传感器的静态特性
传感器的基本知识

传感器的基本知识导语:传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
传感器的基本知识一、传感器的定义国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
二、传感器的分类目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器;2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器;3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和”0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。
三、传感器的静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。
表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。
四、传感器的动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。
在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。
这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。
*常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。
五、传感器的线性度通常情况下,传感器的实际静态特性输出是条曲线而非直线。
第三章 传感器的静态特性和动态特性讲解

例1:一阶传感器的频率响应,系统输入量(压力) F 为F(t)= b0 x(t ),输出 量为位移y( t ),不考虑运动。
解:①列出微分方程
a1
dy dt
a0
y
b0
x
②作拉普-拉斯变换
Y (S )(a1S a0 ) b0 X (S )
③令H(S )中的S =jω,即σ= 0
H ( j ) Y (S ) b0 X (S ) ja1 a0
ΔLj=(b+kxj)-yj
均方差函数为: 取其极小值,有:
4)总精度 系统的总精度由其量程范围内的基本误差与满度值Y(FS)之
比的百分数表示。基本误差由系统误差与随机误差两部分组成, 迟滞与线性度所表示的误差为系统误差,重复性所表示的误差 为随机误差。
总精度一般可用方和根来表示,有时也可用代数和表示。
统示值范围上、下限之差的模。当输入量在量程范围以内 时,系统正常工作并保证预定的性能。
对于4-20mA标准信号,零位值 yo=so=4mA,上限值 yfs=20mA,量 程 y(FS)=16mA。
3)灵敏度 S 输出增量与输入增量的比值。即
① 纯线性传感器灵敏度为常数:S=a1。
② 非线性传感器灵敏度S与x有关。
4)分辨率
在规定的测量范围内,传感器所能检测出输入量 的最小变化值。有时用相对与输入的满量程的相对 值表示。即
2、静态特性的性能指标
1) 迟滞现象(回差EH )
回差EH 反映了传感器的输 入量在正向行程和反向行程全 量程多次测试时,所得到的特 性曲线的不重合程度。
2) 重复性 Ex (不重复性) 重复性 Ex 反映了传感器在输入量按同一方向(增或减)全
传感器的静态特性汇总

影响量指传感器由外界环境或工作条件变化引起输出值变化的量。
它是由温度、湿度、气压、振动、电源电压及电源频率等一些外
加环境影响所引起的。说明影响量时,必须将影响因素与输出值
偏差同时表示。例如,某传感器由于电源变化10%而引起其输出
值变化0.02mA,则应写成0.02mA/(U±10%U)。
10
7.重复性(Repeatability)
一、传感器的静态特性与主要性能指标
1.测量范围和量程
定义: 传感器所能测量到的最小被测量(输入)xmin与 最大被测量(输入)xmax之间的范围称为传感器 的测量范围(measuring range),表示为(xmin, xmax) 。 传感器测量范围的上限值与下限值的代数和xmax - xmin称为量程(span)。例如一温度传感器的 测量范围是-30~+120℃,那么该传感器的量程为 150 ℃。
在采用直线拟合线性化时,输出输入的校正曲线与其拟 合曲线之间的最大偏差,就称为非线性误差或线性度
通常用相对误差γL表示: γL=±(ΔLmax/yFS)×100%
ΔLmax一最大非线性误差; yFS—量程输出。 非线性偏差的大小是以一定的拟合直线为基准直线而得 出来的。拟合直线不同,非线性误差也不同。所以,选 择拟合直线的主要出发点,应是获得最小的非线性误差。 另外,还应考虑使用是否方便,计算是否简便。
①测量传感器输出值在一段时间中的变化,以稳定度表示;
②传感器外部环境和工作条件变化引起输出值的不稳定,用影响 量表示。
在长时间工作的情况下输出量发生的变化,有时称为长时间工作 稳定性或零点漂移。
稳定度指在规定时间内,测量条件不变的情况下,由传感器中随
机性变动,周期性变动,漂移等引起输出值的变化。用精密度和 观测时间长短表示。如,某传感器输出电压值每小时变化1.3mV, 则其稳定度可表示为1.3mV/h。
传感器的静态特性

传感器的静态特性
传感器的静态特性是指传感器的输入信号不随时间变化或变化非常缓慢时,所表现出来的输出响应特性,称静态响应特性。
通常用来描述静态特性的指标有:测量范围、精度、灵敏度、稳定性、非线性度、重复性、灵敏阈和分辨力、迟滞等。
测量范围测量范围是指传感器能正常工作时的最小输入值与最大输入值之间的范围。
精度与精度有关的指标有三个,即精密度、准确度和精确度。
稳定性传感器的稳定性,一是指传感器测量输出值在一段时间内的变化,即用所谓的稳定度表示;二是指在传感器外部环境和工作条件变化时而引起输出值的变化,即用影响量来表示。
例如,某传感器输出电压值每小时变化
1.3mv/h。
又如,某传感器由于电源变化10%而引起其输出值变化0.02mA,则应写成0.02mA/(u10%)。
灵敏度传感器灵敏度是表示传感器的输入增量与由它引起的输出增量之间
的函数关系。
更确切地说,灵敏度k 等于传感器输出增量与被测量增量之比,是传感器在稳态输出输入特性曲线上各点的斜率,可用下式表示:灵敏阈与分辨力灵敏阈是指传感器能够区分出的最小读数变化量。
对模拟
式仪表,当输入量连续变化时,输出量只做阶梯变化,则分辨力就是输出量的每个阶梯所代表的输入量的大小。
对于数字式仪表,灵敏度阈就是分辨力,即仪表指示数字值的最后一位数字所代表的值。
从物理含义看,灵敏度是广义的增益,而灵敏度阈则是死区或不灵敏度。
迟滞
传感器在正(输入量增大)反(输入量减小)行程中输入特性曲线不重合。
传感器静态特性

输出量Y
max E *100% YFS
曲线a
max
YFS
曲线b 0 X 曲线a存在零点误差,但并不存在非线性误差。这是 传感器经常遇到的问题,比如我们在以后章节要学习的 霍尔传感器就存在零点误差,我们可以在调理电路中把 零点误差处理掉。 曲线b既存在零点误差,又存在输入量与输出成反比, 但并不存在非线性误差。这也是传感器经常遇到的问题 之一,比如我们在以后章节要学习的超声波传感器是这 样,我们可以在调理电路中和数据处理中可以解决。
K
举例
某电容式气体压力传感器的噪声电平为0.2mV,灵敏度 K为0.5mV/Pa,对于电容传感器一般取系数为2,则由 CN 公式可得其最小检测量:
M
K
0.8 Pa
传感器的分辨率指在规定测量范围内所能检测输入 量的最小变化量 xmin
xmin 100% 也可以用该值相对满量程输入值的百分数 X FS
max
T
0
MAX 零漂= × 100% YFS T
例如如上图所示某压力传感器,其满量程值为1V,温 度变化范围为-40度到60度。其输出受温度影响最大偏 差为0.2V,则其温漂为: 零漂= MAX × 100%=0.2%/ oc
YFS T
产生漂移的原因是多方面的,主要是由于测量系统
的灵敏元件受外界(温度、湿度、电磁干扰)干扰和 传感器调理电路的元器件受外界条件干扰引起的。
(2)传感器的灵敏度 定 传感器的灵敏度是其在稳态下输出增量 Y 义 与输入增量 X 的比值.常用 Sn 来表示:
S n lim X 0 Y X
对于线性传感器,其灵敏度就是它的静态特 Y 性的斜率,如图(a)所示,即: S n Y
N点
传感器期末考试题及答案

传感器期末考试题及答案一、选择题(每题2分,共20分)1. 传感器的静态特性不包括以下哪项?A. 线性度B. 灵敏度C. 响应时间D. 分辨率2. 传感器的动态特性主要描述的是传感器对快速变化的输入信号的响应能力,以下哪项不是动态特性的指标?A. 频率响应B. 相位延迟C. 温度系数D. 瞬态响应3. 温度传感器中,热电偶的工作原理是基于哪种效应?A. 热电效应B. 光电效应C. 霍尔效应D. 压电效应4. 在压力传感器中,应变式压力传感器的工作原理是基于哪种物理效应?A. 热电效应B. 压电效应C. 应变效应D. 磁电效应5. 光电传感器中,光电二极管的工作原理是基于哪种效应?A. 光电效应B. 热电效应C. 霍尔效应D. 压电效应6. 电容式传感器的灵敏度与哪些因素有关?A. 介电常数B. 电极面积C. 电极间距D. 所有以上因素7. 以下哪种传感器不适合用于测量非常小的位移?A. 电感式传感器B. 电容式传感器C. 光电式传感器D. 应变式传感器8. 霍尔传感器的输出电压与以下哪项无关?A. 磁场强度B. 霍尔元件的温度C. 霍尔元件的厚度D. 霍尔元件的电阻率9. 光纤传感器的工作原理是基于哪种效应?A. 光电效应B. 光纤的折射率变化C. 光纤的干涉效应D. 光纤的散射效应10. 以下哪种传感器不适合用于测量液体的流速?A. 电磁流量计B. 超声波流量计C. 涡街流量计D. 热电偶温度传感器二、填空题(每空1分,共20分)1. 传感器的静态特性包括线性度、灵敏度、________、________和稳定性。
2. 动态特性的指标包括频率响应、相位延迟、瞬态响应和________。
3. 热电偶的工作原理是基于________效应,而光电二极管的工作原理是基于________效应。
4. 应变式压力传感器的工作原理是基于________效应,而电容式传感器的灵敏度与介电常数、电极面积和________有关。
传感器简答总结

1:何为传感器的静态特性?主要技术指标是什么?答:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。
2:何为传感器的动态特性?主要技术指标是什么?答:(1)动态特性是指传感器对随时间变化的输入量的响应特性;描述动态特性的指标:对一阶传感器:时间常数;对二阶传感器:固有频率、阻尼比。
3:什么是金属材料的应变效应?什么是半导体材料的压阻效应?答:①金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。
(②半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。
4:比较金属丝应变片和半导体应变片的相同和不同点。
答:相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
5:什么事金属应变片的灵敏度系数?答:金属应变片单位应变引起的应变片电阻的相对变化叫金属应变片的灵敏度系数;(它与金属丝应变灵敏度函数不同,应变片由于由金属丝弯折而成,具有横向效应,使其灵敏度小于金属丝的灵敏度)6:采用应变片进行测量时为什么要进行温度补偿?常用温补方法有哪些?答:①因为金属的电阻本身具有热效应,从而使其产生附加的热应变;(②基底材料、应变片、粘接剂、盖板等都存在随温度增加而长度应变的线膨胀效应,若它们各自的线膨胀系数不同,就会引起附加的由线膨胀引起的应变;常用的温度补偿法有单丝自补偿,双丝组合式自补偿和电路补偿法。
7:固态压阻器件的结构特点是什么?受温度影响会产生那些温度漂移?如何进行补偿?答:(1)固态压阻器件的特点是:属于物性型传感器,是利用硅的压阻效应和微电子技术制成的压阻式传感器,具有灵敏度高、动态响应好、精度高易于集成化、微型化等特点。
传感器的静态特性

传感器的静态特性
【传感器静态特性】
1、增量精度:增量精度是计算机对传感器传输信号的最小变化量的能力。
它反映了传感器能够检测和报告输入信号变化的最小值。
2、分辨率:它描述了传感器能够识别出不同输入信号的能力。
分辨率越高,传感器能够识别出不同输入信号的变化越多。
3、精确度:它指的是输入量的测量结果是否接近于实际的输入量,也就是传感器的精度如何。
精度越高,传感器的准确性就越高。
4、敏感度:它表示了传感器对量的检测和报告的能力。
敏感度受到环境因素的影响,敏感度越高,传感器就越灵敏。
5、线性度:线性度指的是传感器对输入量的反应是否是整体性的。
它反映了输入量和输出量是否有密切的变化关系。
6、滞后:也称延迟,是指传感器在检测到输入量变化后,到达输出的延迟时间。
传感器的滞后时间越短,则传感器的准确性就越高。
7、漂移:也称误差,是指测量量的偏离实际值的情况。
漂移原因有很多,可能是传感器本身出现问题,也可能是环境温度对传感器造成的影响。
8、响应时间:响应时间是指传感器接收到变化信号后,输出响应信号所需要的时间。
响应时间越短,传感器就能更快速地向计算机传送变化信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∆Y max
XO
XO
YF.S Y
∆Y1
∆Y max
∆Y 2
XO
X
最小二乘法拟合
Chapter1 传感器的一般特性
设拟合直线方程为: y=kx+b
若实际校准测试点有n个,则第i个校准数据与拟 合直线上响应值之间的残差为:
∆ i = y i − (kx i + b )
最小二乘法设拟合直线的原理使:∑ ∆2 最小: i
第1章 传感器的一般特性
§1-1 传感器的静态特性 §1-2 传感器的动态特性
第一章 传感器的一般特性
Chapter1 传感器的一般特性
传感器的特性是指输入与输出之间的关系 静态特性
当输入量是常量(稳定状态的信号或变化及其缓慢的 信号)时,输入与输出间的关系。 动态特性
当输入量随时间变化时,输入与输出间的关系(动态 量指周期信号、瞬变信号或随机信号)
(t)
用算子D表示
(a
1D
+
a 0)Y
(t ) =
b0X
(t )⇒
a0 b0
D
+ 1Y
(t ) =
b0 a0
X
(t )
⇒ (τD + 1)Y (t ) = kX (t )
K为静态灵敏度系数
τ 为时间常数
3.二阶传感器的数学模型
Chapter1 传感器的一般特性
二阶传感器的微分方程系数除a2,a1,a0,b0 外,其 它均为零,因此方程:
§1-1 传感器的静态特性
Chapter1 传感器的一般特性
静态标准条件
1.没有加速度、振动、冲击
(除非这些参数本身就是被测量);
2.环境温度一般为20±5℃; 3.相对湿度不大于85%;
4.大气压力为101327±7800Pa(760 ±60mmHg);
对传感器的一般要求
Chapter1 传感器的一般特性
数学模型
Chapter1 传感器的一般特性
传感器可用来检测不随时间变化的静态量和随时间 变化的动态量。
应该用带随机变量的非线性微分方程作为数学模 型。但这样在数学研究很困难。
常把传感器的静态特性和动态特性分开来考虑。
根据输入信号的性质,传感器有静态模型和动态模 型两种。
方程式
Chapter1 传感器的一般特性
仪器
开环检测系统框图
开环检测系统框图
Chapter1 传感器的一般特性
被测量
K1
电量
τD + 1
K2
电量
K3
D2
ω
2 0
+
2ξD ω0
+1
记录 运动笔
被测量
(τ D
K 1K 2 K 3
+
1 )
D
ω
2 2 0
+
2ξ D ω0
+ 1
记录 运动笔
闭环检测系统框图
Chapter1 传感器的一般特性
Chapter1 传感器的一般特性
a0,a1…an和b0,b1…bm均为常数。
an
d
nY (t) dt n
+ an−1
d n −1Y (t) dtn −1
+Λ
+
a1
dY (t) dt
+ a0Y (t)
= bm
d
m X (t) dt m
+
bm
−1
d
m −1X (t) dtm −1
+Λ
+
b1
dX (t) dt
重复性反映测量结果偶然误差的大小,而不表示与 真值之间的差别。有时重复性很好,但可能远离真 值。
§1-2 传感器的动态特性
Chapter1 传感器的一般特性
传感器对随时间变化的输入量的响应特性
设计传感器时要根据其动态性能要求与使用条件选 择合理的方案和恰当的参数;
使用传感器时要根据其动态特性和使用条件确定合 适的使用方法,同时对给定条件下的传感器动态误 差做出估计。
δ
H=
±
∆ H max Y F .S
× 100 %
δ
H=
±
∆ H max 2Y F .S
× 100 %
∆ H max — 输出值在正反
XF.S X 行程间的最大偏差。
5. 重复性
Chapter1 传感器的一般特性
重复性是指同一工作条件下,输入量按同一方向
在全测量范围内连续变动多次所得特性曲线的不
一致性。数值上用各测量值正、反行程标准偏差
Chapter1 传感器的一般特性
Y
Y
O
X
(a) Y
O
X
(b) Y
O
X
O
X
(c)
(d)
传感器4种典型静态特性
线性化
Chapter1 传感器的一般特性
静态特性曲线可实际测试获得。
为了标定和数据处理的方便,希望得到线性关系, 采用硬件和软件的补偿进行线性化处理。
在非线性误差不太大的情况下,采用直线拟合的方 法线性化。
由于各种传感器的原理、结构、使用环境、条件、 目的的不同,其技术指标也不可能完全相同,但是 有些基本要求却是共同的。
(1)可靠性 (2)精度 (3)抗干扰能力 (4)通用性 (5)低成本 (6)低能耗
冲振 电磁场
输入
外界影响 传感器
Chapter1 传感器的一般特性
温度 供电 输出
线性 滞后 重复性 灵敏度
a
2
dY 2 (t ) dt 2
+
a1
dY (t ) dt
+
a0Y
(t )
=
b0
X
(t)
用算子D表示:
D2
ω
2 0
+
2ξ ω0
D
+ 1Y
(t ) =
KX
(t )
K为静态灵敏度系数;
ω0=
a 0 无阻尼系数固有频率;
a2
ξ=2
a1 a0
a
2
为阻尼比。
二、传递函数
1.一阶传感器的阶跃响应
Chapter1 传感器的一般特性
y
1γ
τ
小
0.63
τ大
τ1 τ2
t
由图看出,随着时间的推移,y越来越接近1。 在一阶延迟系统中,τ是决定响应速度的重要参数。 t=τ时,γ=0.37 t=3τ时,γ=0.05 t=5τ时,γ=0.007
k=
x iyi −
∑ ∑ n
x
2 i
−
x i
yi
xi 2
∑ ∑∑ ∑(∑ ∑) b =
x
2 i
yi −
x i
xi yi
n
x
2 i
−
xi 2
2 灵敏度
Chapter1 传感器的一般特性
传感器的灵敏度是指到达稳定工作状态时,输出变 化量与引起此变化的输入变化量之比
Y
输出变化量 K = 输入变化量
= ∆Y ∆X
温漂 零漂 分辨率 各种干扰
误差因素 传感器输入输出作用图
传感器的描述方法
Chapter1 传感器的一般特性
传感器作为感受被测量信息的器件,希望它按照能 按照一定的规律输出有用信号。
因此需要研究描述传感器的方法,来表示其输出— —输入关系及特性,以便用理论指导其设计、制 造、校准与使用。
最有效的描述方法是传感器的数学模型。
X(S) 传感检测 X1(S) (一次变换) + -
放大器 X2(S) 显示、记录 输出Y
(二次变换)
仪器
反馈环节
闭环检测系统框图
三、传感器的动态响应及动态性能指标
Chapter1 传感器的一般特性
时域指标: 一阶传感器:时间常数 二阶传感器:上升时间、稳定时间、超调量等
频域指标: 通频带、工作频带、相位误差等
这种形式的传递函数对瞬变输入特别有用。
( ) ( ) W S
=Y X
S
=
bmSm anSn
+bm−1Sm−1 +Λ +b1S +b0 + an−1Sn−1 +Λ + a1S + a0
开环检测系统框图
Chapter1 传感器的一般特性
被检测量 传感检测 X1 放大器 X2 显示、记录 输出Y
X (一次变换) (二次变换)
一. 动态特性的一般数学模型
Chapter1 传感器的一般特性
为了便于分析和处理传感器的动态特性,必须建立 数学模型,用数学中的逻辑推理和运算方法来研究 传感器的动态响应。
对于线性系统动态响应研究,最广泛使用的数学模 型是普通线性常系数微分方程。只要对微分方程求 解,就可以得到动态性能指标。
高阶常系数线性微分方程
∑ ∑ n
ቤተ መጻሕፍቲ ባይዱ
∆
2 i
=
n [y i − (kx i + b )]2 = min
i =1
i =1
即
∂ ∂k
∑
∆
2 i
=
2∑
( y i − kx i − b )(−
xi )=
0
∂ ∂b
∑
∆
2 i
=
2∑
(y i −
kx i − b )(− 1 ) =
0
求出k和b的表达式
Chapter1 传感器的一般特性
( ) ∑ ∑ ∑ n
Chapter1 传感器的一般特性