大一微积分前五章知识点
高等数学一-微积分总结-知识归纳整理

导数微分学微分微积分不定积分积分学定积分无穷级数第一章函数及其特性1.1 集合一、定义:由具有共同特性的个体(元素)组成。
二、表达方式:集合A,B,C……(大写字母)元素a,b,c……(小写字母)A={a,b,c}元素的罗列无重复,无顺序。
a属于A记作a∈A,1不属于A记作1∉A或1∈A三、分类有限集无限集空集Ф四、集合的运算1、子集:存在A、B两个集合,如果A中所有元素都在B中,则A叫做B的子集,A⊆B或B⊇A(空集是任何集合的子集)。
2、交集:存在A、B两个集合,由既在A中又在B中的元素组成的集合。
A B,A B⊆A,A B⊆B,Ф B=Ф(空集与任何集合的交集是Ф)。
3、并集:存在A、B两个集合,由所有在A、B中的元素组成的集合。
A B,A B⊇A,A B⊇B,Ф B=B。
4、补集:存在A、B两个集合,且A⊆B,由在B当中但不在A中的元素组成的集合,叫A的补集,B叫全集。
记作AB或A CB, ABA=Ф,ABA=B五、数、数轴、区间、邻域1、数实数虚数: 规定i2= -1,i叫虚数单位,ii3332==-2、数轴:规定了原点、正方向和单位长度的直线。
3、区间知识归纳整理(1)闭区间a ≤x ≤b,x ∈[a, b] (2)开区间a< x< b, x ∈(a, b) (3)半开区间a ≤x< b, x ∈[a, b)a< x ≤b, x ∈(a, b](4)无限区间 x ≤a, x ∈(-∞, a]x ≥b, x ∈[ b, +∞) x ∈R, x ∈(-∞, +∞)4、邻域:以x = x 0为圆心,以δ> 0(δ为非常小的正数)为半径作圆,与数轴相交于A 、B 两点,x 0 -δ< x 0 < x 0 +δ叫x 0的δ邻域。
例1 已知A={x ∈ -2≤x< 3},B={x ∈ -1< x ≤5},求A B , A B 解:A 、B 集合中x 的取值范围在数轴表示如下所以A B={x ∈ -1< x< 3}, A B={x ∈ -2≤x ≤5} 例2 已知A 、B 为两非空集合,则A B=A 是A=B 的[ (2) ] (1)充分条件 (2)充分必要条件 (3)必要条件 (4)无关条件注:如果A 成立,这么B 成立,即“A ⇒B ”,这么条件A 是B 成立的充分条件;如要使B 成立,必须有条件A ,但惟独A 不一定能使B 成立,则称A 是B 成立的必要条件;如果“A ⇒B ”,又有“B ⇒A ”,则称条件A 是B 成立的充分必要条件。
微积分大一基础知识经典讲解

Chapter1 Functions(函数)1.Definition 1)A function f is a rule that assigns to each element x in a set A exactly one element, called f (x ), in a set B.2)The set A is called the domain(定义域) of the function.3)The range(值域) of f is the set of all possible values of f (x ) as x varies through out the domain.⇔=)()(x g x f :Note 1)(,11)(2+=--=x x g x x x f E xample)()(x g x f ≠⇒2.Basic Elementary Functions(基本初等函数) 1) constant functionsf (x )=c2) power functions0,)(≠=a x x f a3) exponential functions1,0,)(≠>=a a a x f x domain: R range: ),0(∞4) logarithmic functions1,0,log )(≠>=a a x x f a domain: ),0(∞ range: R5) trigonometric functionsf (x )=sin x f (x )=cos x f (x )=tan x f (x )=cot x f (x )=sec x f (x )=csc x 6) inverse trigonometric functions3. DefinitionGiven two functions f and g , the composite function(复合函数) g f is defined by))(())((x g f x g f =Note )))((())((x h g f x h g f =Example If ,2)()(x x g and x x f -== find each function and its domain.g g d ff c fg b gf a ))))))(())(()x g f x g f a = Solution )2(x f -=422x x -=-=]2,(}2{:domain -∞≤or x xx x g x f g x f g b -===2)())(())(()]4,0[:02,0domain x x ⇒⎩⎨⎧≥-≥ 4)())(())(()x x x f x f f x f f c ==== )[0, :domain ∞x x g x g g x g g d --=-==22)2())(())(()]2,2[:022,02-⇒⎩⎨⎧≥--≥-domain x x 4.Definition An elementary function(初等函数) is constructed using combinations (addition 加, subtraction 减, multiplication 乘, division 除) and composition starting with basic elementary functions.Example )9(cos )(2+=x x F is an elementary function.)))((()()(cos )(9)(2x h g f x F x x f xx g x x h ===+=2sin1log )(x e x x f xa -+=E xample is an elementary function.1)Polynomial(多项式) FunctionsR x a x a x a x a x P n n n n ∈++++=--0111)( where n is a nonnegative integer.The leading coefficient(系数) ⇒≠.0n a The degree of the polynomial is n . In particular(特别地),The leading coefficient ⇒≠.00a constant function The leading coefficient ⇒≠.01a linear functionThe leading coefficient ⇒≠.02a quadratic(二次) function The leading coefficient ⇒≠.03a cubic(三次) function 2)Rational(有理) Functions}.0)(such that is {,)()()(≠=x Q x x x Q x P x f where P and Q are polynomials.3) Root Functions4.Piecewise Defined Functions(分段函数)⎩⎨⎧>≤-=111)(x if x x if x x f Example 5.6.Properties(性质)1)Symmetry(对称性)even function : x x f x f ∀=-),()( in its domain.symmetric w.r.t.(with respect to 关于) the y -axis.odd function : x x f x f ∀-=-),()( in its domain.symmetric about the origin.2) monotonicity(单调性)A function f is called increasing on interval(区间) I if I in x x x f x f 2121)()(<∀< It is called decreasing on I if I in x x x f x f 2121)()(<∀> 3) boundedness(有界性)below bounded )(x e x f =E xample1above bounded )(x e x f -=E xamp le2below and above from bounded sin )(x x f =Example34) periodicity (周期性) Example f (x )=sin xChapter 2 Limits and Continuity1.Definition We write L x f ax =→)(limand say “f (x ) approaches(tends to 趋向于) L as x tends to a ”if we can make the values of f (x ) arbitrarily(任意地) close to L by taking x to be sufficiently(足够地) close to a (on either side of a ) but not equal to a .Note a x ≠means that in finding the limit of f (x ) as x tends to a , we never consider x =a . In fact, f (x ) need not even be defined when x =a . The only thing that matters is how f is defined near a .2.Limit LawsSuppose that c is a constant and the limits )(lim and )(lim x g x f ax ax →→exist. Then)(lim )(lim )]()([lim )1x g x f x g x f ax ax ax →→→±=±)(lim )(lim )]()([lim )2x g x f x g x f ax ax ax →→→⋅=0)(lim )(lim )(lim )()(lim )3≠=→→→→x g if x g x f x g x f a x ax ax a x Note From 2), we have )(lim )(lim x f c x cf ax ax →→=integer. positive a is ,)](lim [)]([lim n x f x f n ax n ax →→=3. 1) 2) Note4.One-Sided Limits 1)left-hand limitDefinition We write L x f ax =-→)(limand say “f (x ) tends to L as x tends to a from left ”if we can make the values of f (x ) arbitrarily close to L by taking x to be sufficiently close to a and x less than a . 2)right-hand limitDefinition We write L x f ax =+→)(limand say “f (x ) tends to L as x tends to a from right ”if we can make the values of f (x ) arbitrarily close to L by taking x to be sufficiently closeto a and x greater than a . 5.Theorem)(lim )(lim )(lim x f L x f L x f ax ax ax +-→→→==⇔=||lim Find 0x x → Example1Solutionxx x ||lim Find 0→ Example2 Solution6.Infinitesimals(无穷小量) and infinities(无穷大量)1)Definition ⇒=∆→0)(lim x f x We say f (x ) is an infinitesimal as ∆∆→ where,x is some number or .∞±Example1 2200lim x x x ⇒=→ is an infinitesimal as .0→xExample2 xx x 101lim⇒=±∞→ is an infinitesimal as .±∞→x 2)Theorem 0)(lim =∆→x f x and g(x) is bounded.0)()(lim =⇒∆→x g x f x NoteExample 01sinlim 0=→xx x 3)Definition ⇒±∞=∆→)(lim x f x We say f (x ) is an infinity as ∆∆→ where ,x is somenumber or .∞± Example1 1111lim 1-⇒∞=-+→x x x is an infinity as .1+→x Example2 22lim x x x ⇒∞=∞→ is an infinity as .∞→x4)Theorem0)(1lim)(lim )=⇒±∞=∆→∆→x f x f a x x ±∞=⇒∆∆≠=∆→∆→)(1limat possibly ex cept near 0)(,0)(lim )x f x f x f b x x 13124lim 423+-+∞→x x x x E xample1 44213124lim x x x x x +-+=∞→ 0=13322lim 22++-∞→n n n n E xample2 2213322lim n n n n ++-=∞→ 32= x x x x 7812lim 23++∞→E xample3 237812lim xx x x ++=∞→ ∞=Note ⎪⎪⎪⎩⎪⎪⎪⎨⎧>∞<==++++++-----∞→mn if m n if m n if b a b x b x b a x a x a n nm m m m n n n n x 0lim 011011 ,0,0and constants are ),,0(),,,0(where 00≠≠==b a m j b n i a j i m , n arenonnegative integer. Exercises)6(),0(3122lim )1.12==⇒=-++∞→b a n bn an n)1(),1(1)1(lim )22-==⇒=--+∞→b a b ax xx x )2(),2(21lim)31-==⇒=-+→b a x bax x43143lim )1.222=++∞→n n n n 51)2(5)2(5lim )211=-+-+++∞→n n n n n 343131121211lim )3=++++++∞→n n n 1)1231(lim )4222=-+++∞→n n n n n 1))1(1321211(lim )5=+++•+•∞→n n n 21)1(lim )6=-+∞→n n n n ∞=---→443lim )1.3222x x x x 23303)(lim )2x h x h x h =-+→ 343153lim )322=++++∞→x x x x x 503020503020532)15()23()32(lim )4•=+++-∞→x x x x 2)12)(11(lim )52=-+∞→x x x 0724132lim )653=++++∞→x x x x x 42113lim)721-=-+--→x x x x 1)1311(lim )831-=---→x x x3211lim)931=--→x x x 61)31)(21)(1(lim)100=-+++→x x x x x 21))1)(2((lim )11=--++∞→x x x x ∞=-+→223)3(3lim )1.4x xx x ∞=++∞→432lim)23x x x ∞=+-∞→)325(lim )32x x x1)2544(lim .52-=+++-∞→x x x x。
大一微积分复习总结

微积分期中复习第一章 函数与极限一、函数1、数轴、区间、领域2、函数的概念:设有两个变量x 和y ,如果当某非空集合D 内任取一个数值时, 变量y 按照一定的法则(对应规律)f ,都有唯一确定的值y 与之对应,则称y 是x 的函数。
记作()y f x =,其中变量x 称为自变量,它的取值范围D 称为函数的定义域;变量y 称为因变量,它的取值范围是函数的值域,记作()Z f ,即(){|(),}Z f y y f x x D ==∈。
函数的表示:函数的表示有三种。
公式法、表格法和图示法。
3、函数的几种特性函数的有界性、奇偶性、单调性和周期性。
4、初等函数(1) 基本初等函数① 幂函数:y x μ=(μ为任意实数), y kx b =+, 2y ax bx c =++ ② 指数函数:x y a =(0a >且1a ≠) ③ 对数函数:log a y x =(0a >且1a ≠)。
恒等式: log (0,1)a N a N a a =>≠ 换底公式: log log log c a c bb a=运算的性质:log log log a a a xy x y =+,log log log aa a yy x x=-。
④ 三角函数:sin ,cos ,tan ,cot ,sec ,csc y x y x y x y x y x y x ======。
⑤ 反三角函数:arcsin ,arccos ,arctan ,cot y x y x y x y arc x ====。
(2) 反函数: (3) 复合函数: 5、常见的经济函数(1) 成本函数、收益函数和利润函数01()()C x C C x =+, ()()R x p x x =⋅,()()()L x R x C x =-。
(2) 需求函数与供给函数 (),()d d s s Q f p Q f p ==二、极限的概念与性质1、数列的极限 (1) 数列(2) 数列极限的定义 (3) 数列极限的几何意义 2、函数的极限(1) 当自变量x →∞时函数()f x 的极限 (2) 当自变量0x x →时函数()f x 的极限 (3) 左右极限3、函数极限的主要性质极限的唯一性、局部有界性、局部保号性。
大一上期微积分知识点

大一上期微积分知识点微积分是数学的一个重要分支,研究函数的变化趋势以及求解曲线下面积等问题。
在大一上学期的微积分课程中,我们学习了一些基础的微积分知识点。
本文将为您简要介绍大一上学期微积分的重要知识点,以帮助您复习和加深理解。
一、函数与极限函数是微积分的基础,我们从函数的概念开始学习微积分知识。
大一上学期,我们学习了常见的函数类型,如多项式函数、指数函数、对数函数和三角函数等。
我们需要理解函数的定义和性质,并能够进行函数的图像绘制和性质分析。
极限是微积分的核心概念之一。
我们研究函数的变化趋势,需要引入极限的概念。
大一上学期,我们学习了函数极限的定义、性质和计算方法。
掌握了极限的基本概念后,我们可以用极限来研究函数的连续性、导数和积分等重要性质。
二、导数与微分导数是微积分的重要概念之一,描述了函数在某一点的变化速率。
大一上学期,我们学习了导数的定义、性质以及求导法则。
通过求导,我们可以计算函数的切线斜率,研究函数的极值和变化趋势等。
微分是导数的应用,用于解决函数的近似计算问题。
我们学习了微分的定义和基本性质,以及微分中值定理和泰勒公式等重要定理。
掌握了微分的概念和应用方法,我们可以在实际问题中进行近似计算和优化分析。
三、定积分与曲线下面积定积分是微积分的另一个重要概念,用于计算曲线下面积和解决累积问题。
大一上学期,我们学习了定积分的定义和性质,以及定积分的计算方法,如基本积分法和换元积分法等。
通过定积分,我们可以计算平面图形的面积、质量和重心等问题。
曲线下面积是定积分的一种应用,用于计算曲线与坐标轴所围成的图形面积。
我们学习了曲线下面积的计算方法,包括用定积分计算曲线与坐标轴所围成的面积和曲线长度等。
四、不定积分与积分应用不定积分是定积分的逆运算,用于求解函数的原函数。
大一上学期,我们学习了不定积分的定义和基本性质,以及不定积分的计算方法,如基本积分法、分部积分法和换元积分法等。
通过不定积分,我们可以求解函数的原函数,并进行函数的积分计算。
大学微积分l知识点总结(一)

大学微积分l知识点总结【第一部分】大学阶段准备知识1、不等式:引申双向不等式:两侧均在ab≥0或ab≤0时取等号柯西不等式:设a1、a2、..。
a n,b1、b2、。
..b n均是实数,则有:2、函数周期性和对称性的常用结论1、若f(x+a)=±f(x+b),则f(x)具有周期性;若f(a+x)=±f(b—x),则f(x)具有对称性。
口诀:“内同表示周期性,内反表示对称性”2、周期性(1)若f(x+a)=f(b+x),则T=|b—a|(2)若f(x+a)=—f(b+x),则T=2|b-a|(3)若f(x+a)=±1/f(x),则T=2a(4)若f(x+a)=【1—f(x)】/【1+f(x)】,则T=2a(5)若f(x+a)=【1+f(x)】/【1-f(x)】,则T=4a3、对称性(1)若f(a+x)=f(b-x),则f(x)的对称轴为x=(a+b)/2(2)若f(a+x)=-f(b-x)+c,则f(x)的图像关于((a+b)/2,c/2)对称4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然.(1)若f(x)的图像有两条对称轴x=a和x=b,则f(x)必定为周期函数,其中一个周期为2|b-a|。
(2)若f (x)的图像有两个对称中心(a ,0)和(b ,0),(a ≠b),则f(x )必定为周期函数,其中一个周期为2|b-a |。
(3)若f (x )的图像有一个对称轴x=a 和一个对称中心(b,0),(a ≠b ),则f (x)必定为周期函数,其中一个周期为4|b-a |.3、三角函数倒数关系: 商的关系: 平方关系:平常针对不同条件的两个常用公式: 一个特殊公式: 二倍角公式: 半角公式: 三倍角公式: 万能公式: 两角和公式: 和差化积公式: 积化和差公式:口诀:奇变偶不变,符号看象限4、数学归纳法数学上证明与自然数N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
大学微积分总复习提纲

2
微积分(一) calculus
第二章 极限与连续
极限的描述性定义与左右极限
极限四则运算
未定式求极限(因式分解/有理化/同除最高次项)
求极限
夹逼定理 两个重要极限
无穷小量X有界函数(注意无穷小量性质)
等价代换(加减不能代换,乘除可以代换)
洛必达法则(注意运用条件,与上述方法结合)
必考:先分清极限类型,选择相应方法
微积分(一) calculus
第一章 函数
初等函数 分段函数
定义域、值域 奇偶性 周期性 有界性 反函数
选择题或填空题:与换元法结合考察上述知识点
1
微积分(一) calculus
第一章 函数
经济学函数
需求与供给函数 成本函数 收益函数 利润函数 库存函数
边际与弹性 最优化问题
应用题必考:与求导、求极值、最值知识点结合
5
微积分(一) calculus
第三章 导数与微分
导数的定义与左右导数 (求分段点导数,判断可导性与连续性,求极限)
必考:判断分段函数分段点可导性,与连续性、可微 结合考察;与求极限及无穷小量基本性质结合考察。
6
微积分(一) calculus
第三章 导数与微分
基本公式
求导数
四则运算 链式法则 反函数求导
9
微积分(一) calculus
第五章 多元函数微分学
ห้องสมุดไป่ตู้
求极限
极限定义与不同方向的极限 极限四则运算 未定式求极限(因式分解/有理化) 夹逼定理 无穷小量X有界函数(注意无穷小量性质) 等价代换(加减不能代换,乘除可以代换) 换元法后,使用洛必达法则
必考:先分清极限类型,选择相应方法
微积分大一上学期知识点笔记

微积分大一上学期知识点笔记微积分是数学的一个分支,研究数学函数的变化和性质,被广泛应用于自然科学、工程学以及经济学等领域。
下面是微积分大一上学期的知识点笔记,帮助大家回顾和总结学习内容。
一、函数与极限函数是一种特殊的关系,将一个数集的每个元素与另一个数集中的唯一元素相对应。
函数的表示方式有多种,例如函数表达式、图像等。
极限是函数概念的重要部分。
设函数f(x)在点x=a的某个去心邻域内有定义,如果存在常数L,对于任意给定的正数ε,都存在正数δ,使得当0 < |x - a| < δ时,有|f(x) - L| < ε成立,则称函数f(x)当x趋近于a时的极限为L,记作lim┬(x→a)〖f(x) = L〗。
二、导数与微分导数是描述函数在某一点的变化率,或者说切线的斜率。
设函数f(x)在点x=a的某个去心邻域内有定义,如果极限lim┬(h→0)〖(f(a+h) - f(a))/h = L〗存在,则称函数f(x)在点x=a处可导,L为函数f(x)在x=a处的导数,记作f'(a)。
导数的求解可以使用导数的定义或求导法则。
微分是导数的一个应用,仅在某一点附近考虑,表示函数在该点的局部变化。
记dx为自变量x的增量,dy为函数y=f(x)在x点的增量,则有dy = f'(x)dx。
微分可以近似描述函数的变化情况,例如在曲线上某一点的切线方程。
三、常用函数的导数计算1. 幂函数导数计算:设f(x) = x^n,其中n为自然数,则f'(x) = nx^(n-1)。
2. 指数函数导数计算:设f(x) = a^x,其中a为正数且a≠1,则f'(x) = a^x * lna。
3. 对数函数导数计算:设f(x) = lnx,则f'(x) = 1/x。
4. 三角函数导数计算:常见的三角函数包括正弦函数sinx、余弦函数cosx、正切函数tanx等。
它们的导数分别为cosx、-sinx、sec^2x。
大一微积分每章知识点总结

大一微积分每章知识点总结微积分是数学的重要分支之一,用于研究变化率与累积效应。
在大一微积分课程中,我们学习了许多重要的知识点,这些知识点为我们进一步学习高级数学打下了坚实的基础。
本文将对大一微积分每章的知识点进行总结,以帮助读者巩固所学内容。
第一章:函数与极限在这一章中,我们学习了函数的概念与性质,以及极限的定义与运算法则。
函数是一种将一个数集映射到另一个数集的规则,可以用数学公式或图形表示。
极限是函数在某个点无限接近于某个值的情况,是微积分的基础概念之一。
第二章:导数与微分导数是用来描述函数变化率的概念,它表示函数在某一点处的切线斜率。
我们学习了导数的计算方法,包括基本导数公式、加减乘除法则、链式法则等。
微分则是导数的应用,用于计算函数在某一点的近似值,并研究函数的局部特征。
第三章:微分中值定理与导数的应用在这一章中,我们学习了微分中值定理和导数的应用。
微分中值定理是描述函数在某个区间内存在某点的斜率等于该区间的平均斜率的定理,包括拉格朗日中值定理和柯西中值定理。
导数的应用包括函数的单调性、极值点、凹凸性等的判断与求解。
第四章:不定积分不定积分是导数的逆运算,用于求解函数的原函数。
我们学习了不定积分的基本性质和常用的积分公式,包括换元法、分部积分法、有理函数的积分等。
通过不定积分,我们可以求解函数的面积、曲线长度等问题。
第五章:定积分与定积分的应用定积分是用来计算曲线下面积的工具,也可以表示变化率与累积效应。
我们学习了定积分的定义和性质,以及计算定积分的方法,如换元法、分部积分法和定积分的几何应用等。
定积分的应用包括计算曲线的弧长、质量、物体的质心等。
第六章:微分方程微分方程是用导数和未知函数构成的方程,研究函数之间的关系。
我们学习了常微分方程的基本概念和解法,包括一阶线性微分方程和可分离变量的方程等。
微分方程是实际问题建模与求解的重要工具,应用广泛于物理、化学、工程等领域。
通过对大一微积分每章的知识点进行总结,我们回顾了函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分与定积分的应用、微分方程等内容,巩固了所学知识,并为之后学习高级数学打下了坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大一微积分前五章知识点
微积分是数学的一门重要分支,广泛应用于自然科学、工程技术、经济管理等领域。
作为大一学生的你,将要学习微积分的前五章内容。
下面将介绍这五章的主要知识点和概念。
第一章:数列与极限
1. 数列的概念:数列是由一系列有序的数按一定规律排列而成的。
2. 数列的极限:当数列的项随着自变量的变化而趋近于一个确定的常数时,称该常数为数列的极限。
3. 收敛数列与发散数列:若数列存在极限,则称为收敛数列,否则称为发散数列。
4. 数列极限的性质:数列极限具有唯一性、有界性和保号性等重要性质。
第二章:函数与极限
1. 函数的概念:函数是一个自变量和因变量之间的映射关系。
2. 函数的极限:当函数的自变量趋近于某个值时,函数的值根据一定的规则趋近于一个确定的常数,称该常数为函数的极限。
3. 函数极限的运算法则:极限有四则运算法则、复合函数的极
限法则等。
4. 无穷小量与无穷大量:在函数极限的计算中,我们常常会用
到无穷小量和无穷大量的概念。
第三章:连续函数与导数
1. 连续函数的定义:函数在某一点上的函数值等于该点的极限,我们称该函数在该点连续。
2. 连续函数的性质:连续函数具有保号性、介值性和局部有界
性等重要性质。
3. 导数的概念:导数是描述函数变化快慢程度的量,用于研究
函数在任意点的切线斜率。
4. 导数的计算方法:导数具有基本运算法则、常用函数的导数
公式等。
第四章:微分学的应用
1. 微分的几何应用:微分学常用于求曲线的切线和法线、求曲
率等几何问题的解决。
2. 最值与最值问题:利用微分学的知识,可以求函数的最大值、最小值及其所对应的自变量。
3. 函数的单调性与曲线的凹凸性:通过函数的导数可以判断函
数的单调性和曲线的凹凸性。
第五章:不定积分
1. 不定积分的概念:不定积分是反导数的概念,表示求函数的
原函数的过程。
2. 基本积分表:基本积分表是常见函数的积分公式,学习时需
要熟记并掌握应用。
3. 不定积分的计算方法:通过基本积分表、换元积分法、分部
积分法等方法可以计算不定积分。
以上为大一微积分前五章的主要知识点和概念。
通过学习这些
内容,你将能够掌握微积分的基础知识,为进一步深入学习打下
坚实的基础。
希望你能够认真学习并灵活运用这些知识,不断提
升自己的数学水平。