高中数学之 函数的零点与方程的解 教学设计
函数的零点与方程的解 教学设计

《函数的零点与方程的解》教学设计一、教学目标:1.推广函数零点的定义,掌握方程的实根与其相应函数零点之的等价关系;理解函数零点存在定理,并能运用该定理解决相关简单问题。
2.体验数学从特殊到一般抽象出结论,再应用结论解决问题的思维过程;通过数形结合思想的渗透,培养学生主动应用数学思想的意识;通过对函数与方程思想的剖析,促进学生对知识灵活应用的能力。
3.情感、态度与价值观:①学生体验从特殊到一般、化归与转化、函数与方程、数形结合这些数学思想在解决数学问题时的意义与价值;②学生在学习过程中基本形成锲而不舍的探索精神和严密思考的良好习惯;③学生感受学习、探索发现的乐趣与成功感。
二、教学重难点分析:1.教学重点:零点的概念及零点存在定理。
2.教学难点:零点存在定理的理解。
三、教学的方法与手段四、教学过程:一.三个问题,承前启后在函数的应用(一)中我们已经收获了什么?在函数的应用(二)中我们将继续收获什么?关于二次函数的“零点”这一概念你能说一说吗?【设计意图】①通过回顾函数的应用(一),先知晓我们已经干了哪些事,阅读函数的应用(二)的章开头再明确接下来要干什么。
承前启后,合理自然。
②唤醒二次函数零点的概念,为函数零点概念的一般化作铺垫。
二.两个引例,推广概念【设计意图】通过生活中的实际例子,不断抛出函数零点这一话题,强化学习者意识,为抽象出 函数零点的概念作铺垫。
一方面得到函数零点与方程有解,图像与x 轴交点三者的等价关系。
另 一方面学习者经历从解得出方程的解的对数函数到解不出具体解不熟悉的函数,引发学习冲突。
为把问题研究转移到更熟悉的二次函数来作铺垫,符合学习者认识一般数学问题的认知规律。
三.一个函数,探究定理对于二次函数2f ()23x x x =--,观察它的图像,计算它的函数值,在零点所在的区间,函数图像 与x 轴有什么关系? O y x f x () = x 2-2⋅x-3-4-3-2-121-2-14321℃O t t2Bt1-53若该二次函数的图象在区间[ ,]上连续,如果有,那么函数在区间( , )上有零点.结论:若该二次函数的图象在区间[ ,]上连续,如果有,那么函数在区间( , )上有零点.【设计意图】:以熟悉的二次函数为研究对象,学习者亲自动手,探索规律,得出结论,猜想定理。
高中数学函数零点教案

高中数学函数零点教案
目标:
学生能够掌握函数零点的概念以及求解零点的方法。
教学内容:
1. 函数零点的定义
2. 方程求解的方法(因式分解、配方法、二次函数公式)
3. 利用图像法求解零点
教学步骤:
1. 引导学生了解函数零点的定义,即函数图像与X轴的交点。
2. 讲解如何求解函数的零点,分别介绍因式分解、配方法和二次函数公式的应用。
3. 演示练习,让学生在老师的指导下解决一些函数的零点问题。
4. 引导学生通过作图的方法求解函数的零点,讲解如何在函数图像上找到交点。
5. 练习巩固,让学生自主完成一些函数的零点求解问题。
评价方式:
1. 学生的课堂参与度
2. 课堂练习的正确率
3. 课后作业的完成情况
Homework:
1. 完成课后练习
2. 尝试解决更复杂的函数零点问题
备注:
老师在教学过程中要引导学生注意函数零点的概念理解和求解方法,遇到困难要及时给予帮助和指导。
提倡学生多做练习,加深对函数零点的理解和掌握。
高中数学人教A版(2019)必修第一册 4 函数的零点与方程的解(教案)

第四章 指数函数与对数函数4.5.1 函数的零点与方程的解教学设计一、教学目标1.结合函数图象,了解函数的零点与方程的解的关系.2.理解零点存在性定理,了解函数图象连续不断的意义及作用.3.能利用函数图象和性质判断某些函数的零点个数及所在区间.二、教学重难点1、教学重点零点存在性定理.2、教学难点函数的零点与方程的解的关系.三、教学过程1、新课导入我们已经学习了用二次函数的观点认识一元二次方程,知道一元二次方程的实数根就是相应二次函数的零点.不能用公式求解的方程,是否也能采用类似的方法,用相应的函数研究它的解的情况呢?这节课我们就来学习一下函数的零点与方程的解.2、探索新知知识点1 函数的零点对于一般函数()y f x =,使()0f x =的实数x 叫做函数()y f x =的零点.知识点2 方程、函数、图象之间的关系方程()0f x =有实数根⇔函数()y f x =有零点⇔函数()y f x =的图象与x 轴有交点.知识点3 函数零点存在定理如果函数()y f x =在区间[]a b ,上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间()a b ,内至少有一个零点,即存在()c a b ∈,,使得()0f c =,这个c 也就是方程()0f x =的解.例题点拨例 求方程ln 260x x +-=的实数解的个数.分析:可以先借助计算工具画出函数ln 26y x x =+-的图象或列出x ,y 的对应值表,为观察、判断零点所在区间提供帮助.解:设函数()ln 26f x x x =+-,利用计算工具,列出函数()y f x =的对应值表如下表,并画出图象如图.xy 1-4 2-1.3069 31.0986 43.3863 55.6094 67.7918 79.9459 812.0794 9 14.1972由表和图可知,(2)0f <,(3)0f >,则(2)(3)0f f <.由函数零点存在定理可知,函数()ln 26f x x x =+-在区间(23),内至少有一个零点.容易证明,函数()ln 26f x x x =+-,(0)x ∈+∞,是增函数,所以它只有一个零点,即相应方程ln 260x x +-=只有一个实数解.3、课堂练习1.已知函数221,1()1log ,1x x f x x x ⎧-≤=⎨+>⎩,则函数()f x 的零点为( ) A.12,0 B.-2,0 C.12 D.0答案:D解析:当1x ≤时,令210x -=,得0x =;当1x >时,令21log 0x +=,得12x =(舍去).综上所述,函数()f x 的零点为0.故选D. 2.已知函数e ,0()ln ,0x x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是( )A.[1,0)-B.[0,)+∞C.[1,)-+∞D.[1,)+∞答案:C解析:函数()()g x f x x a =++存在2个零点,即关于x 的方程()f x x a =--有2个不同的实根,即函数f x ()的图象与直线y x a =--有2个交点,作出直线y x a =--与函数f x ()的图象,如图所示,由图可知,1a -≤,解得1a ≥-,故选C.3.已知函数2121,1()log ,1x x f x x x ⎧-<⎪=⎨≥⎪⎩,若关于x 的方程()f x k =有三个不同的实根,则实数k 的取值范围是____________.答案:(1,0)-解析:关于x 的方程()f x k =有三个不同的实根,等价于函数()y f x =与函数y k =的图象有三个不同的交点,作出两函数的图象,如图所示,由图可知实数k 的取值范围是(1,0)-.4、小结作业小结:本节课学习了函数的零点与方程的解的关系以及零点存在性定理. 作业:完成本节课课后习题.四、板书设计4.5.1 函数的零点与方程的解1.函数的零点:对于一般函数()y f x =,使()0f x =的实数x 叫做函数()y f x =的零点.2.方程、函数、图象之间的关系:方程()0f x =有实数根⇔函数()y f x =有零点⇔函数()y f x =的图象与x 轴有交点.3.函数零点存在定理:如果函数()y f x =在区间[]a b ,上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间()a b ,内至少有一个零点,即存在()c a b ∈,,使得()0f c =,这个c 也就是方程()0f x =的解.。
函数的零点与方程的解教学设计

函数的零点与方程的解教学设计教学目标:1. 理解函数的零点与方程的解的概念及联系。
2. 掌握求解函数的零点与方程的解的方法。
3. 能够在实际问题中应用函数的零点与方程的解进行分析和求解。
教学内容:1. 函数的零点与方程的解的定义及联系。
函数的零点即函数取零值的自变量的值,可以通过解方程 f(x) = 0 求得。
方程的解即方程的可行解,在函数图像上对应着函数的零点。
2. 函数的零点与方程的解的求解方法。
(1) 图像法:通过绘制函数的图像,并观察图像与 x 轴的交点确定函数的零点。
(2) 代数法:将函数的表达式表示为方程,然后解方程求得函数的零点。
(3) 数值法:利用数值计算方法,通过迭代逼近的方式求得函数的零点。
3. 函数的零点与方程的解的应用。
(1) 分析函数的性质:函数的零点可以帮助我们分析函数的增减性、极值等特征。
(2) 解决实际问题:通过函数的零点与方程的解,可以解决与实际问题相关的计算和分析。
教学步骤:1. 概念讲解与示例演示:通过简单的例子引入函数的零点与方程的解的概念,解释它们的定义及联系。
同时,通过图像法和代数法求解函数的零点的方法进行示范。
2. 理解与练习:让学生自主思考和解答一些练习题,巩固对函数的零点与方程的解的理解。
可以设置一些简单的函数和方程,让学生通过图像法、代数法和数值法求解。
3. 深入应用:引入实际问题,让学生通过函数的零点与方程的解进行实际问题的分析和求解。
可以选择一些与学生生活经验相关的问题,如运动问题、经济问题等。
指导学生将问题抽象为函数或方程,并进行求解。
4. 总结与拓展:归纳整理函数的零点与方程的解的求解方法,并总结其应用。
拓展相关知识,如高次方程的求解、多元函数的零点等内容。
评估方式:1. 口头回答问题:通过课堂提问的方式,观察学生对函数的零点与方程的解概念的理解程度。
2. 解题能力评估:布置并批改相关练习题,检验学生对函数的零点与方程的解的求解能力。
3. 实际问题拓展:要求学生独立思考、解决实际问题,评估学生将函数的零点与方程的解应用于实际问题的能力。
【教学设计】 函数的零点与方程的解

函数的零点与方程的解教学目标1.理解函数零点的定义,会求函数的零点.2.掌握函数零点存在定理,会判断函数零点的个数及其所在区间.3.提升学生的数学抽象、逻辑推理、数学运算的素养.重点:函数零点与方程解的关系,函数零点存在定理的应用.难点:函数零点存在定理的导出.教学过程【探究一:零点概念的建构】(1)回忆旧知铺垫新课:师:同学们对于本节课的课题是不是有些似曾相识的感觉,我们在哪里与零点偶遇过吗?生:在一元二次函数零点那里!师:问题1:二次函数零点的概念是什么?问题2:二次函数与其所对应方程之间有什么关系?设计意图:引导学生对初中所学的二次方程进行回忆,同时也想要说明方程的根除了韦达定理和求根公式和函数的图像存在关系,为后面的零点进行铺垫通过回顾二次函数图象与x 轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备。
(2)辨析讨论,深化概念.问题3:由二次函数与其所对应方程之间存在的关系你能否类比得到函数和方程之间的关系吗 设计意图:培养学生识图和归纳总结的能力问题4:你能将你得到的特殊结论推广到一般的形式的函数吗并将你所得的结论总结出来吗 设计意图:让学生参与概念的生成,并将学生的主体地位显现 例1.函数f (x )=2x 2-3x +1的零点是( )A .(12,0),( 1,0)B. 12,1 C .( 12,0),(-1,0)D .-12,1设计意图: 及时矫正“零点是交点”这一误解.说明:函数零点不是一个点,而是具体的自变量的取值.牛刀小试:求下列函数的零点: 1、函数图象如下,求零点设计意图: 使学生熟悉零点的求法(即求相应方程的实数根).同时为零点存在定理做铺垫。
【探究二:零点存在定理的建构】问题5:在怎样的条件下,函数y =f (x )在区间[a ,b ]上一定有零点探究:(1)让学生自己动手画出二次函数f (x )=x 2-2x -3的图象并分析特点:2.1()lg (2)()24x f x xf x ==-求函数的零点()abcxyO d在区间[-2,0]上有零点______;f(-2)=_______,f(1)=_______,f(-2)·f(1)_____0(“<”或“>”).在区间(2,4)上有零点______;f(2)·f(4)____0(“<”或“>”).(2)观察函数的图象:①在区间(a,b)上___(有/无)零点;f(a)·f(b) ___ 0(“<”或“>”).②在区间(b,c)上___(有/无)零点;f(b)·f(c) ___ 0(“<”或“>”).③在区间(c,d)上___(有/无)零点;f(c)·f(d) ___ 0(“<”或“>”).设计意图:通过归纳总结得出特殊到一般数学思想得到零点存在性定理.从而强调零点存在的条件为后面概念的辨析做好铺垫。
2024届高考一轮复习数学教案(新人教B版):函数的零点与方程的解

§2.11函数的零点与方程的解考试要求 1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称α为函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的,并且f(a)f(b)<0(即在区间两个端点处的函数值异号),则函数y=f(x)在区间(a,b)中至少有一个零点,即∃x0∈(a,b),f(x0)=0. 2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.常用结论1.若连续不断的函数f(x)是定义域上的单调函数,则f(x)至多有一个零点.2.连续不断的函数,其相邻两个零点之间的所有函数值保持同号.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)用二分法求函数零点的近似值适合于变号零点.(√)教材改编题1.观察下列函数的图象,判断能用二分法求其零点的是()答案A解析由图象可知,B ,D 选项中函数无零点,A ,C 选项中函数有零点,C 选项中函数零点两侧函数值符号相同,A 选项中函数零点两侧函数值符号相反,故A 选项中函数零点可以用二分法求近似值,C 选项不能用二分法求零点.2.函数y =3x -ln x 的零点所在区间是()A .(3,4)B .(2,3)C .(1,2)D .(0,1)答案B解析因为函数的定义域为(0,+∞),且函数y =3x在(0,+∞)上单调递减;y =-ln x 在(0,+∞)上单调递减,所以函数y =3x -ln x 为定义在(0,+∞)上的连续减函数,又当x =2时,y =32-ln 2>0;当x =3时,y =1-ln 3<0,两函数值异号,所以函数y =3x -ln x 的零点所在区间是(2,3).3.函数f (x )=e x +3x 的零点个数是()A .0B .1C .2D .3答案B解析由f ′(x )=e x +3>0,所以f (x )在R 上单调递增,又f (-1)=1e-3<0,f (0)=1>0,因此函数f (x )有且只有一个零点.题型一函数零点所在区间的判定例1(1)函数f (x )=ln x +2x -6的零点所在的区间是()A .(1,2)B .(2,3)C .(3,4)D .(4,5)答案B解析由题意得,f (x )=ln x +2x -6,在定义域内单调递增,f (2)=ln 2+4-6=ln 2-2<0,f (3)=ln 3+6-6=ln 3>0,则f (2)f (3)<0,∴零点在区间(2,3)上.延伸探究用二分法求函数f (x )=ln x +2x -6在区间(2,3)内的零点近似值,至少经过________次二分后精确度达到0.1()A .2B .3C .4D .5答案C解析∵开区间(2,3)的长度等于1,每经过一次操作,区间长度变为原来的一半,经过n 次操作后,区间长度变为12n ,故有12n ≤0.1,解得n ≥4,∴至少需要操作4次.(2)(2023·蚌埠模拟)已知x 1+12x=0,x 2+log 2x 2=0,33x --log 2x 3=0,则()A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 2<x 3<x 1答案A解析设函数f (x )=x +2x ,易知f (x )在R 上单调递增,f (-1)=-12,f (0)=1,即f (-1)f (0)<0,由函数零点存在定理可知,-1<x 1<0.设函数g (x )=x +log 2x ,易知g (x )在(0,+∞)上单调递增,=-12,g (1)=1,即(1)<0,由函数零点存在定理可知,12<x 2<1,设函数h (x )-log 2x ,易知h (x )在(0,+∞)上单调递减,h (1)=13,h (x 3)=0,因为h (1)>h (x 3),由函数单调性可知,x 3>1,即-1<x 1<0<x 2<1<x 3.思维升华确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.跟踪训练1(1)(多选)函数f (x )=e x -x -2在下列哪个区间内必有零点()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)答案AD解析f (-2)=1e 2>0,f (-1)=1e-1<0,f (0)=-1<0,f (1)=e -3<0,f (2)=e 2-4>0,因为f (-2)·f (-1)<0,f (1)·f (2)<0,所以f (x )在(-2,-1)和(1,2)内存在零点.(2)若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间()A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案A解析函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点.题型二函数零点个数的判定例2(1)若函数f (x )=|x |,则函数y =f (x )-12log |x |的零点个数是()A .5B .4C .3D .2答案D解析在同一平面直角坐标系中作出f(x)=|x|,g(x)=12log|x|的图象如图所示,则y=f(x)-12log|x|的零点个数,即f(x)与g(x)图象的交点个数,由图可知选D.(2)已知在R上的函数f(x)满足对于任意实数x都有f(2+x)=f(2-x),f(7+x)=f(7-x),且在区间[0,7]上只有x=1和x=3两个零点,则f(x)=0在区间[0,2023]上根的个数为() A.404B.405C.406D.203答案C解析因为f(2+x)=f(2-x),f(x)关于直线x=2对称且f(5+x)=f(-x-1);因为f(7+x)=f(7-x),故可得f(5+x)=f(-x+9);故可得f(-x-1)=f(-x+9),则f(x)=f(x+10),故f(x)是以10为周期的函数.又f(x)在区间[0,7]上只有x=1和x=3两个零点,根据函数对称性可知,f(x)在一个周期[0,10]内也只有两个零点,又区间[0,2023]内包含202个周期,故f(x)在[0,2020]上的零点个数为202×2=404,又f(x)在(2020,2023]上的零点个数与在(0,3]上的零点个数相同,有2个.故f(x)在[0,2023]上有406个零点,即f(x)=0在区间[0,2023]上有406个根.思维升华求解函数零点个数的基本方法(1)直接法:令f(x)=0,方程有多少个解,则f(x)有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2(1)(2022·泉州模拟)设定义域为R的函数f(x)x|,x>0,x2-2x,x≤0,则关于x的函数y=2f2(x)-3f(x)+1的零点的个数为() A.3B.7C.5D.6答案B解析根据题意,令2f2(x)-3f(x)+1=0,得f (x )=1或f (x )=12.作出f (x )的简图如图所示,由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为7.(2)函数f (x )=36-x 2·cos x 的零点个数为______.答案6解析令36-x 2≥0,解得-6≤x ≤6,∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0,由36-x 2=0得x =±6,由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 的取值为-3π2,-π2,π2,3π2.故f (x )共有6个零点.题型三函数零点的应用命题点1根据零点个数求参数例3(2023·黄冈模拟)函数f (x )-x 2,x ≤2,3(x -1),x >2,g (x )=kx -3k ,若函数f (x )与g (x )的图象有三个交点,则实数k 的取值范围为()A .(22-6,0)B .(23-6,0)C .(-2,0)D .(25-6,0)答案D解析作出函数f (x )-x 2,x ≤2,3(x -1),x >2的图象,如图所示,设与y =4-x 2相切的直线为l ,且切点为P (x 0,4-x 20),因为y ′=-2x ,所以切线的斜率为k =-2x 0,则切线方程为y -4+x 20=-2x 0(x -x 0),因为g (x )=kx -3k 过定点(3,0),且在切线l 上,代入切线方程求得x 0=3-5或x 0=3+5(舍去),所以切线的斜率为k =25-6,因为函数f (x )与g (x )的图象有三个交点,由图象知,实数k 的取值范围为(25-6,0).命题点2根据函数零点的范围求参数例4(2023·北京模拟)已知函数f (x )=3x -1+axx .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是()A.-∞,43 B.0,43C .(-∞,0) D.43,+∞答案B解析由f (x )=3x -1+ax x=0,可得a =3x -1x ,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时,g (x )=3x -1x <g (-1)=3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)因此实数a 思维升华根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.跟踪训练3(1)函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是()A .0<a <3B .1<a <3C .1<a <2D .a ≥2答案A解析因为函数y =2x ,y =-2x 在(0,+∞)上单调递增,所以函数f (x )=2x -2x-a 在(0,+∞)上单调递增,由函数f (x )=2x -2x -a 的一个零点在区间(1,2)内得,f (1)×f (2)=(2-2-a )(4-1-a )=(-a )×(3-a )<0,解得0<a <3.(2)(2023·唐山模拟)已知函数f (x )x >0,2x ,x ≤0,若g (x )=f (x )-a 有3个零点,则实数a的取值范围为()A .(-1,0)1C.0{-1}答案B解析设h (x )=ln xx(x >0),则h ′(x )=1-ln xx 2,令h ′(x )>0,得0<x <e ,令h ′(x )<0,得x >e ,所以函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.所以h (x )max =h (e)=1e.因为函数g (x )=f (x )-a 有3个零点,所以方程f (x )=a 有3个解.作出函数y =f (x )和y =a 的图象如图所示,所以a 1课时精练1.(2022·焦作模拟)设函数f (x )=2x +x3的零点为x 0,则x 0所在的区间是()A .(-4,-2)B .(-2,-1)C .(1,2)D .(2,4)答案B解析易知f (x )在R 上单调递增且连续,f (-2)=14-23,f (-1)=12-13>0,所以x 0∈(-2,-1).2.用二分法研究函数f (x )=x 5+8x 3-1的零点时,第一次经过计算得f (0)<0,f (0.5)>0,则其中一个零点所在区间和第二次应计算的函数值分别为()A .(0,0.5),f (0.125)B .(0,0.5),f (0.375)C .(0.5,1),f (0.75)D .(0,0.5),f (0.25)答案D解析因为f (0)f (0.5)<0,由函数零点存在定理知,零点x 0∈(0,0.5),根据二分法,第二次应计算f f (0.25).3.函数f (x )2-2x -3,x ≤0,2x -3x +4,x >0的零点个数为()A .1B .2C .3D .4答案C解析当x ≤0时,令f (x )=x 2-2x -3=0,得x =-1(x =3舍去),当x >0时,令f (x )=0,得log 2x =3x -4,作出y =log 2x 与y =3x -4的图象,如图所示,由图可知,y =log 2x 与y =3x -4有两个交点,所以当x >0时,f (x )=0有两个零点,综上,f (x )有3个零点.4.已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则实数m 的取值范围为()-53,(0,+∞)-∞,-53∪(0,+∞)D.-53,答案D解析由于函数y =log 2(x +1),y =m -1x在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,1)<0,3)≥0,<0,+53≥0,解得-53≤m <0.因此,实数m 的取值范围是-53,5.已知函数f (x )-x ,x <0,+|x -1|,x ≥0,若函数g (x )=f (x )-m 有三个零点,则实数m 的取值范围是()A .(1,2]B .(1,2)C .(0,1)D .[1,+∞)答案A 解析因为函数g (x )=f (x )-m 有三个零点,所以函数f (x )的图象与直线y =m 有三个不同的交点,作出函数f (x )的图象,如图所示,由图可知,1<m ≤2,即m 的取值范围是(1,2].6.已知函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点分别为x 1,x 2,x 3,则()A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 1<x 2答案C 解析函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x (x >0)的零点,即为y =x 与y =x (x >0),y =-e x ,y =-ln x (x >0)的交点的横坐标,作出y =x 与y =x (x >0),y =-e x ,y =-ln x (x >0)的图象,如图所示.可知x 2<x 3<x 1.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是()A .1B .2C .4D .6答案ABC 解析由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )x ,x ∈[0,π],sin x ,x ∈ π,2π],在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y=k与y=f(x)的图象交点个数可能为0,1,2,3,4.8.(多选)(2023·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单地讲,就是对于满足一定条件的连续函数f(x),存在一个点x0,使得f(x0)=x0,那么我们称该函数为“不动点”函数,下列函数是“不动点”函数的是()A.f(x)=2x+x B.f(x)=x2-x-3C.f(x)=12x+1D.f(x)=|log2x|-1答案BCD解析选项A,若f(x0)=x0,则02x=0,该方程无解,故该函数不是“不动点”函数;选项B,若f(x0)=x0,则x20-2x0-3=0,解得x0=3或x0=-1,故该函数是“不动点”函数;选项C,若f(x0)=x0,则12x+1=x0,可得x20-3x0+1=0,且x0≥1,解得x0=3+52,故该函数是“不动点”函数;选项D,若f(x0)=x0,则|log2x0|-1=x0,即|log2x0|=x0+1,作出y=|log2x|与y=x+1的函数图象,如图,由图可知,方程|log2x|=x+1有实数根x0,即存在x0,使|log2x0|-1=x0,故该函数是“不动点”函数.9.已知指数函数为f(x)=4x,则函数y=f(x)-2x+1的零点为________.答案1解析由f(x)-2x+1=4x-2x+1=0,得2x(2x-2)=0,x=1.10.(2023·苏州质检)函数f (x )满足以下条件:①f (x )的定义域为R ,其图象是一条连续不断的曲线;②∀x ∈R ,f (x )=f (-x );③当x 1,x 2∈(0,+∞)且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0;④f (x )恰有两个零点,请写出函数f (x )的一个解析式________.答案f (x )=x 2-1(答案不唯一)解析因为∀x ∈R ,f (x )=f (-x ),所以f (x )是偶函数,因为当x 1,x 2∈(0,+∞)且x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2>0,所以f (x )在(0,+∞)上单调递增,因为f (x )恰有两个零点,所以f (x )图象与x 轴只有2个交点,所以函数f (x )的一个解析式可以为f (x )=x 2-1(答案不唯一).11.已知函数f (x )2x ,x >0,x ,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.答案(1,+∞)解析方程f (x )+x -a =0有且只有一个实根,即f (x )=-x +a 有且只有一个实根,即函数y =f (x )的图象与直线y =-x +a 有且只有一个交点.如图,在同一直角坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线y =-x +a 在y轴上的截距.由图可知,当a ≤1时,直线y =-x +a 与y =f (x )有两个交点,当a >1时,直线y =-x +a 与y =f (x )只有一个交点.故实数a 的取值范围是(1,+∞).12.已知函数f (x )x -1|,x ≤1,-2)2,x >1,函数y =f (x )-a 有四个不同的零点x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则123422x x x x ++=________.答案12解析y =f (x )-a 有四个不同的零点x 1,x 2,x 3,x 4,即方程f (x )=a 有四个不同的解,即y =f (x )的图象与直线y =a 有四个交点.在同一平面直角坐标系中分别作出y =f (x )与y =a的图象,如图所示,由二次函数的对称性可得,x 3+x 4=4.因为1-12x =22x-1,所以12x +22x =2,故123422x x x x ++=12.13.已知函数f (x )=|e x -1|+1,若函数g (x )=f 2(x )+(a -2)f (x )-2a 有三个零点,则实数a 的取值范围是()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)答案A 解析令t =f (x ),则函数g (t )=t 2+(a -2)t -2a ,由t 2+(a -2)t -2a =0得,t =2或t =-a .f (x )=|e x -1|+1x ,x ≥0,-e x ,x <0,作出函数f (x )的图象,如图所示,由图可知,当t =2时,方程f (x )=|e x -1|+1=2有且仅有一个根,则方程f (x )=|e x -1|+1=-a 必有两个不同的实数根,此时由图可知,1<-a <2,即-2<a <-1.14.已知函数f (x )=x +1x -sin x -1,x ∈[-4π,0)∪(0,4π],则函数f (x )的所有零点之和为________.答案0解析因为函数f (x )=x +1x-sin x -1=1x -sin x ,所以f (x )的对称中心是(0,0),令f (x )=0,得1x=sin x ,在同一平面直角坐标系中作出函数y =1x,y =sin x 的图象,如图所示,由图象知,两个函数图象有8个交点,即函数f (x )有8个零点,由对称性可知,零点之和为0.15.(2023·南昌模拟)定义在R 上的偶函数f (x )满足f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=e x -1,若关于x 的方程f (x )=m (x +1)(m >0)恰有5个实数解,则实数m 的取值范围为()D .(0,e -1)答案B 解析∵f (x )=f (2-x ),∴函数f (x )关于直线x =1对称,又f (x )为定义在R 上的偶函数,∴函数f (x )关于直线x =0对称,作出函数y =f (x )与直线y =m (x +1)的图象,如图所示,要使关于x 的方程f (x )=m (x +1)(m >0)恰有5个实数解,则函数y =f (x )的图象与直线y =m (x +1)有5个交点,m >e -1,m <e -1,即e -16<m <e -14.16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案,4e 2解析由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2ex .令h (x )=x 2ex ,则h ′(x )=2x -x 2e x =x (2-x )e x,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e h (2)=4e2,h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点,只需a ,4e 2.。
《函数的零点与方程的解》教学设计

《函数的零点与方程的解》教学设计一、教学内容解析1.内容本节课是《普通高中教科书数学A版必修第一册》第四章第五节函数的应用(二)第一课时的内容.2.内容解析函数与方程是描述客观世界变化规律的基本数学模型,也是中学数学的重要数学思想之一,在高中数学教学中占有非常重要的地位.本节内容是学生在学习了函数的概念及性质、基本初等函数等知识的基础上,结合函数图象及性质,探究函数零点与方程的根之间的关系以及函数在某个区间上存在零点的条件是函数作为解决数学问题的工具在数学知识内部的应用,同时本节课的学习也是为下节“用二分法求方程的近似解”奠定基础,具有承前启后的作用.本节课要求学生通过二次函数的零点的定义抽象出一般函数的零点的概念,并通过对一元二次方程的根与相应的二次函数的零点以及二次函数的图像与x轴的交点的横坐标之间的关系的判断,推断出一般的方程的根与相应的函数图像与x轴交点横坐标、函数零点的等价关系,通过分析具体二次函数零点附近的图像和函数值的特征,结合其他函数零点所在区间的函数值特征,总结归纳出函数零点存在的条件,得出函数零点存在定理,最后利用函数零点存在定理研究具体方程根的问题,并利用信息技术作出函数图像帮助学生直观形象地理解本节内容,体现函数的应用价值.函数作为解决数学问题的基本工具,把函数在解方程中加以应用,渗透了许多重要的数学思想,比如函数与方程思想,数形结合思想,转化与化归思想.对培养学生的数学抽象、直观想象、数学运算和数学建模等学科核心素养,以及树立学数学、用数学的观念与信心具有至关重要的作用.故本节课的教学重点是:函数零点的概念、函数零点与方程的解的关系,以及函数零点存在定理.二、学生学情分析本节课的教学对象是刚进入高中的高一学生,在初中,学生已经对一元二次方程的根的三种情况有了深刻的认识,对二次函数的图象也比较熟悉,通过前面章节的学习,学生已经了解了一些基本初等函数的模型,掌握了函数图象的一般画法及函数的一些性质(如奇偶性、单调性、最值等).本节内容是将函数的零点与方程的解的关系进行进一步讨论,通过几个学生熟悉的具体函数,抽象出零点的概念,归纳函数在某区间有零点的条件,从而得出函数零点存在定理.进一步从代数与几何两个角度判断零点的个数.从代数到几何,从几何到代数全方位理解函数的零点与方程的解之间的关系,几何与代数之间的转化对学生认知水平的要求属“最近发展区”,但学生对知识之间的有机联系把握不到位,应用意识不强,其观察、归纳能力还有待进一步提高.故函数零点的存在定理的生成过程对学生来说是一个难点.这种从学生已有的知识出发理解探究新知识的过程既符合学生的认知规律,也是解决数学问题的一般方法.故本节课的难点是:函数零点存在定理的导出,以及理解函数零点存在定理中的两个条件是函数在某区间上存在零点的充分不必要条件,借助函数图像判断函数零点的个数.三、教学目标设置1.根据二次函数零点的定义抽象出一般函数)(x f y =零点的定义.在此过程中培养学生的数学抽象核心素养;2.通过对一元二次方程的根与相应的二次函数的零点以及二次函数的图像与x 轴的交点的横坐标之间的关系的认识,推断出一般的方程的根与相应的函数图像与x 轴交点横坐标、函数零点的等价关系.在此过程中培养学生的逻辑推理能力以及对数形结合思想的应用;3.通过分析具体二次函数零点附近的图像和函数值的特征,再结合更多函数图像,通过观察、对比、分析、总结归纳出函数零点存在的条件,得出函数零点存在定理。
方程的解与函数的零点优秀的讲授教案(比赛课)

方程的解与函数的零点优秀的讲授教案(比赛课)方程的解与函数的零点优秀的讲授教案(比赛课)教案目标本教案旨在通过有趣和交互式的研究方式,帮助学生理解方程的解与函数的零点的概念,并掌握求解方程和函数的零点的方法。
教案内容1. 引入:通过一个生活实例或问题引入方程的解与函数的零点的概念,引发学生思考和讨论。
2. 方程的解概念讲解:- 解释方程的定义和意义;- 通过示例演示如何求解一元一次方程;- 引入更复杂的方程,如一元二次方程,并介绍其求解方法;- 给予学生一定练机会,巩固概念和方法的研究。
3. 函数的零点概念讲解:- 介绍函数的定义和性质;- 解释函数的零点定义和意义;- 展示如何从函数图像中找到函数的零点;- 给予学生一定练机会,加深对函数的零点的理解。
4. 方程与函数的零点关系:- 对比方程的解与函数的零点的概念和求解方法的异同之处;- 强调方程与函数零点之间的联系;- 通过实例让学生练并理解方程与函数零点的关系。
5. 综合练:- 设计一些综合性的方程和函数的零点求解题目,让学生巩固知识和技能;- 提供实践机会,让学生将所学应用于解决实际问题。
教学方法1. 启发式教学:通过提出问题、引导思考和交流的方式,让学生自主发现和理解方程的解和函数的零点的概念。
2. 演示与实践结合:通过示例演示和实践练相结合的方式,丰富学生的研究经验,提高研究效果。
3. 小组合作研究:组织小组讨论和合作研究,激发学生的研究兴趣和团队合作能力。
教学评估1. 参与度观察:观察学生在课堂上的积极参与程度。
2. 书面作业:布置与教学内容相关的书面作业,检验学生对方程的解与函数的零点的理解程度。
3. 综合性评估:设计一些综合性的题目或项目,考察学生对方程和函数零点求解方法的综合运用能力。
拓展活动安排学生进行综合性拓展活动,例如:- 调查常见实际问题对应的方程与函数,了解方程和函数零点求解的实际应用;- 设计一个小游戏,让学生通过求解方程和函数的零点来解锁关卡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学之函数的零点与方程的解教学
设计
本章教学旨在让学生了解函数的零点、方程的根与图象交点三者之间的联系。
通过研究二分法求方程近似解的方法,让学生体会函数与方程之间的关系。
同时,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。
课程目标:
1.了解函数的零点、方程的根与图象交点三者之间的联系。
2.会借助零点存在性定理判断函数的零点所在的大致区间。
3.能借助函数单调性及图象判断零点个数。
重点:零点的概念,及零点与方程根的联系。
难点:零点的概念的形成。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:
一、情景导入
1.给出方程x^2-2x-3=0的解为,函数y=x^2-2x-3的图象与x轴有个交点,坐标为(x,0)。
2.给出方程x^2-2x+1=0的解为,函数y=x^2-2x+1的图象与x轴有个交点,坐标为(x,0)。
3.给出方程x^2-2x+3=0的解为,函数y=x^2-2x+3的图象与x轴有个交点,坐标为(x,0)。
根据以上结论,可以得到:一元二次方程
ax^2+bx+c=(a≠0)的根就是相应二次函数y=ax^2+bx+c=(a≠0)的图象与x轴交点的横坐标。
引导学生进一步观察、研究。
二、预课本,引入新课
让学生阅读课本142-143页,思考并完成以下问题:
1.函数零点的定义是什么?
2.函数零点存在性定理要具备哪两个条件?
3.方程的根、函数的图象与x轴的交点、函数的零点三者之间的联系是什么?
要求学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究
1.函数的零点
对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点。
函数的零点不是一个点,而是一个实数,当自变量取该值时,其函数值等于零。
2.方程、函数、图象之间的关系
方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点。
3.函数零点的存在性定理
函数f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则在区间[a,b]内至少有一个实数c,使得f(c)=0.
根据这个定理,可以判断函数零点所在的大致区间。
四、课堂练
1.判断函数y=x^3-3x^2+2x-6的零点个数,并说明依据。
2.求函数y=x^3-3x^2+2x-6的一个零点,并说明求解过程。
3.如果函数f(x)在区间[1,3]上连续,且f(1)=-2,f(3)=6,
则函数f(x)在区间[1,3]内至少有几个零点?
五、课堂总结
通过本节课的研究,我们了解了函数的零点、方程的根与图象交点三者之间的联系,掌握了判断函数零点个数的方法,学会了求解函数零点的过程。
同时,我们还研究了函数零点存在性定理,掌握了判断函数零点所在区间的方法。
如果函数值符号相反,则该区间内存在零点.
2)符号判定:根据函数的符号变化判断零点所在的区间.
3)中间值定理:如果函数在区间内连续,则零点一定存在
于该区间内.
如果在区间[a,b]上,函数y=f(x)的图像是一条连续的曲线,并且满足f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内一定有零点,即存在一个c∈(a,b),使得f(c)=0,这个c也就是方程
f(x)=0的根。
这个结论被称为点睛定理,它要求函数在区间[a,b]上的图像是连续的,并且满足f(a)·f(b)<0.
举例来说,对于函数y=x+3/x+3,在区间[-4.0]上,f(-4)·f(0)=(-1)·(3/4)<0,因此函数在区间(-4,0)内一定有零点。
我
们可以通过解方程f(x)=0来求出零点,得到x=-3.同样的方法
可以用于判断其他函数是否存在零点,并求出零点的位置。
除了判断函数是否存在零点,我们还可以通过代数法或几何法来求函数的零点。
代数法就是解方程f(x)=0,几何法则是
画出函数y=f(x)的图像,图像与x轴的交点即为函数的零点。
另外,我们还可以通过判断函数的符号变化来确定零点所在的区间。
例如,对于函数f(x)=lnx-2,我们可以代入x=1和
x=3,得到f(1)=-20,因此函数的零点应该在区间(1,3)内。
最后,我们可以利用中间值定理来证明零点确实存在于该区间内。
判断:将所得函数值相乘并进行符号判断。
结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点;若符号为负且函数连续,则在该区间内至少有一个零点。
题目二:若函数f(x)=x+a在区间(1,2)上有零点,则a的值
可能是-2、1、3.解析:将选项代入函数中,发现只有a=-2时,函数在区间(1,2)上有零点。
题目三:判断函数f(x)=lnx+x^2-3的零点个数。
解法一:通过函数对应的方程lnx+x^2-3=0,得到函数的零点个数。
解法二:由于f(1)=-20,且函数在(1,2)上是连续的,因此在该区间内至少有一个零点。
又因为函数在(0,+∞)上是递增的,所以零点只有一个。
题目四:函数f(x)={4x-4.x≤1.x^2-4x+3.x>1},函数
g(x)=log2x,求f(x)和g(x)的图象的交点个数。
解析:将两个函数的图象在同一坐标系内作出,并计算它们的交点个数。
根据计算结果,可以得出它们的交点个数为3个。
作出f(x)与g(x)的图像,可以看出它们有三个交点。
这个结论可以用来判断一元二次方程的根的存在性和个数,从而更好地理解函数的零点和方程根之间的联系。
通过图像进一步掌握零点存在的判定定理,可以解决本节课的三种题型。
在课堂小结中,让学生总结本节课所学的主要知识和解题技巧,以便更好地掌握和应用这些知识。
在板书设计方面,可以画出f(x)和g(x)的图像,并标出它们的交点,以便更好地展示它们之间的关系。
作业包括课本155页的2、3、7、11题,以巩固本节课所学的知识和技巧。
教学反思:本节课通过二次函数的图像,判断一元二次方程根的存在性及根的个数,从而加深了学生对函数零点和方程根之间联系的理解。
同时,通过图像进一步掌握零点存在的判定定理,帮助学生更好地解决本节课的三种题型。