X Y L T ∈-.在逆算子定理中,完备性的条件必不可少.例 3.3.2 设},0,,|)0,,0,,,{(1=≥∈=i i n x n i n R x x x X 时对某个 ||sup ||||i x x =,则||)||,(⋅X 是赋范空间.定义X X T →:为),31,21,(321 x x x Tx =则),(X X L T ∈,且1-T 存在,但1-T 是无界的,这是因为对X x n ∈=),0,1,,0( , 有n x T n x T n n ==--||||),,0,,,0(11 ,因此n T ≥-||||1对任意n 成立,所以1-T 不是连续线性算子.推论 3.3.3 设||||⋅和1||||⋅是线性空间上的两个范数,且||)||,(⋅X 和)||||,(1⋅X 都是Banach空间,若存在0>β, 使得||||||||1x x β≤,则||||⋅与1||||⋅等价. 证明 定义恒等算子→⋅||)||,(:X I )||||,(1⋅X 为x Ix =,则由||||||||||||11x x Ix β≤=可知I 是连续的.显然I 是双射,因而由逆算子定理可知,1-I存在且有界. 令||||11-=I α,则 111||||||||||||||||x I x x I --≤= 所以11||||||||||||1x x I ≤-, 即||||||||||||1x x x βα≤≤.问题 3.3.1 设X 为[0,1]上的全体实系数多项式,对任意X x ∈,,)(11-=∑==i n i it t x x α定义∑=≤≤==n i i t x t x x 12101|||||||,)(|sup ||||α ,则21||||||||⋅⋅和都是X 的范数,并且21||||||||x x ≤对所有的X x ∈成立,但11||||||||⋅⋅和不是等价的范数,为什么?实际上,对于,)1()(1211-=+∑-==i n i i t t x x 则1|)(|sup ||||101==≤≤t x x t , n x ni i 2||||||12==∑=α,因此不存在常数0>β,使得12||||||||x x β≤对所有的X x ∈成立,所以21||||||||⋅⋅和不是等价的范数.3.4 闭线性算子与闭图像定理在量子力学和其他一些实际应用中,有一些重要的线性算子并不是有界的,例如有一类在理论和应用中都很重要的无界性算子--闭线性算子,在什么条件下闭线性算子是连续呢?这一问题的研究,Hellinger E .和Toeplitz O .1910年在关于Hilbert 空间对称算子的工作中就开始了,然后是Hilbert 空间中共轭算子连续性的研究,1932年才发展成闭线性算子在赋范空间上的结果,这就是非常著名闭图像定理.若||)||,(⋅X 和||)||,(⋅Y 是赋范线性空间,则在乘积Y X ⨯空间中可以定义范数,使之成为赋范空间,对),(11y x 和K Y X y x ∈⨯∈λ,),(22,线性空间Y X ⨯的两种代数运算是),(),(),(21212211y y x x y x y x ++=+),(),(y x y x λλλ=并且范数定义为||||||||||),(||y x y x +=例3.4.1 乘积空间},|),{(2R y x y x R R R ∈=⨯=,且||||||||||),(||y x y x +=.明显地,有如下的结论.定理 3.4.1 设X 和Y 都是赋范空间Y X y x z n n n ⨯∈=),(,则),(y x z z n =→Y X ⨯∈当且仅当Y y X x n n ∈∈,且y y x x n n →→,.定理3.4.2 若X 和Y 都是Banach 空间,则Y X ⨯也是Banach 空间.在下面,考虑从定义域X T D ⊂)(到Y 的线性算子,)(T D 为X 的子空间.定义3.4.1 设X ,Y 是赋范空间,Y T D T →)(:是定义域X T D ⊂)(上的线性算子,若T 的图像}),(|),{()(Tx y T D x y x T G =∈=在赋范空间Y X ⨯中是闭的,则称T 为闭线性算子.定理3.4.3 设X ,Y 是赋范空间,Y T D T →)(:是线性算子,则T 是闭线性算子当且仅当对任意)(}{T D x n ⊂,满足y Tx x x n n →→,时,必有)(T D x ∈且y Tx =.证明 若T 是闭线性算子,则是)(T G 闭集,则对于任意)(T D x n ∈,当y Tx x x n n →→,时, 有),(),(y x Tx x n n →,因此)(),(T G y x ∈,由)(T G 的定义,有)(T D x ∈,y Tx =.反之,若)(),(T G Tx x n n ∈,且),(),(y x Tx x n n →时一定有)(T D x ∈,y Tx =, 从而)(),(),(T G Tx x y x ∈=.所以,)(T G 是闭集,即T 是闭线性算子.定理3.4.4 设X ,Y 是赋范空间,Y T D T →)(:是线性连续算子,若)(T D 是闭集,则T 一定是闭线性算子.证明 设)(T D x n ∈,y Tx x x n n →→,,则由T 是连续的知Tx Tx n →,故Tx y =. 由于)(T D 是闭集,因此)(T D x ∈,所以T 是闭线性算子.推论3.4.1 若Y X T →:是线性连续算子,则T 一定是闭线性算子.这是因为这时X T D =)(是闭集,反过来,一般来说,闭线性算子不一定连续.例3.4.2 设)(|)({]1,0[1t x t x C =为]1,0[上具有连续导数的},|)(|sup ||||10t x x t ≤≤=,则 ||)||],1,0[(1⋅C 是一个赋范空间,在]1,0[1C 上定义线性算子T 如下:]1,0[]1,0[:1C C T →]1,0[)(],1,0[),()(1C t x x t t x dt d t Tx ∈=∈=任意任意 则T 是]1,0[1C 到]1,0[C 的闭线性算子,但T 不是线性连续的.事实上,若]1,0[1C x n ∈ , y Tx x x n n →→,,则)(t x n 在]1,0[上“一致收敛”于)(t x ,并且n x '在]1,0[上也“一致收敛”于)(t y ,因而)(t x 具有连续的导函数)('t x ,且)()('t y t x =,所以]1,0[1C x ∈,且y Tx =,即T 是闭线性算子.令n n n t t x x ==)(,则]1,0[1C x n ∈且1||sup ||||10==≤≤n t n t x ,但n nt Tx n t n ==-≤≤||sup ||||110,因此T 不是线性连续算子.问题3.4.1 若T 是X T D ⊂)(到Y 的闭线性算子,则T 是否把闭集映为闭集呢? 例3.4.3 对任意0)(c x x i ∈=,定义线性算子00:c c T →为)2(i ix Tx = 则T 是0c 到0c 的线性连续算子,且0)(c T D =,因此T 是闭线性算子.对于闭集0c ,0Tc 不是0c 的闭子集.事实上,对于)0,,0,21,,21,21(2 n n y =, 0c y n ∈,且有)0,,0,1,,1,1( =n x ,0c x n ∈,使得n n y Tx =,故0Tc y n ∈,但因为n y 趋于),21,21,,21,21(12 +=n n y ,故不存在0c x ∈,使得y Tx =,所以0Tc y ∉,即0Tc 不是0c 的闭子集.在什么条件下闭线性算子一定是连续呢?这就是闭图像定理所研究的问题.定理3.4.5(闭图像定理)设X 与Y 是Banach 空间,Y T D T →)(:是闭线性算子,(这里X T D ⊂)(),若)(T D 在X 中是闭集,则T 一定是)(T D 到Y 的线性连续算子.证明 由于X 和Y 是Banach 空间,因此Y X ⨯也是Banach 空间,又由于X 是Banach 空间,且)(T D 是X 的闭子集,因此)(T D 作为X 子空间是完备的.由T 是闭线性算子可知)(T G 是Y X ⨯的闭子集,由于T 是线性的,因而)(T G 是Y X ⨯的子空间,从而)(T G 是Y X ⨯的完备子空间.定义从Banach 空间)(T G 到Banach 空间)(T D 的线性算子P :)()(:T D T G P →).(),(,),(T G Tx x x Tx x P ∈=任意则P 是线性算子,且||),(||||||||||||||||),(||Tx x Tx x x Tx x P =+≤=.故1||||≤P ,从而))(),((T D T G L P ∈.由P 的定义可知P 是双射,因而由逆算子定理可知1-P 存在,且))(),((1T D T G L P∈-,故对任意)(T D x ∈,有 ||||||||||||||),(||||||||||||||11x P x P Tx x Tx x Tx ⋅≤==+≤--所以,T 是)(T D 到Y 的线性连续算子.若T 的定义域X T D =)(,即T 是X 到Y 的线性算子,则闭图像定理有下面简明形式. 推论 3.4.2 设X ,Y 是Banach 空间,且T 是X 到Y 的线性算子,则),(Y X L T ∈当且仅当T 是闭线性算子.例题 3.4.1 设X ,Y ,Z 是Banach 空间,若),(Z X L A ∈,),(Z Y L B ∈,并对任意的 X x ∈,方程By Ax =都有唯一解y ,试证明由此定义的算子y Tx Y X T =→,:,有),(Y X L T ∈.证明 容易验证T 是线性算子,要证明T 是线性连续算子,只需证明T 是闭算子.对于X x n ∈, Y y Tx x x n n ∈→→,,有n n BTx Ax =.由于B A ,都是连续的,因此By BTx Ax Ax n n n n ===∞→∞→lim lim从而y Tx =所以,T 是闭算子,由闭图像定理可知,),(Y X L T ∈.习题三3.1 设算子0:c l T →∞,∞∈==l x x x Tx i i i)(),2(任意,试证明T 是线性有界算子,并求||||T . 3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i ii ∈==任意,试证明T 是线性有界算子,并求||||T . 3.3 对任意0c x ∈,定义∑∞==1!)(i i i x x f ,试证明*∈0c f ,并求||||f . 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.5 设X 和Y 是实赋范空间,T 为X 到Y 的连续可加算子,试证明),(Y X L T ∈.3.6 设c 是所有收敛实数列全体,范数||sup ||||i x x =,}{i α为实数列,若对任意c x ∈,都有∞<=∑∞=|||)(|1i i i x x f α,试证明i i i x x f ∑∞==1)(α为c 上的线性连续泛函,并且∞<=∑∞=||||||1i i f α.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f . 3.9设X 是实赋范空间,X x n ⊂}{, 试证明对所有的*∈X f ,都有∞<∑∞=|)(|1i i x f 当且仅当存在0>M ,使得对任意的正整数n 和1±=i δ,都有M x in i i <∑=||||1δ. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT 1||||1≤-. 3.11 设T 为赋范空间X 到赋范空间Y 的闭线性算子,且1-T 存在,试证明1-T 是闭线性算子.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T .3.17 设22:l l P n →,)0,,0,,,,(),,,,,(21121 n n n n x x x x x x x P =+,试证明n P 强收敛于I ,但n P 不一致收敛于I .哈恩Hans Hahn 于1879年9月27日出生于奥地利的维也纳,他在维也纳大学跟Gustav Ritter von Escherich攻读博士学位, 1902获得博士学位,博士论文题目为Zur Theorie der zweiten Variationeinfacher Integrale.他是切尔诺夫策(Chernivtsi)大学(1909–1916),波恩大学(1916–1921)和维也纳大学(1921–1934)的教授.Hahn的最早的结果对古典的变分法做出贡献,他还发表了关于非阿基米德系统的重要论文, Hahn是集合论和泛函分析的创始人之一,泛函分析的重要定理之一, Hahn-Banach定理就是Hans Hahn(1879-1934) 以他的名字命名的.他在1903 到1913间对变分法做出了重要的贡献.在1923他引进了Hahn 序列空间.他还写了关于实函数的两本书Theorie der reellen Funktionen (1921)和Reelle Funktionen (1932).Hahn获得过很多荣誉,包括1921年的Lieban奖,他是奥地利科学院院士,他还是Calcutta 数学学会名誉会员.Hahn对数学的成就主要包括著名的Hahn-Banach定理, 其实很少人知道,实际上Hahn 独立地证明了(Banach和斯坦豪斯得出的)一致有界原理. 其他定理还有Hahn分离定理、维他利-哈恩-萨克斯定理(Vitali-Hahn-Saks theorem)、哈恩-马祖凯维奇定理(Hahn-Mazurkiewicz theorem)和哈恩嵌入定理(Hahn embedding theorem)等. Hahn的数学贡献不限于泛函分析,他对拓扑学、集合论、变分法、实分析等都有很好的贡献.同时,他也活跃于哲学界,是维也纳学派的一员.。
《2024年Hilbert空间中有界线性算子的几类扩张问题研究》范文

《Hilbert空间中有界线性算子的几类扩张问题研究》篇一一、引言Hilbert空间作为数学领域中重要的函数空间,为各类数学问题提供了广阔的研究平台。
有界线性算子作为Hilbert空间中的核心研究对象,其扩张问题一直是学术界研究的热点。
本文将重点研究Hilbert空间中有界线性算子的几类扩张问题,以期为相关研究提供新的思路和理论依据。
二、有界线性算子与扩张问题的概述在Hilbert空间中,有界线性算子指具有有限特征向量集合的算子,其在信号处理、控制论和统计力学等领域有着广泛的应用。
然而,有界线性算子在某些特定情况下,需要经过一定的扩展才能在更广泛的范围内使用。
这些扩展问题包括:连续扩张、相似扩张以及混合扩张等。
本文将对这些问题进行深入研究。
三、连续扩张问题的研究连续扩张问题是有界线性算子扩张问题中的重要一环。
本部分将从以下几个方面对连续扩张问题进行研究:1. 问题的数学模型及假设条件的提出;2. 利用函数逼近的方法进行问题求解;3. 分析不同参数条件下解的性质及其在应用领域中的应用;4. 与现有方法进行对比分析,证明所提方法的有效性和优越性。
四、相似扩张问题的研究相似扩张问题与连续扩张问题紧密相关,同样是有界线性算子扩张问题的关键内容。
本部分将研究以下内容:1. 相似扩张的数学模型及其求解方法;2. 相似扩张在不同类型有界线性算子中的应用;3. 结合具体实例,分析相似扩张的优点和局限性;4. 提出改进相似扩张方法的新思路。
五、混合扩张问题的研究混合扩张问题是有界线性算子在特定条件下需要同时考虑连续和相似扩张的复杂问题。
本部分将探讨以下内容:1. 混合扩张的数学模型及其求解策略;2. 混合扩张在多领域应用中的实际效果;3. 分析混合扩张与其他扩张方法的异同点;4. 提出针对混合扩张问题的优化策略。
六、结论与展望本部分将对本文的研究成果进行总结,并展望未来可能的研究方向。
具体包括:1. 对本文所研究的几类有界线性算子的扩张问题进行归纳总结;2. 分析本文方法的优点和局限性,并指出进一步改进的方向;3. 探讨Hilbert空间中有界线性算子扩张问题在未来可能的研究趋势和挑战;4. 提出针对未来研究的建议和展望。
第三章 有界线性算子

第三章 有界线性算子一 有界线性算子与有界线性泛函 1 定义与例设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射 ,满足条件:对于任意)(,T D y x ∈,K ∈α,)(Ty Tx Y x T +=+Tx x T αα=)(称T 是X 中到1X 中的线性算子。
称)(T D 是T 的定义域。
特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。
如果一个线性泛函f 是有界的,即)( |||||)(|M x x M x f ∈≤称为f 有界线性泛函。
此外取算子范数作为空间中的范数。
定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。
定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。
2 有界线性算子空间设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。
在),(1X X β中可以自然地定义线性运算,即对于任意∈B A ,),(1X X β及K ∈α,定义Bx Ax x B A +=+))((Ax x A αα=))((不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。
此个取算子范数作为空间),(1X X β的范数,具体见)(77P 。
由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。
在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。
事实上,设∈nA A ,),(1X X β,...)2,1(=n 及}1||:||{=∈=X X x S 。
如果)(∞→→n A A n ,则对任意0>ε,存在N ,当N n >时,对于每一个S x ∈≤-||||Ax x A n1||||sup =x ||||Ax x A n -=||||A A n-ε<。
hilbert空间上线性有界算子关系式ab-ba≠i的一个证明

hilbert空间上线性有界算子关系式ab-
ba≠i的一个证明
空间上的线性有界算子是指在一个Hilbert空间上,用线
性方程组来定义的算子。
这种算子常常用来表达特定的空间性质,比如它可以用来描述空间中物体的运动规律,或者表达某种程度的不变量。
本文将讨论关系式AB-BA≠I这一结论,它
表明空间上线性有界算子AB和BA不等价,这也是Hilbert空间上线性有界算子的一个重要特性。
首先,我们来看看Hilbert空间上线性有界算子的定义。
Hilbert空间上的线性有界算子是指从Hilbert空间到自身的线
性算子,它的特征是它的范数是有限的。
也就是说,它的范数是一个有界的数字,表示它的力量是有限的。
另外,它还有一个特性,即它的力量是越来越大的,但总是有一个上限,即它的范数。
现在我们来看AB-BA≠I这个结论。
由于AB是一个线性
有界算子,因此它的范数是有限的,这意味着它的力量是有限的。
另外,BA也是一个线性有界算子,它的范数也是有限的,但是它的力量可能比AB大,因为它的范数可以比AB大。
因此,AB和BA的力量是不同的,因此AB-BA≠I。
综上所述,AB-BA≠I是空间上线性有界算子的一个重要
性质。
它表明,AB和BA的力量是不同的,因此AB-BA≠I。
这也是Hilbert空间上线性有界算子的特性之
一,它可以帮助我们更好地理解和分析空间中的特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 有界线性算子
一 有界线性算子与有界线性泛函 1 定义与例
设1,X X 是赋范空间,
T 是X 中线性子空间)(T D 上到1X 中的映射 ,满足条件:对于任意)(,T D y x ∈,K ∈α
,)(Ty Tx Y x T +=+Tx x T αα=)(
称T 是X 中到1X 中的线性算子。
称)(T D 是T 的定义域。
特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。
如果一个线性泛函
f 是有界的,即
)( |||||)(|M x x M x f ∈≤
称为
f 有界线性泛函。
此外取算子范数作为空间中的范数。
定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。
定理1.2 设1,X X 是赋范空间,
T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。
2 有界线性算子空间
设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。
在),(1X X β中可以自然地定义线性运算,即对
于任意∈B A ,),(1X X β及K ∈α,定义
Bx Ax x B A +=+))((
Ax x A αα=))((
不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。
此个取算子范数作为空间),(1X X β的范数,具体见
)(77P 。
由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。
在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。
事实上,设∈n A A ,),(1X X β,...)2,1(=n 及
}1||:||{=∈=X X x S 。
如果)(∞→→n A A n
,则对任意
0>ε,存在N ,当N n >时,对于每一个S x ∈
≤-||||Ax x A n 1
||||sup =x ||||Ax x A n -=||||A A n -ε<。
即}{n A 在S 上一致收敛于A 。
反之,如果}{n A 在S 上一致收敛于A ,则对任意0>ε
,存在
N ,当N n >时,对于每一个S x ∈:
||||Ax x A n -ε<
于是:||||A A n -=1
||||sup =x ||||Ax x A n -ε≤。
即}{n A 在上一致收敛于A 。
定理1.3 设X 是赋范空间,1X 是anach B 空间,则),(1X X β是anach B 空间。
在空间
)
,(1
X X β中还有另一种收敛方式。
设
∈n T T ,),(1X X β,...)2,1(=n ,如果对于每一X x ∈
Tx X T n → )(∞→n
称}{n T 逐点收敛于T 或}{n T 强收敛于T 。
二 Steinhaus Banach -定理及其某些应用
定理 2.1(
Steinhaus Banach -) 设}{αT (I ∈α)是
Banach 空间X 上到赋范空间1X 中的有界线性算子族,如果对于
每一X x ∈,||||sup x T I
αα∈<∞,则||}{||x T α)(I ∈α是有界集。
定理2.2 设}{n T 是赋范空间X 上到Banach 空间1X 中的有界线性算子列。
如果
1) ||}{||n T 有界;
2) 对于一个稠密子集G 中的元x ,}{x T n 收敛,则}{n T 强收敛于一个有界线性算子T ,并且
||||lim ||||_
n n T T ∞
→≤。
定理 2.3 设1,X X 是Banach 空间,则有界线性算子空间
),(1
X X β在强收敛意义下完备。
例子就见第82页例1、例2。
三 开映射定理与闭图像定理 1 逆算子
设21,,X X X 是赋范空间,∈1T ),(1X X β,∈2T ),(21X X β。
这时可以定义算子的乘法12T T T =,
)(12x T T Tx = )(X x ∈
由于
))(()(12y x T T y x T +=+=)(112y T x T T +=)()(1212y T T x T T +=
Ty Tx +=
类似地
Tx x T αα=)(
及
≤=||)(||||||12x T T Tx ≤||||||||12X T T )( ||||||||||||12X x x T T ∈
所以T 是有界线性算子,∈T
),(2X X β并且
≤=||||||||12T T T ||||||||12T T 。
(1)
不难证明,算子乘法满足结合律和分配律,但是注意算子乘法不满足交换律。
设T 是从线性空间X 上映到线性空间1X 中的恒等算子。
如果存在一个1X 上到X 中的线性算子1T ,使得
X I T T =1,1
1X I TT = (2)
则称算子T 有逆算子。
X I ,1
X I 分别为空间X 及1X 中的恒等算子。
算子1T 称为T 的逆算子,并记为1
1-=T T 。
定理 3.1 设T 是赋范空间X 上到赋范空间1X 上的线性算子且存在常数0>m
,使得
||||||||x m Tx > )(X x ∈ (4)
则T 有有界逆算子1
-T
定理 3.2 设X 是Banach 空间中,如果)(X T β∈,如果
1||||<T ,则算子T I -有有界逆算子,并且
||)(||1
--T I ||
||11
T -≤。
2 线性算子的谱
定义 设T 是Banach 空间X 上的有界线性算子,如果算子
1)(--I T λ存在且定义在全空间X 上,则称数λ为算子的正则值,
此时称1
)(--=I T R λλ为算子T 的预解式。
称所有其他的λ值为算
子T 的谱点,算子T 的谱点全体算子的谱,记为)(T δ。
定理 3.3 设X 是Banach 空间,)(X T β∈。
则)(T δ是有界闭集。
3 开映射定理
定理 3.4(开映射定理) 设T 是Banach 空间X 上到Banach 空间1X 上的有界线性算子,则T 是一个开映射。
定理 3.5 (Banach 逆算子定理) 设T 是Banach 空间X 上到
Banach 空间1X 上的一对一的有界线性算子,则T 的逆算子1-T 是
有界算子。
4 闭图像定理
设1,X X 是赋范空间,T 是X 中到1X 中的线性算子,乘积赋范空间1X X ⨯,记
)}(:),{()(1T D x X X Tx x T G ∈⨯∈=
称)(T G 为算子T 的图像。
如果)(T G 是乘积赋范空间1X X ⨯中的闭集,则称T 是闭算子。
定理 3.6 设1,X X 是赋范空间,T 是X 中到1X 中的线性算子,则T 是闭算子,当且仅当,对任意)(}{T D x n ⊂,x x n →及
y Tx n →(∞→n ),这里X x ∈,1X y ∈。
此时必有)
(T D x ∈并且y Tx
=。
定理3.7(闭图像定理) 设T 是Banach 空间X 上到Banach 空间1X 中的闭线性算子,则T 是有界线性算子。