导数大题经典(重点讨论)练习及答案(整理、理科)

合集下载

导数专题(含答案

导数专题(含答案
是曲线 上点〔 〕处的切线的斜率
说明:导数的几何意义
可以简记为"k= ",
强化这一句话"斜率导数,导数斜率"
导数的物理意义:s=s<t>是物体运动的位移函数,物体在t= 时刻的瞬时速度是 .可以简记为 =
例1、已知函数 的图象在点 处的切线方程是 ,则 .
2、若函数 的导函数在区间[a,b]上是增函数,则函数 在区间[a,b]上的图像可能是〔〕
〔2〕设函数 则 〔〕
A.有最大值B.有最小值C.是增函数D.是减函数
3〕设 分别是定义在R上的奇函数和偶函数,当 时,
的解集为▲.
3>已知函数的单调性求参数范围
方法:常利用导数与函数单调性关系:即
"若函数单调递增,则 ;若函数单调递减,则 "来求解,注意此时公式中的等号不能省略,否则漏解.从而转化为不等式恒成立问题或利用数形结合来求参数〔 是二次型〕
[例]1函数y = f < x > = x3+ax2+bx+a2,在x = 1时,有极值10,则a = ,b =.
15.已知函数f<x>=-x3+3x2+9x+a.
〔I〕求f<x>的单调递减区间;
〔II〕若f<x>在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
解:〔I〕f’<x>=-3x2+6x+9.令f‘<x><0,解得x<-1或x>3,
综上,
4某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x〔x 10〕层,则每平方米的平均建筑费用为560+48x〔单位:元〕.为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?

高二数学导数大题练习题及答案

高二数学导数大题练习题及答案

高二数学导数大题练习题及答案一、解答题1.已知曲线()1f x x=(1)求曲线在点(1,1)P 处的切线方程. (2)求曲线过点(1,0)Q 的切线方程.2.已知函数e ()(ln )=--+xf x a x x a x(a 为实数).(1)当1a =-时,求函数()f x 的单调区间;(2)若函数()f x 在(0,1)内存在唯一极值点,求实数a 的取值范围.3.已知()2,13,1x x x f x x x ⎧-≥-=⎨+<-⎩,()()ln g x x a =+.(1)存在0x 满足:()()00f x g x =,()()00f x g x ''=,求a 的值; (2)当4a ≤时,讨论()()()h x f x g x =-的零点个数. 4.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.5.已知函数()()2e 2e 1e 2e x xf x x =-++.(1)若函数()()g x f x a =-有三个零点,求a 的取值范围. (2)若()()()()123123f x f x f x x x x ==<<,证明:120x x +>. 6.已知()21e 2x f x k x =-.(1)若函数()f x 有两个极值点,求实数k 的取值范围;(2)证明:当n *∈N 时,()222221123123e 4e 1en n n -+++⋅⋅⋅+<+. 7.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.8.已知函数()ln f x x x =-,322()436ln 1g x x x x x =---. (1)若()1x f ax ≥+恒成立,求实数a 的取值范围;(2)若121322x x <<<,且()()120g x g x +=,试比较()1f x 与()2f x 的大小,并说明理由.9.已知函数2()ln f x x x ax =-.(1)若()0f x ≤恒成立,求实数a 的取值范围;(2)若()112212ln 2ln 200x ax x ax x x -=-=>>,证明:()1212ln ln 10ln 2x x x x ⋅<<.10.已知函数()12ln f x x x x=--. (1)判断函数()f x 的单调性;(2)设()()()28g x f x bf x =-,当1x >时,()0g x >,求实数b 的取值范围.【参考答案】一、解答题1.(1)20x y +-= (2)440x y +-= 【解析】 【分析】(1)求得函数的导数()21f x x'=-,得到曲线在点(1,1)P 处的切线的斜率,结合直线的点斜式方程,即可求解;(2)设切线坐标为00(,)A x y ,得出切线的方程为020011()y x x x x -=--,根据点(1,0)Q 在切线上,列出方程求得0x 的值,代入即可求解.(1)由题意,函数()1f x x=,可得()21f x x '=-, 所以()11f '=-,即曲线在点(1,1)P 处的切线的斜率为1k =-, 所以所求切线方程为1(1)y x -=--,即20x y +-=. (2)解:设切点坐标为00(,)A x y ,则切线的斜率为201k x =-,所以切线的方程为020011()y x x x x -=--,因为点(1,0)Q 在切线上,可得020011(1)x x x -=--,解得012x =,所以所求切线的方程为124()2y x -=--,即440x y +-=. 2.(1)单调递减区间为(0,1),递增区间为(1,)+∞ (2)(e,)+∞ 【解析】 【分析】(1)求导2(1)(e )()--'=x x ax f x x,易知1a =-时,e 0-=+>x x ax e x ,然后由()0f x '<和()0f x '>求解;(2)由(1)知,0a 时,不符合题意, 0a >时,根据函数()f x 在(0,1)内存在唯一极值点,得到()0f x '=在(0,1)内存在唯一变号零点,转化为exa x=在(0,1)内存在唯一根求解. (1)解:函数()y f x =的定义域为(0,)+∞,22e (1)1(1)(e )()1---⎛⎫'=--= ⎪⎝⎭x x x x ax f x a x x x . 当1a =-时,e 0-=+>x x ax e x ,所以当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以()f x 的单调递减区间为(0,1),递增区间为(1,)+∞. (2)由(1)知,当0a 时,()f x 在(0,1)内单调递减, 所以()f x 在(0,1)内不存在极值点;当0a >时,要使函数()f x 在(0,1)内存在唯一极值点,则2(1)(e )()0--'==x x ax f x x 在(0,1)内存在唯一变号零点, 即方程e 0x ax -=在(0,1)内存在唯一根,所以e xa x=在(0,1)内存在唯一根,即y a =与()ex g x x=的图象在(0,1)内存在唯一交点,因为2(1)e ()0-'=<xx g x x , 所以()g x 在(0,1)内单调递减.又(1)e g =, 当0x →时,()g x ∞→+,所以e a >,即a 的取值范围为(e,)+∞. 3.(1)0a =或4; (2)答案见解析.【解析】 【分析】(1)在1x ≥-有()2000ln 21x x x -=--,构造中间函数并利用导数研究单调性和零点情况,求参数a ,在1x <-上根据已知列方程组求参数a ,即可得结果. (2)讨论a 的范围,利用导数研究()h x 的单调性,结合零点存在性定理判断各情况下零点的个数. (1)1x ≥-时()2f x x x =-,原条件等价于200000ln()1210x x x a x x a ⎧-=+⎪⎨-=>⎪+⎩,∴()2000ln 21x x x -=--,令()()2ln 21x x x x ϕ=-+-,则()221021x x x ϕ'=-+>-, ∴()ϕx 为增函数,由()10ϕ=,则()0x ϕ=有唯一解01x =,所以0a =,1x <-时,()000311x ln x a x a ⎧+=+⎪⎨=⎪+⎩,解得:4a =. 综上,0a =或4. (2)ⅰ.0a <时0x a +>,则0x a >->,()()()22ln ln h x x x x a x x x x ϕ=--+>--=,而()121x x x ϕ'=--,()2120x xϕ''=+>,即()x ϕ'为增函数,又()01ϕ'=, 当()0,1∈x 时()0ϕ'<x ;当()1,x ∈+∞时()0ϕ'>x ,故()()10x ϕϕ≥=, ∴()0h x >恒成立,故0a <时零点个数为0;ⅱ.0a =时,()2ln h x x x x =--,由①知:仅当1x =时()0h x =,此时零点个数为1.ⅲ.01a <≤时,()()()2ln h x x x x a x a =--+>-,则()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,2102a h a a⎛⎫'-=---< ⎪⎝⎭,()11101h a'=->+, ∴()0h x '=仅有一解,设为0(,1)2ax ∈-,则在()0,a x -上()0h x '<,在()0,x +∞上()0h x '>,所以()h x 最小值为()0h x ,故()()010h x h ≤<.又2ln 02422a aa a h ⎛⎫-=+-> ⎪⎝⎭,()()22ln 20h a =-+>,故0,2a x ⎛⎫- ⎪⎝⎭、()0,2x 上()h x 各有一零点,即()h x 有2个零点.ⅳ.14a <<时,(),1a --上()()()()3ln 3ln 4h x x x a x x p x =+-+>+-+=,()()()1103304p x x p x p x '=-=⇒=-⇒≥-=+, ∴()h x 无零点,则[)1,-+∞上()()2ln h x x x x a =--+,()121h x x x a'=--+,()()2120h x x a ''=+>+,∴()h x '为增函数,()11301h a '-=--<-+,()11101h a'=->+, ∴()0h x '=有唯一解,设为x ',则()()10h x h '≤<,又()()12ln 10h a -=--+>,()()22ln 20h a =-+>,故()1,x '-、(),2x '上,()h x 各有一个零点,即()h x 有2个零点.ⅴ.4a =时,由(1)知:(]4,1--上()h x 有唯一零点:3x =-;在()1,-+∞上()()2ln 4h x x x x =--+,则()1214h x x x '=--+,()2120(4)h x x ''=+>+, 所以()h x '为增函数,()11301h a '-=--<-+,()4105h '=>,故1(1,1)x ∃∈-使1()0h x '=,则1(1,)x -上()0h x '<,()h x 递减;1(,)x +∞上()0h x '>,()h x 递增; 故1()()h x h x ≥,而1()(1)ln 50h x h <=-<,又(1)2ln30h -=->,(2)2ln 60h =->,故在1(1,)x -、1(),2x 上()h x 各有一个零点, 所以()h x 共有3个零点.综上:0a <时()h x 零点个数为0;0a =时()h x 零点个数为1;04a <<时()h x 零点个数为2;4a =时()h x 零点个数为3. 【点睛】 关键点点睛:(1)根据分段函数的定义域讨论x ,结合函数、方程思想求参数.(2)讨论参数a ,利用二阶导数研究()h x '的单调性,进而判断其符号研究()h x 单调性,并结合零点存在性定理判断区间零点的个数. 4.(1)10y +=; (2)[)1,+∞. 【解析】【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立, 因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞. 5.(1)2(e ,2e 1)--- (2)证明见详解 【解析】 【分析】(1)令e x t =换元得函数2()2(e 1)2eln ,0h t t t t t =-++>,然后通过导数求极值,根据y a =与函数图象有三个交点可得;(2)构造函数1()()()m t h t h t=-,通过导数研究在区间(1,e)上的单调性,然后由单调性结合已知可证. (1)令e x t =,则ln x t =,记2()2(e 1)2eln ,0h t t t t t =-++> 令2e 2(1)(e)()22(e 1)0t t h t t t t--'=-++==,得121,e t t == 当01t <<时,()0h t '>,1e t <<时,()0h t '<,t e >时,()0h t '>所以当1t =时,()h t 取得极大值(1)2e 1h =--,e t =时,()h t 取得极大值2(e)e h =-, 因为函数()()g x f x a =-有三个零点⇔()y h t =与y a =有三个交点, 所以2e 2e 1a -<<--,即 a 的取值范围为2(e ,2e 1)---. (2)记221111()()()2(e 1)2eln 2(e 1)2eln m t h t h t t t t t t t=-=-++-++- 2212(e 1)2(e 1)4eln t t t t t+=-++-+ 4323234e 22(e 1)22(e 1)4e 2(e 1)2()22(e 1)t t t t m t t t t t t +-++-++'=-+++-=记432()22(e 1)4e 2(e 1)2n t t t t t =-++-++ 则32()86(e 1)8e 2(e 1)n t t t t '=-++-+ 记32()86(e 1)8e 2(e 1)s t t t t =-++-+ 则2()2412(e 1)8e s t t t '=-++易知()s t '在区间(1,e)上单调递增,所以()(1)124e 0s t s ''>=-> 所以()s t 在区间(1,e)上单调递增,所以()(1)0s t s >=所以()n t 在区间(1,e)上单调递增,所以()(1)0n t n >= 所以()m t 在区间(1,e)上单调递增因为()()()()123123f x f x f x x x x ==<<,记312123e ,e ,e x x xt t t ===所以()()()()123123h t h t h t t t t ==<< 由(1)可知,12301e t t t <<<<<所以2221()()()(1)0m t h t h m t =->=,即221()()h t h t >又()()12h t h t =,所以121()()h t h t >因为21e t <<,所以2101t <<由(1)知()h t 在区间(0,1)上单调递增,所以121t t >,即1212e1x xt t +=> 所以120x x +> 【点睛】本题第二问属于极值点偏移问题,关键点在于构造一元差函数,通常构造成00()()()F x f x x f x x =+--或0()()(2)F x f x f x x =--,本题由于采取了换元法转化问题,因此构造函数为1()()()m t h t h t=-. 6.(1)1(0,)e(2)证明见解析 【解析】 【分析】(1)求解导函数,再构造新函数,求导,判断单调性,求解极值,分类讨论1e k ≥与10e <<k 两种情况;(2)由(1)知,1e e x x ≤,可证2121(1)e (1)n n n n -++≤,由21111(1)(1)1n n n n n <=-+++,可得2111(1)e 1n n n n n -≤-++,从而利用裂项相消法求和可证明()222221123123e 4e 1e n n n -+++⋅⋅⋅+<+. (1)由21()e 2x f x k x =-,得()e e ()e x xxxf x k x k '=-=-. 设()e x xg x =,则1()ex x g x -'=,当1x <时,()0g x '>,()g x 是增函数;当1x >时,()0g x '<,()g x 是减函数.又(1)0g '=,∴max 1()()(1)eg x g x g ===极大.设1e λ≥,当1ln x λ<-时,11111ln ln ()ln e x x g x e λλλλλ--=<=-<-.由于(0)0g =,所以()g x 在区间(,0)-∞上的值域是(,0)-∞.又0x >时,()0>g x ,所以当0k ≤时,直线y k =与曲线()y g x =有且只有一个交点,即()'f x 只有一个零点,不合题意,舍.当1ek ≥时,()0f x '≥,()f x 在R 上是增函数,不合题意,舍.当10e<<k 时,若1x ≤,由(1)可知,直线y k =与曲线()y g x =有一个交点.下面证明若1x >,直线y k =与曲线()y g x =有一个交点.由于()g x 是区间(1,)+∞上的减函数,所以需要证明()g x 在区间(1,)+∞上的值域为1(0,)e ,即对21(0,)eλ∀∈,都存在01x >,使得020()g x λ<<.构造函数2()e x h x x =-,则()e 2x h x x '=-,∴当ln 2x >时,()'()20xh x e =->',()h x '在区间(ln2,)+∞上是增函数,∴当1x >时,()(1)e 20h x h ''>=->,即()h x 是区间[1,)+∞的增函数,∴1x >时,()(1)e 10h x h >=->,此时2e x x >.设210e λ<<,当21x λ>时,0()e x x g x <=<221x x xλ=<,∴当10e<<k 时,直线y k =与曲线()y g x =有两个交点,即()'f x 有两个零点.设这两零点分别为1x ,212()x x x <,则1201x x <<<,不等式()0f x '>的解集为12(,)(,)x x -∞+∞,不等式()0f x '<的解集为12(,)x x .所以1x 为函数()f x 的极大值点,2x 为函数()f x 的极小值点. 综上所述,实数k 的取值范围是1(0,)e. (2)证明:由(1)知,1e ex x ≤,∴对*n N ∀∈,2121(1)e (1)n n n n -++≤.∵211(1)(1)n n n <=++111n n -+, ∴2111(1)1n nn e n n -<-++, ∴22222112311111111(1)()()()123e 4e (1)e 2233411n n n n n n -++++<-+-+-++-=-+++, 所以,222221123123e 4e (1)e n nn -++++<+.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 7.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e x xrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈ ⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭ 则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 8.(1)0a ≤(2)()()21f x f x <,理由见解析 【解析】 【分析】(1)分离参变量,得到ln 1,(0)x x a x x--≤>恒成立,构造函数,将问题转化为求函数的最值问题;(2)由(1)可得1ln x x -≥,从而判断()g x 的单调性,确定1213122x x <<<<,再通过构造函数,利用导数判断其单调性,最终推出122x x +<;再次构造函数1ln ()12t t F t t -=-+,判断其单调性,由此推出2211ln ln x x x x -<-,可得结论. (1)()1x f ax ≥+恒成立,即ln 1,(0)x x a x x--≤>恒成立, 令ln 1()x x h x x --=,2ln ()xh x x'=, 当(0,1)x ∈时,()0h x '<,函数()h x 递减; 当(1,)x ∈+∞时,()0h x '>,函数()h x 递增, 故min ()(1)0h x h ==, 所以0a ≤. (2)2()121212ln 12(1ln )g x x x x x x x x '=--=--,由(1)知1ln x x -≥,所以在13,22⎛⎫⎪⎝⎭上()0g x '≥,所以()g x 在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0g =.所以1213122x x <<<<,设()12(1ln )m x x x x =--,()12(22ln )m x x x '=--, 设()12(22ln )n x x x =--,则12(21)()x n x x -'=,13,22x ⎛⎫∈ ⎪⎝⎭,()0n x '>, 所以()m x '在13,22⎛⎫ ⎪⎝⎭上单调递增,且(1)0m '=,所以()m x 在1,12⎛⎫ ⎪⎝⎭上单调递减,在31,2⎛⎫⎪⎝⎭上单调递增,令()()(2)H x g x g x =+-,()()(2)12[22ln (2)ln(2)]H x g x g x x x x x x '''=--=--+--, 令()()G x H x '=,()2()12ln 2G x x x '=--,31,2x ⎛⎫∈ ⎪⎝⎭,()0G x '>,所以()H x '在31,2⎛⎫⎪⎝⎭上单调递增,所以()(1)0H x H ''>=, 所以()H x 在31,2⎛⎫ ⎪⎝⎭上单调递增,所以()(1)0H x H >=, 所以()()()22220H x g x g x =+->,()()()2212g x g x g x ->-=,而()g x 在13,22⎛⎫⎪⎝⎭上单调递增,所以212x x ->,122x x +<;设1ln ()12t tF t t -=-+,()()()221021t F t t t '--=≤+, 所以()F t 单调递减,且(1)0F =,1t >,()0F t <,所以210x F x ⎛⎫< ⎪⎝⎭,即221121ln 121x x x xx x ⎛⎫- ⎪⎝⎭<+,即212121ln 2ln x x x x x x -<+-, 所以212121ln ln 12x xx x x x -+<-<, 所以2121ln ln x x x x -<-,即2211ln ln x x x x -<-. 所以()()21f x f x <. 【点睛】本题考查了利用导数解决不等式恒成立时求参数范围问题以及利用导数比较函数值大小问题,综合性较强,难度较大,解答的关键是要合理地构造函数,利用导数判断函数单调性以及确定极值或最值,其中要注意解答问题的思路要清晰明确.9.(1)1,e∞⎡⎫+⎪⎢⎣⎭(2)证明见解析 【解析】 【分析】(1)()0f x ≤恒成立,等价于ln xa x ≥恒成立,即max ln x a x ⎛⎫≥ ⎪⎝⎭,令()ln x g x x=,利用导数求出函数()g x 的最大值,即可得出答案;(2)()112212ln 2ln 200x ax x ax x x -=-=>>,即()1212,0x x x x >>为函数ln 2y x ax=-的两个零点,即()1212,0x x x x >>为方程ln 2x a x =的两个根,由(1)知102ea <<,且1201x x <<<,则要证()1212ln ln 10ln 2x x x x ⋅<<,只需证()1212ln 2ln ln x x x x >⋅,即证2122112212ln x x x x x x ->,令12,1x t t x =>,则要证22n 1l t tt ->,令()()12ln 1t t t t t ϕ=-->,利用导数证明()min 0t ϕ>即可. (1)解:因为函数()f x 的定义域为()0,∞+,所以()0f x ≤恒成立, 等价于ln xa x ≥恒成立,所以maxln x a x ⎛⎫≥ ⎪⎝⎭,令()ln x g x x =,则()21ln x g x x-'=, 当()0,e x ∈时,()0g x '>,()g x 单调递增; 当()e,x ∈+∞时,()0g x '<,()g x 单调递减, 所以()()max 1e eg x g ==,故1ea ≥,即实数a 的取值范围是1,e∞⎡⎫+⎪⎢⎣⎭;(2)证明:()112212ln 2ln 200x ax x ax x x -=-=>>, 即()1212,0x x x x >>为函数ln 2y x ax =-的两个零点, 即()1212,0x x x x >>为方程ln 20x ax -=的两个根, 即()1212,0x x x x >>为方程ln 2xa x=的两个根, 由(1)知102ea <<,即102ea <<,且1201x x <<<, 由11ln 2x ax =,22ln 2x ax =,得()1212ln ln 2x x a x x -=-, 所以1212ln ln 2x x a x x -=-, 要证()1212ln ln 10ln 2x x x x ⋅<<,只需证()1212ln 2ln ln x x x x >⋅,即证121212ln ln 112ln ln ln ln x x x x x x +=+>⋅,即1211222ax ax +>,即12114a x x +>,也就是121212ln ln 112x x x x x x -+>⨯-,整理得221211222ln x x x x x x ->,即证2122112212ln x x xx x x ->, 令12,1x t t x =>,则要证2112ln t t t t t -=->, 令()()12ln 1t t t t tϕ=-->,则()()222221122110t t t t t t t tϕ--+'=+-==>, 所以()t ϕ在()1,+∞上单调递增,所以()()10t ϕϕ>=, 所以当t >1时,12ln t t t->,故原结论成立,即()1212ln ln 10ln 2x x x x ⋅<<.【点睛】本题考查了不等式恒成立问题和不等式的证明问题,考查了利用导数求函数的最值,考查了分离参数法,考查了转化思想,考查了学生的数据分析能力和逻辑推理能力,难度较大. 10.(1)在(0,)+∞单调递增; (2)1b ≤ 【解析】 【分析】(1)对函数()f x 通过求导,判断出导数恒大于等于0,得到()f x 在(0,)+∞单调递增.(2)将()g x 化简整理并求导,得到222(1)1()(24)-'=++-x g x x b x x,讨论b 的取值可确定()g x 在(1,)+∞单调性,即可得到取值范围. (1)因为()f x 的定义域为(0,)+∞,对函数()f x 求导,则222221221(1)()10x x x f x x x x x'-+-=+-==≥,∴函数()f x 在(0,)+∞单调递增. (2)因为()()()28g x f x bf x =-,所以22211()2ln 8(2ln )0=----->g x x x b x x x x 对1x ∀>恒成立, 322412()28(1)'=+--+-g x x b x x x x4232312248(2)⎡⎤=+--+-⎣⎦x x b x x x x222322(1)2(1)1(1)4(24)--⎡⎤=+-=++-⎣⎦x x x bx x b x x x当1x >时,124++>x x,当44≤b , 即1b ≤时,()0g x '>对1x ∀>恒成立,∴()g x 在(1,)+∞单调递增,()(1)g x g >=0符合题意.当1b >时,存在01x >使得当0(1,)x x ∈时,()0,()g x g x '<单调递减; 此时()(1)0g x g <=这与()0>g x 恒成立矛盾. 综上:1b ≤. 【点睛】本题考查函数恒成立条件下求解参数范围问题,属于难题.对函数()g x 求导,有222(1)1()(24)-'=++-x g x x b x x,再利用()1=0g 的特点,可分类讨论b 的取值范围,在1b ≤时,()g x 在(1,)+∞单调递增,原式成立,此时满足要求;当1b >时,()g x 在(1,)+∞先出现递减区间,必有()0g x <出现,与已知矛盾,即可确定b 的范围.。

高考数学专题:导数大题专练(含答案)

高考数学专题:导数大题专练(含答案)

高考数学专题:导数大题专练(含答案)一、解答题 1.已知函数()1e -=xx f x . (1)求()f x 极值点;(2)若()()4g x f x =-,证明:2x >时,()()f x g x >成立.2.对于正实数a ,b (a b >),我们熟知基本不等式:()()G a b A a b <,,,其中()G a b ,a ,b 的几何平均数,()2a bA a b +=,为a ,b 的算术平均数.现定义a ,b 的对数平均数:(),ln ln a bL a b a b-=-.(1)设1x >,求证:12ln x x x<-,并证明()()G a b L a b <,,;(2)若不等式()()(),,,G a b A a b m L a b +>⋅对任意正实数a ,b (a b >)恒成立,求正实数m 的取值范围.3.已知函数()e (ln 1)(R)ax f x x a =+∈,()f x '为()f x 的导数.(1)设函数()()eax f x g x '=,求()g x 的单调区间;(2)若()f x 有两个极值点,1212,()x x x x <,求实数a 的取值范围4.已知()2ex x af x -=.(1)若()f x 在3x =处取得极值,求()f x 的最小值; (2)若()1f x x ≤-对[)1,x ∞∈+恒成立,求a 的取值范围.5.函数()3e xf x ax =-,0a >.(1)讨论函数()f x 的极值点个数;(2)已知函数()g x 的定义域为[)0,∞+,且[)0,x ∞∀∈+满足()()()g x xg x xg x '+>.若[)00,x ∃∈+∞,满足不等式()()()22e 22e x x g x xg x --≤,且0x 是函数()f x 的极值点,求a 的取值范围. 6.已知()21e 2x f x k x =-.(1)若函数()f x 有两个极值点,求实数k 的取值范围;(2)证明:当n *∈N 时,()222221123123e 4e 1e n n n -+++⋅⋅⋅+<+. 7.已知函数()ln f x x =,()21g x x x =-+.(1)求函数()()()h x f x g x =-的单调区间;(2)若直线l 与函数()f x ,()g x 的图象都相切,求直线l 的条数.8.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围. 9.已知函数()e (1)()x f x a x a -=++∈R . (1)当1a =时,求函数()y f x =的极值;(2)若函数()()ln e g x f x x =-+-在[1,)+∞有唯一的零点,求实数a 的取值范围. 10.已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性; (2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.【参考答案】一、解答题1.(1)极大值点为2x =,无极小值点; (2)证明见解析. 【解析】 【分析】(1)利用导数求出函数的单调区间即得解;(2)令()()()()4e 31e e xx x x F x f x g x --=-=-,利用导数求出函数()F x 的最小值即得证. (1)解:由题意,得()2e xxf x -'=, 令()0f x '>,得2x <;()0f x '<,得2x >; 列表如下:所以f x 极大值点为2x =,无极小值点. (2)证明:()()()4e 34e x x g xf x -=-=,令()()()()4e 31e e xx x x F x f x g x --=-=-, ∴()()()()42442e ee 22e e e xxx x x x x F x +----'=-=.当2x >时,20x -<,24x >,从而42e e 0x -<,∴()0F x '>,()F x 在()2,+∞上是增函数,∴()()221120e e F x F >=-=. ∴当2x >时,()()f x g x >成立. 2.(1)证明见解析 (2)02m <≤ 【解析】 【分析】(1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,利用导数证明当1x >时,()0fx <,即可得到12ln x x x<-. 用分析法证明()()G a b L a b <,,.(2)把题意转化为1112ln a a b m a b b -⎛⎫⋅+ ⎪⎝⎭恒成立.令)1t t =>,即为1ln 01t m t t -⋅-<+恒成立.令()()1ln 11t g t m t t t -=⋅->+,分2m >和02m <≤两种情况求出正实数m 的取值范围. (1)令()11ln 2f x x x x ⎛⎫=-- ⎪⎝⎭,定义域为()0,+∞.则()()222221111212222x x x f x x x x x ---'=--==-. 所以当1x >时,()0f x '<,()f x 在()1,+∞上单调递减. 又()10f =,所以当1x >时,()0f x <.所以当1x >时,11ln 2x x x ⎛⎫<- ⎪⎝⎭,即12ln x x x<-.(*)要证()()G a b L a b <,,ln ln a ba b--,只需证ln a b<令)1t t =>,则由(*),得12ln t t t <-.所以()()G a b L a b <,,.(2)由()()(),,,G a b A a b m L a b +<⋅恒成立,得ln ln 2a b a b m a b -+⋅-恒成立,即1112ln aa b m a b b-⎛⎫⋅<+ ⎪⎝⎭恒成立.令)1t t =>,由()221112ln 2t m t t t -⋅<++恒成立,得()1112ln 2t m t t -⋅<+恒成立. 所以1ln 01t m t t -⋅-<+恒成立. 令()()1ln 11t g t m t t t -=⋅->+,则 ()()()()()()222222121121111mt t t m t g t m t t t t t t-+-+--'=⋅-==++⋅+⋅. (注:()10g =) i.当0∆>,即2m >时,易知方程()22110t m t -+--=有一根1t 大于1,一根2t 小于1,所以()g t 在()11,t 上单调递增.所以()()110g t g >=,不符合题意. ii.当02m <≤时,有()()()222214110mt t t t t -+≤-+=--<, 所以()0g t '<,从而()g t 在()1,+∞上单调递减. 故当1t >时,恒有()()10g t g <=,符合题意. 综上可知,正实数m 的取值范围为02m <≤. 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.3.(1)当0a <时,()g x 的减区间为(0,)+∞,无增区间;当0a >时,()g x 的减区间为1(0,)a,增区间为1(,)a +∞ (2)2(e ,).+∞ 【解析】 【分析】(1)依题意,()f x 的定义域为(0,)+∞,且()1()ln e ax f x g x a x a x'==++,则21()ax g x x -'=,再对a 进行分类讨论即可得到答案. (2)因为()f x 有两个极值点,所以()g x 有两个零点.由(1)知0a <时不合题意;当0a >时,min 1()()(21)g x g a na a==-,接下来对a 进行讨论即可得到答案. (1)依题意,()f x 的定义域为(0,)+∞,e()e (ln 1)ax axf x a x x'=++,则()1()ln e ax f x g x a x a x'==++,则21().ax g x x -'=①当0a <时,()0g x '<在,()0x ∈+∞上恒成立,()g x 单调递减;②当0a >时,令()0g x '=得,1x a =,所以,当1(0,)x a∈时,()0g x '<,()g x 递减; 当1(,)x a ∈+∞时,()0g x '>,()g x 递增;综上,当0a <时,()g x 的减区间为(0,)+∞,无增区间; 当0a >时,()g x 的减区间为1(0,)a ,增区间为1(,).a+∞ (2)因为()f x 有两个极值点,所以()g x 有两个零点, 由(1)知0a <时不合;当0a >时,min 1()()(21).g x g a na a==-当20e a <<时,1()()0g x g a>>,()g x 没有零点,不合题意;当2e a =时,1()0g a =,()g x 有一个零点1a ,不合题意;当2e a >时,1()0g a<,21()(12ln )g a a a a=+-,设()12ln a a a ϕ=+-,2e a >,则2()10a aϕ'=->,所以22()(e )e 30a ϕϕ>=->,即21()0g a >,所以存在1211(,)x a a∈,使得1()0g x =; 又因为1()e 0eg =>,所以存在211(,)ex a ∈,使得2()0.g x =()f x 的值变化情况如下表:2e a >()f x 综上,a 的取值范围是2(e ,).+∞ 4.(1)2e - (2)[)1,+∞ 【解析】 【分析】(1)先求得函数的导函数,然后利用极值的必要条件求得a 的值,进而判定导数的正负区间,得到函数的单调性,然后结合左右两端的极限值与极小值,求得函数的最小值;(2)分离参数得到2(1)e x a x x ≥--对于任意[)1,x ∞∈+恒成立.构造函数,利用导数求得不等号右侧的最大值,进而根据不等式恒成立的意义得到实数a 的取值范围. (1)∵()2ex x af x -=,∴()()()2222e e 2e e x xxx x x a x x a f x ⋅--⋅--'==-, ∵()f x 在3x =处取得极值,()2332330e af -⨯-'=-=,∴3a =, ∴()23e x x f x -=,()223(1)(3)e e x xx x x x f x --+-'=-=-,当1x <-时,()’0f x <;当13x 时,()’0f x >;当3x >时,()’0f x <. ∴()f x 在(],1-∞-上单调递减,在[]1,3-上单调递增,在[)3,+∞上单调递减. 又∵当3x >时,()0f x >,()12e 0f -=-<, ∴()f x 的最小值为2e -. (2)由已知得221(1)e ex x x ax a x x -≤-⇔≥--对于任意[)1,x ∞∈+恒成立.令2()(1)e x g x x x =--,则()2e (2e )x x g x x x x '=-=-,在1≥x 时,()(2e )0x g x x '=-<,所以函数()g x 在1≥x 时上单调递减, 所以max ()(1)1g x g ==, 所以a 的取值范围是[)1,+∞. 5.(1)答案见解析(2)2e e ,123⎛⎤ ⎥⎝⎦【解析】 【分析】(1)求出()'f x ,由()0f x '=知0x ≠,分离参数得2e3xa x =,引入函数2e ()3x G x x=,由()G x 的导数确定单调性与极值,可作出函数的大致图象,结合图象分类讨论得出零点个数,根据极值定义得极值点个数; (2)令()()exxg x h x =,求导后得()h x 是增函数,不等式()()()22e 22e x x g x xg x --≤,整理得()()()222eexxx g x xg x ---≤,即()()2h x h x -≤,由单调性得x 的范围,从而得出0x 的范围,结合极值点的要求得0[1,2)x ∈,然后由(1)的函数()G x 的性质得a 的范围. (1)()3e x f x ax =-,则()23e x f x ax '=-,函数的极值点为导函数的变号零点,显然0x =不是()0f x '=的解,当0x ≠时,令()2e 3xG x x=,则()2431e 2e e 233x x x x x x G x x x⋅-⋅-'=⋅=⋅, 故()G x 的单调性如表格所示:则极小值为()e 212G =,可得函数()G x 的大致图象如图,故当2e 0,12a ⎛⎤∈ ⎥⎝⎦时,2e 3xa x =有两个解12,x x (120x x <<),在1x 两侧()'f x 的符号相等,在2x 两侧,()'f x 不变号,()f x 有1个极值点;当2e ,12a ⎛⎫∈+∞ ⎪⎝⎭时,2e 3xa x =有三个解123,,x x x ,在这三个解两侧()'f x 均变号,()f x 有3个极值点. (2) 令()()e x xg xh x =,则()()()()1e xx g x xg x h x '-+'=, 因为[)0,x ∞∀∈+满足()()()g x xg x xg x '+>,故()()()10x g x xg x '-+>, 则()0h x '>,故函数()h x 是一个在定义域上单调递增的函数;又[)00,x ∃∈+∞,满足不等式()()()22e 22e x x g x xg x --≤,整理得()()()222e e x xx g x xg x ---≤,即()()2h x h x -≤,结合定义域有0,20,2,x x x x ≥⎧⎪-≥⎨⎪-≤⎩故0x 的取值范围是[]1,2,又0x 是函数()f x 的极值点,即函数()f x 的变号零点,∴02x ≠,由(1)知,函数()G x 在区间[)1,2上单调递减,故2e e ,123a ⎛⎤∈ ⎥⎝⎦.【点睛】本题考查用导数确定函数的极值点,研究不等式恒成立问题,解题关系是问题的转化,极值点的个数问题转化为方程的根的个数,再转化为函数图象交点个数.不等式问题通过引入函数,利用函数单调性化简得出参数范围,本题属于困难题,对学生的逻辑思维能力,运算求解能力要求较高. 6.(1)1(0,)e(2)证明见解析 【解析】 【分析】(1)求解导函数,再构造新函数,求导,判断单调性,求解极值,分类讨论1e k ≥与10e <<k 两种情况;(2)由(1)知,1e e x x ≤,可证2121(1)e (1)n n n n -++≤,由21111(1)(1)1n n n n n <=-+++,可得2111(1)e 1n n n n n -≤-++,从而利用裂项相消法求和可证明()222221123123e 4e 1e n nn -+++⋅⋅⋅+<+.(1)由21()e 2x f x k x =-,得()e e ()ex xx x f x k x k '=-=-. 设()e x xg x =,则1()ex x g x -'=,当1x <时,()0g x '>,()g x 是增函数;当1x >时,()0g x '<,()g x 是减函数.又(1)0g '=,∴max 1()()(1)eg x g x g ===极大.设1e λ≥,当1ln x λ<-时,11111ln ln ()ln e x x g x e λλλλλ--=<=-<-.由于(0)0g =,所以()g x 在区间(,0)-∞上的值域是(,0)-∞.又0x >时,()0>g x ,所以当0k ≤时,直线y k =与曲线()y g x =有且只有一个交点,即()'f x 只有一个零点,不合题意,舍.当1ek ≥时,()0f x '≥,()f x 在R 上是增函数,不合题意,舍.当10e<<k 时,若1x ≤,由(1)可知,直线y k =与曲线()y g x =有一个交点.下面证明若1x >,直线y k =与曲线()y g x =有一个交点.由于()g x 是区间(1,)+∞上的减函数,所以需要证明()g x 在区间(1,)+∞上的值域为1(0,)e ,即对21(0,)eλ∀∈,都存在01x >,使得020()g x λ<<.构造函数2()e x h x x =-,则()e 2x h x x '=-,∴当ln 2x >时,()'()20xh x e =->',()h x '在区间(ln2,)+∞上是增函数,∴当1x >时,()(1)e 20h x h ''>=->,即()h x 是区间[1,)+∞的增函数,∴1x >时,()(1)e 10h x h >=->,此时2e x x >.设210e λ<<,当21x λ>时,0()e x x g x <=<221x x xλ=<,∴当10e<<k 时,直线y k =与曲线()y g x =有两个交点,即()'f x 有两个零点.设这两零点分别为1x ,212()x x x <,则1201x x <<<,不等式()0f x '>的解集为12(,)(,)x x -∞+∞,不等式()0f x '<的解集为12(,)x x .所以1x 为函数()f x 的极大值点,2x 为函数()f x 的极小值点. 综上所述,实数k 的取值范围是1(0,)e. (2)证明:由(1)知,1e ex x ≤,∴对*n N ∀∈,2121(1)e (1)n n n n -++≤.∵211(1)(1)n n n <=++111n n -+, ∴2111(1)1n n n e n n -<-++,∴22222112311111111(1)()()()123e 4e (1)e 2233411n n n n n n -++++<-+-+-++-=-+++, 所以,222221123123e 4e(1)e n nn -++++<+.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 7.(1)在()0,1上单调递增,在()1,+∞上单调递减 (2)两条 【解析】 【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+,依题意可得()()12AB f x g x k '='=,即可得到方程组,整理得()211211ln 204x x x ++-=,令()()221ln 24x F x x x +=+-,利用导数说明函数的单调性,利用零点存在性定理判断零点的个数,即可得解; (1)解:由题设,()()()2ln 1h x f x g x x x x =-=-+-,定义域为()0,∞+,则()()()221112121x x x x h x x x x x+---'=-+=-=- 当01x <<时,()0h x '>;当1x >时,()0h x '<,所以()h x 在()0,1上单调递增,在()1,+∞上单调递减.(2)解:因为()ln f x x =,()21g x x x =-+,所以()1f x x'=,()21g x x '=-,设直线l 分别与函数()f x ,()g x 的图象相切于点()11,ln A x x ,()2222,1B x x x -+ 则()()12AB f x g x k '='=,即21222112ln 1121x x x x x x x -+-=-=- 由2122112ln 11x x x x x x -+-=-,得2121221ln 1x x x x x x -=-+- 即2212211ln 1x x x x x -=-+-,即221221ln 20xx x x x -++-=由21121x x =-,得12112x x x +=,代入上式,得211112111111ln 20222x x x x x x x ⎛⎫+++-++-= ⎪⎝⎭即()211211ln 204x x x++-=,则()()2221117ln 2ln 4244x F x x x x x x +=+-=++- 设()()()()223332111112102222x x x x F x x x x x x x +---='=--=> 当01x <<时,()0F x '<;当1x >时,()0F x '>,所以()F x 在()0,1上单调递减,在()1,+∞上单调递增.因为()()min 110F x F ==-<,()()()222222441e 1e e ln e 204e4eF ++=+-=>,则()F x 在()1,+∞上仅有一个零点.因为()24242e e 7e 4e 7e 2024424F ---=-++-=+>,则()F x 在()0,1上仅有一个零点. 所以()F x 在()0,∞+上有两个零点,故与函数()f x ,()g x 的图象都相切的直线l 有两条.8.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1 【解析】【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=, 所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++,令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥, 所以函数()f x 在()1,-+∞单调递增,无极值点; ②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<->()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增; ()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可. ①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意;②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增,又()()00,0,f x =∴∈+∞时,()0f x >,符合题意; ③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-,当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上,a 的取值范围是0,1.【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解. 9.(1)()f x 的极小值为2,无极大值; (2)(,e 1]-∞+ 【解析】 【分析】(1)当1a =时,求导分析()f x 的单调性,即可得出答案.(2)由题意可得()()ln e e ln e(1)x g x f x x ax a x x =-+-=-++-,求导得()g x ',从而可推出()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,分两种情况讨论:①当e 10a +-,②当e 10a +-<,分析()g x 的单调性,即可得出答案.(1)当1a =时,()(1)xf x e x -=++,1()1xxxe f x e e --+'=-+=,令1e 0x -+>,得0x >, 令1e 0x -+<,得0x <,则()f x 单调递增区间为(0,)+∞,单调递减区间为(,0)-∞, ∴()f x 存在极小值为()02f =,无极大值; (2)()()ln e e (1)ln e e ln e(1)x x g x f x x a x x ax a x x =-+-=+-++-=-++-,则1()xg x e a x'=-+,令1()xh x e a x =-+,则221()x x e h x x -'=,由1x >得,21x >,210x x e ->,则()0h x '>,故()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,①当e 10a +-,即e 1a +时,即(1,)x ∈+∞时,()0g x '>, ∴()g x 在(1,)+∞上单调递增,又(1)0g =, ∴当1x >时,函数()g x 没有零点, ②当e 10a +-<,即e 1a >+时, 由e e (1)x y x x =->,得e e 0x y '=->, ∴e e x x >,∴11()e e xg x a x a x x '=+->+-,e ee 0e e a a g a a a⎛⎫'>⋅+-=> ⎪⎝⎭,又∵e 1e ea >=,∴存在01,e a x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()01,x x ∈时,()0g x '<,()g x 单调递减, 又∵(1)0g =,∴当0(]1,x x ∈时,()0g x <,在()01,x 内,函数()g x 没有零点, 又∵()0,x x ∈+∞时,()0g x '>, ∴()g x 单调递增,又∵22e )e 1(ln e a a g a a a a a +-+>-=-+, 令2()e 1(1)>x k x x x =-+,()()e 2x s x k x x '==-,()e 2e 20x s x '=->->,∴()k x '在(1,)+∞上单调递增, 又∵(1)0k '>,∴1x >时,()0k x '>,()k x 在(1,)+∞上单调递增, ∴()(1)0k a k >>, ∴()0g a >, 又∵0eaa x >>, ∴由零点的存在定理可知存在()()101,,0x x a g x ∈=, ∴在()0,x a 内,函数()g x 有且只有1个零点, 综上所述,实数a 的取值范围是(,e 1]-∞+.10.(1)()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)274e a -≥【解析】 【分析】(1)直接求导,先确定导数的单调性及零点,即可确定()f x 的单调性;(2)当0x =时, a R ∈,当0x >时,参变分离得3211e 2xx x a x ++-≥,构造函数()h x 求导得()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再构造函数21e 12()x m x x x ---=确定()h x 单调性后,即可求出实数a 的取值范围.(1)当1a =-时,2()e 1x f x x x =+--,()e 21x f x x '=+-,易得()'f x 在R 上递增,又(0)0f '=,故当()0x ∈+∞,时,()0f x '>,()f x 单调递增;故当(),0x ∈-∞时,()0f x '<,()f x 单调递减,所以()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)当0x =时,不等式321()22f x x ax ≥-恒成立,可得a R ∈;当0x >时,由2321e 122xax x x ax ---≥-恒成立可得3211e 2x x x a x++-≥恒成立, 设3211e 2()xx x h x x++-=,则()4223333111e 222(2)1e e 22x x xh x x x x x x x x x x x⎛⎫⎛⎫+-⋅-⋅+'+=--+-- ⎪ ⎪⎝⎭⎭=⎝()()()33322211e 22e 1222x x x x x x x x x x x x ⎛⎫ ⎪⎝⎭=⎛⎫-+-+----- ⎪⎝⎭=-, 可设21e 12()x m x x x ---=,可得e 1()x x m x =--',设e 1,e 1()()x x k x k x x '-=--=,由0x >,可得()0k x '>恒成立,可得()k x 在()0+∞,递增,即()m x '在()0+∞,递增,所以()(0)0m x m ''>=,即()0m x '>恒成立,即()m x 在()0+∞,递增, 所以()(0)0m x m >=,再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在()0,2上递增,当2x >时,()0h x '<,()h x 在()2,+∞递减,所以2max7e ()(2)4h x h -==,所以274e a -≥;综上可得274e a -≥. 【点睛】本题关键点在于参变分离构造函数求导后,通过因式分解将导数变为()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再把分子的因式构造成函数21e 12()x m x x x ---=,确定()(0)0m x m >=后,即得()h x '的正负,进而求解.。

导数专题训练(含答案)

导数专题训练(含答案)

导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。

高中数学导数经典20题附解析

高中数学导数经典20题附解析

导数经典20题目录导数经典20题 (1)一、【不等式恒成立-单变量】5道 (3)二、【不等式恒成立-双变量】5道 (13)三、【不等式证明】5道 (23)四、【零点问题】5道 (32)一、【不等式恒成立-单变量】【第01题】(2017•广东模拟)已知()ln a f x x x=+.(1)求()f x 的单调区间和极值;(2)若对任意0x >,均有()2ln ln x a x a −≤恒成立,求正数a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为2ln ln 1a a ≤+,求出a 的范围即可.【解答】解:(1)(0x >), ()221a x a f x x x x−′=−=(0x >), 当0a ≤时,()0f x ′>,在()0,+∞上递增,无极值;当0a >时,0x a <<时,()0f x ′<,在()0,a 上递减,x a >时,()0f x ′>,()f x 在(),a +∞上递增,()()ln 1f x f a a ==+极小值,无极大值.(2)若对任意0x >,均有恒成立,即对任意0x >,均有2ln ln a a x x≤+恒成立, 由(1)得:0a >时,()f x 的最小值是ln 1a +,故问题转化为:2ln ln 1a a ≤+,即ln 1a ≤,故0e a <≤.【点评】本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,考查()ln a f x x x =+()f x ()f x ()2ln ln x a x a −≤转化思想,是一道中档题.一、【不等式恒成立-单变量】【第02题】(2019•西安一模)已知函数()()21e x f x x ax =−−(其中e 为自然对数的底数). (1)判断函数()f x 极值点的个数,并说明理由;(2)若对任意的0x >,()3e x f x x x +≥+,求a 的取值范围.【分析】(1)首先求得导函数,然后分类讨论确定函数的极值点的个数即可;(2)将原问题转化为恒成立的问题,然后分类讨论确定实数a 的取值范围即可.【解答】解:(1)()()e 2e 2x xf x x ax x a ′=−=− ,当0a ≤时,()f x 在(),0−∞上单调递减,在()0,+∞上单调递增,()f x 有1个极值点; 当102a <<时,()f x 在(),ln 2a −∞上单调递增,在()ln 2,0a 上单调递减,在()0,+∞上单调递增,()f a 有2个极值点; 当12a =时,()f x 在R 上单调递增,此时函数没有极值点; 当12a >时,()f x 在(),0−∞上单调递增,在()0,ln 2a 上单调递减,在()ln 2,a +∞上单调递增,()f a 有2个极值点. 综上,当12a =时,()f x 没有极值点;当0a ≤时,()f x 有1个极值点;当0a >且12a ≠时,()f x 有2个极值点.(2)由得32e 0x x x ax x −−−≥.当0x >时,2e 10x x ax −−−≥, 即2e 1x x a x−−≤对0x ∀>恒成立. 设()2e 1x x g x x−−=(0x >), ()3e x f x x x +≥+则()()()21e 1x x x g x x −−−′=,设()e 1x h x x =−−,则()e 1x h x ′=−,由0x >可知()0h x ′>,()h x 在()0,+∞上单调递增,()()00h x h >=,即e 1x x >+,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()1e 2g x g ∴≥=−,e 2a ∴≤−,故a 的取值范围是(],e 2−∞−.【点评】本题主要考查导数研究函数的极值点,导数研究不等式恒成立的方法,分类讨论的数学思想等知识,属于中等题.【第03题】(2017春•太仆寺旗校级期末)已知函数()ln f x x a x =−,()1a g x x+=−(a ∈R ). (1)若1a =,求函数()f x 的极小值;(2)设函数()()()h x f x g x =−,求函数()h x 的单调区间;(3)若在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,求a 的取值范围.【分析】(1)先求出其导函数,让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间进而求出函数()f x 的极值;(2)先求出函数()h x 的导函数,分情况讨论让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间;(3)先把()()00f x g x <成立转化为()00h x <,即函数()1ln a h x x a x x +=+−在[]1,e 上的最小值小于零;再结合(2)的结论分情况讨论求出其最小值即可求出a 的取值范围.【解答】解:(1)()f x 的定义域为()0,+∞,当1a =时,()ln f x x x =−,()111x f x x x −′=−=, x ()0,11 ()1,+∞ ()'f x− 0 + ()f x减 极小 增 所以()f x 在1x =处取得极小值1.(2)()1ln a h x x a x x +=+−, ()()()221111x x a a a h x x x x+−+ + ′=−−=, ①当10a +>时,即1a >−时,在()0,1a +上()0h x ′<,在()1,a ++∞上()0h x ′>, 所以()h x 在()0,1a +上单调递减,在()1,a ++∞上单调递增;②当10a +≤,即1a ≤−时,在()0,+∞上()0h x ′>,所以,函数()h x 在()0,+∞上单调递增.(3)在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,即在[]1,e 上存在一点0x ,使得()00h x <,即函数在[]1,e 上的最小值小于零. 由(2)可知,①当1e a +≥,即e 1a ≥−时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为()e h ,由()1e e 0ea h a +=+−<可得2e 1e 1a +>−, 因为2e 1e 1+−e 1>−, 所以2e 1e 1a +>−; ②当11a +≤,即0a ≤时,()h x 在上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <−;③当11e a <+<,即0e 1a <<−时,可得()h x 最小值为()1h a +,因为()0ln 11a <+<,所以,()0ln 1a a a <+<,故()()12ln 12h a a a a +=+−+>,此时,()10h a +<不成立.综上可得,所求a 的范围是:或2a <−. 【点评】本题第一问考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.()1ln a h x x a x x+=+−[]1,e 2e 1e 1a +>−【第04题】(2019•蚌埠一模)已知函数()()2ln f x a x x x =−−.(1)当1a =时,求函数()f x 的单调区间;(2)若()0f x ≥恒成立,求a 的值.【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论x 的范围,问题转化为01x <<时,2ln x a x x ≤−,1x >时,2ln x a x x ≥−,令()g x =2ln x x x−,根据函数的最值求出a 的范围,取交集即可. 【解答】解:(1)1a =时,()2ln f x x x x −−,(0x >) 故()()()211121x x f x x x x+−′=−−=, 令()0f x ′>,解得:1x >,令()0f x ′<,解得:01x <<,故()f x 在()0,1递减,在()1,+∞递增.(2)若()0f x ≥恒成立,即()2ln a x x x −≥,①()0,1x ∈时,20x x −<,问题转化为2ln x a x x ≤−(()0,1x ∈),1x >时,20x x −>,问题转化为2ln x a x x ≥−(1x >), 令()g x =2ln x x x −, 则()()()22121ln x x x g x x x −−−′=−, 令()()121ln h x x x x =−−−,则()112ln h x x x ′=−+−,()2120x x xh ′=−−<′, 故()h x ′在()0,1和()1,+∞内都递减,()0,1x ∈时,()()10h x h ′′>=,故()h x 在()0,1递增,()()10h x h <=,故()0,1x ∈时,()0g x ′<,()g x 在()0,1递减,而1x →时,()1g x →,故()0,1x ∈时,()1g x >,故1a ≤,()1,x ∈+∞时,()()10h x h ′′<=,故()h x 在()0,1递减,()()10h x h <=, 故()1,x ∈+∞时,()0g x ′<,()g x 在()1,+∞递减,而1x →时,()1g x →,故()1,x ∈+∞时,()1g x >,故1a ≥,②1x =时,显然成立.综上:1a =.【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,分类讨论思想,是一道综合题.【第05题】(2019•南昌一模)已知函数()()e ln x f x x x a =−++(e 为自然对数的底数,a 为常数,且1a ≤). (1)判断函数()f x 在区间()1,e 内是否存在极值点,并说明理由; (2)若当ln 2a =时,()f x k <(k ∈Z )恒成立,求整数k 的最小值. 【分析】(1)由题意结合导函数的符号考查函数是否存在极值点即可; (2)由题意结合导函数研究函数的单调性,据此讨论实数k 的最小值即可. 【解答】解:(1)()1e ln 1x f x x x a x ′=−++−,令()1ln 1g x x x a x=−++−,()1,e x ∈,则()()'e x f x g x =, ()2210x x g x x −+′=−<恒成立,所以()g x 在()1,e 上单调递减,所以()()110g x g a <=−≤,所以()'0f x =在()1,e 内无解. 所以函数()f x 在区间()1,e 内无极值点.(2)当ln 2a =时,()()e ln ln 2x f x x x =−++,定义域为()0,+∞,()1e ln ln 21x f x x x x ′=−++−,令()1ln ln 21h x x x x =−++−, 由(1)知,()h x 在()0,+∞上单调递减,又11022h => ,()1ln 210h =−<,所以存在11,12x∈,使得()10h x =,且当()10,x x ∈时,()0h x >,即()'0f x >,当()1,x x ∈+∞时,()0h x <,即()'0f x <.所以()f x 在()10,x 上单调递增,在()1,x +∞上单调递减, 所以()()()1111max e ln ln 2x f x f x x x ==−++. 由()10h x =得1111ln ln 210x x x −++−=,即1111ln ln 21x x x −+=−, 所以()1111e 1x f x x =−,11,12x∈ ,令()1e 1x r x x =− ,1,12x ∈ ,则()211e 10x r x x x′=−+> 恒成立, 所以()r x 在1,12上单调递增,所以()()1102r r x r <<= ,所以()max 0f x <,又因为1211e ln 2ln 2122f=−−+=>−,所以()max 10f x −<<,所以若()f x k <(k ∈Z )恒成立,则k 的最小值为0.【点评】本题主要考查导数研究函数的极值,导数研究函数的单调性,导数的综合运用等知识,属于中等题.二、【不等式恒成立-双变量】【第06题】(2019•广元模拟)已知函数()()ln 11xf x a x x=−++(a ∈R ),()2e mx g x x =(m ∈R ). (1)当1a =时,求函数()f x 的最大值;(2)若0a <,且对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立,求实数m 的取值范围.【分析】(1)求出函数的导数,得到函数的单调区间,求出函数的最大值即可; (2)令()()1x f x ϕ=+,根据函数的单调性分别求出()x ϕ的最小值和()g x 的最大值,得到关于m 的不等式,解出即可.【解答】解:(1)函数()f x 的定义域为()1,−+∞, 当1a =时,()()()2211111xf x xx x −′=−=+++,∴当()1,0x ∈−时,()'0f x >,函数()f x 在()1,0−上单调递增, ∴当()0,x ∈+∞时,()'0f x <,函数()f x 在()0,+∞上单调递减, ()()max 00f x f ∴==.(2)令()()1x f x ϕ=+,因为“对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立”, 所以对任意的1x ,[]20,2x ∈,()()min max x g x ϕ≥成立, 由于()()211ax a x x ϕ−−+′=+,当0a <时,对[]0,2x ∀∈有()'0x ϕ>,从而函数()x ϕ在[]0,2上单调递增, 所以()()min 01x ϕϕ==, ()()222e e 2e mx mx mx g x x x mmxx ′=+⋅=+,当0m =时,()2g x x =,x ∈[]0,2时,()()max 24g x g ==,显然不满足()max 1g x ≤,当0m ≠时,令()'0g x =得10x =,22x m=−, ①当22m−≥,即10m −≤≤时,在[]0,2上()0g x ′≥,所以()g x 在[]0,2上单调递增, 所以()()2max 24e m g x g ==,只需24e 1m ≤,得ln 2m ≤−,所以1ln 2m −≤≤−. ②当202m <−<,即1m <−时,在20,m − 上()0g x ′≥,()g x 单调递增,在2,2m−−上()0g x ′<,()g x 单调递减,所以()22max 24eg x g m m== , 只需2241e m ≤,得2e m ≤−,所以1m <−. ③当20m−<,即0m >时,显然在[]0,2上()0g x ′≥,()g x 单调递增, 所以()()2max 24e m g x g ==,24e 1m ≤不成立. 综上所述,m 的取值范围是(],ln 2−∞−.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.【第07题】(2019•濮阳一模)已知函数()ln b f x a x x =+(0a ≠). (1)当2b =时,讨论函数()f x 的单调性;(2)当0a b +=,0b >时,对任意1x ,21,e e x ∈,都有()()12e 2f x f x −≤−成立,求实数b 的取值范围.【分析】(1)通过讨论a 的范围,求出函数的单调区间即可;(2)原问题等价于()()max min e 2f x f x −≤−成立,可得()()min 11f x f ==,可得()()max e e b f x f b ==−+,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),可得()b ϕ在()0,+∞单调递增,且()10ϕ=,即可得不等式e e 10b b −−+≤的解集.【解答】解:(1)函数()f x 的定义域为()0,+∞. 当2b =时,()2ln f x a x x =+,所以()22x a f x x+′=. ①当0a >时,()0f x ′>,所以函数()f x 在()0,+∞上单调递增.②当0a <时,令()0f x ′=,解得:x =当0x <<()0f x ′<,所以函数()f x 在 上单调递减;当x >()0f x ′>,所以函数()f x 在+∞上单调递增. 综上所述,当2b =,0a >时,函数()f x 在()0,+∞上单调递增;当2b =,0a <时,函数()f x 在 上单调递减,在 +∞上单调递增. (2) 对任意1x ,21,e e x∈,有()()12e 2f x f x −≤−成立,()()max min e 2f x f x ≤∴−−成立,0a b += ,0b >时,()ln b f x b x x =−+.()()11bb b x b f x bx x x−−′=−+=. 当01x <<时,()0f x ′<,当1x >时,()0f x ′>,()f x ∴在1,1e单调递减,在[]1,e 单调递增,()()min 11f x f ==,1e e bf b − =+ ,()e e b f b =−+, 设()()1e e e 2e b b g b f f b −=−=−−(0b >),()e e 20b b g b −′=+−>. ()g b ∴在()0,+∞递增,()()00g b g ∴>=,()1e e f f ∴>.可得()max f x =()e e b f b =−+,e 1e 2b b ∴−+−≤−,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),()e 10b b ϕ′−>在()0,b ∈+∞恒成立.()b ϕ∴在()0,+∞单调递增,且()10ϕ=,∴不等式e e 10b b −−+≤的解集为(]0,1. ∴实数b 的取值范围为(]0,1.【点评】本题考查了导数的应用,考查了转化思想、运算能力,属于压轴题.【第08题】(2019•衡阳一模)已知()32342f x x ax x −=+(x ∈R ),且()f x 在区间[]1,1−上是增函数.(1)求实数a 的值组成的集合A ;(2)设函数()f x 的两个极值点为1x 、2x ,试问:是否存在实数m ,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立?若存在,求m 的取值范围;若不存在,请说明理由.【分析】(1)由()f x 在区间[]1,1−上是增函数.可得()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.可得()10f ′−≥,()10f ′≥,即可得出. (2)函数()f x 的两个极值点为1x 、2x ,可得12x x a +=,122x x =−.()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增,进而得出其最大值为7.()21213g t m tm x x ++≥−=对任意a A ∈及[]1,1t ∈−恒成立,可得()()1717g g −≥ ≥,解得m 范围即可得出.【解答】解:(1) ()f x 在区间[]1,1−上是增函数, ∴()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.()14220f a ∴′−=−−≥,()14220f a ′=+−≥,解得11a −≤≤. []1,1A ∴=−.(2)函数()f x 的两个极值点为1x 、2x , ∴12x x a +=,122x x =−.∴()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈ ,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增.123x x ∴−的最大值为()17h =.设()2211g t m tm mt m ++=++=,[]1,1t ∈−,()123g t x x ≥−对任意a A ∈及[]1,1t ∈−恒成立,则()()1717g g −≥≥ ,解得3m ≤−或3m ≥. ∴存在实数3m ≤−或3m ≥,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立.【点评】本题考查了利用导数研究函数的单调性、方程与不等式的解法、转化方法、分类讨论方法,考查了推理能力与计算能力,属于难题.【第09题】(2018•呼和浩特一模)已知函数()ln f x x =,()212g x x bx =−(b 为常数). (1)当4b =时,讨论函数()()()h x f x g x =+的单调性;(2)2b ≥时,如果对于1x ∀,(]21,2x ∈,且12x x ≠,都有()()()()1212f x f x g x g x −<−成立,求实数b 的取值范围.【分析】(1)先求导,再根据导数和函数的单调性关系即可求出,(2)令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2(1,2]上单调递减,即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立,所以得1b x x ≥+,求出即可.【解答】解:(1)()21ln 2h x x x bx =+−的定义域为()0,+∞,当4b =时,()21ln 42h x x x x =+−,()2141'4x x h x x x x−+=+−=, 令()'0h x =,解得12x =−,22x =+(2x ∈时,()0h x ′<, 当(0,2x ∈或()2+∞时,()0h x ′>,所以,()h x 在(0,2和()2+∞单调递增;在(2单调递减. (2)因为()ln f x x =在区间(]1,2上单调递增, 当2b ≥时,()212g x x bx =−在区间(]1,2上单调递减, 不妨设12x x >,则()()()()1212f x f x g x g x −<−等价于()()()()1122f x g x f x g x +<+, 令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2上单调递减, 即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立, 所以得1b x x≥+在区间(]1,2上恒成立, 因为1y x x=+在(]1,2上单调递增, 所以max 15222y =+=,所以得5b≥.2【点评】本题考查了导数研究函数的单调性以及根据函数的增减性得到函数的最值,理解等价转化思想的运用,属于中档题.【第10题】(2018•邕宁区校级模拟)设函数()e xa f x x x=−,a ∈R 且0a ≠,e 为自然对数的底数. (1)求函数()f x y x=的单调区间; (2)若1ea =,当120x x <<时,不等式()()()211212m x x f x f x x x −−>恒成立,求实数m 的取值范围.【分析】(1)求出函数y 的导数y ′,利用导数判断函数y 的单调性与单调区间; (2)120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−;构造函数()()mg x f x x=−,由()g x 在()0,+∞上为减函数,得出()0g x ′≤, 再利用构造函数求最值法求出m 的取值范围. 【解答】解:(1)函数()2e 1xf x a y x x==−, ()243e 2e 2e xx x a x a x x a y x x −⋅−⋅∴′==, ①当0a >时,由0y ′>得02x <<,由0y ′<得0x <或2x >; ②当0a <时,由0y ′>得0x <或2x >,由0y ′<得02x <<. 综上:①当0a >时,函数()f x y x=的增区间为()0,2,减区间为(),0−∞,()2,+∞; ②当0a <时,函数()f x y x=的增区间为(),0−∞,()2,+∞,减区间为()0,2. (2)当120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−,即函数())e (e x m mg x f x x x x x=−=−−在()0,+∞上为减函数,则()()()1212221e 1e 10x x x x x m m g x x x x−−−−−+′=−+=≤, ()121e x m x x −∴≤−−;令()()121e x h x x x −=−−, 则()()11 e 2e 2x x h x x xx −−′=−=−,由()0h x ′=得ln 2e x =;当()0,ln 2e x ∈时,()0h x ′<,()h x 为减函数; 当()ln 2e,+x ∈∞时,()0h x ′>,()h x 为增函数.()h x ∴的最小值为()()()()22ln 2e 12ln 2e ln 2e 1e ln 2e 2ln 2ln 21ln 21h −=−−=−+=−−; 2ln 21m ∴≤−−,m ∴的取值范围是(22,ln 1 −−∞− .【点评】本题考查了利用导数研究函数的单调性与最值问题,也考查了不等式恒成立问题,是综合题.三、【不等式证明】【第11题】(2018新课标I)已知函数()e ln 1x f x a x =−−.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【分析】(1)推导出0x >,()1e x f x a x ′=−,由2x =是()f x 的极值点,解得212ea =,从而()21e ln 12exf x x =−−,进而()211e 2e x f x x ′=−,由此能求出()f x 的单调区间. (2)当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e xg x x =−−,则()e 1e x g x x ′=−,由此利用导数性质能证明当1ea ≥时,()0f x ≥. 【解答】解:(1)∵函数()e ln 1x f x a x =−−. ∴0x >,()1e xf x a x′=−, ∵2x =是()f x 的极值点,∴()212e 02f a ′=−=,解得212ea =,∴()21e ln 12exf x x =−−,∴()211e 2e x f x x ′=−, 当02x <<时,()0f x ′<,当2x >时,()0f x ′>, ∴()f x 在()0,2单调递减,在()2,+∞单调递增.(2)证明:当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e x g x x =−−,则()e 1e x g x x ′=−, 由()e 10e x g x x ′=−=,得1x =,当01x <<时,()0g x ′<, 当1x >时,()0g x ′>, ∴1x =是()g x 的最小值点,故当0x >时,()()10g x g ≥=, ∴当1ea ≥时,()0f x ≥. 【点评】本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.【第12题】(2018新课标Ⅲ)已知函数()21e xax x f x +−=. (1)求曲线()y f x =在点()0,1−处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【分析】(1)()()()()2221e 1e e x xx ax ax x f x +−+−′=由()02f ′=,可得切线斜率2k =,即可得到切线方程. (2)可得()()()()()()2221e 1e 12ee x xxx ax ax x ax x f x +−+−+−′==−.可得()f x 在1,a−∞−,()2,+∞递减,在1,2a−递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.只需()min e f x ≥−,即可. 【解答】解:(1)()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.∴()02f ′=,即曲线()y f x =在点()01−,处的切线斜率2k =, ∴曲线()y f x =在点()01−,处的切线方程方程为()12y x −−=. 即210x y −−=为所求.(2)证明:函数()f x 的定义域为:R , 可得()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.令()0f x ′=,可得12x =,210x a=−<, 当1,x a∈−∞−时,()0f x ′<,当1,2x a ∈− 时,()0f x ′>,当()2,x ∈+∞时,()0f x ′<.∴()f x 在1,a−∞−,()2,+∞递减,在1,2a − 递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.函数()f x 的图象如下:∵1a ≥,∴(]10,1a∈,则11e e a f a−=−≥−, ∴()1min e e af x =−≥−, ∴当1a ≥时,()e 0f x +≥.【点评】本题考查了导数的几何意义,及利用导数求单调性、最值,考查了数形结合思想,属于中档题.【第13题】(2016新课标Ⅲ)设函数()ln 1f x x x =−+. (1)讨论()f x 的单调性; (2)证明当()1,x ∈+∞时,11ln x x x−<<; (3)设1c >,证明当()0,1x ∈时,()11x c x c +−>.【分析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(2)由题意可得即证ln 1ln x x x x <−<.运用(1)的单调性可得ln 1x x <−,设()ln 1F x x x x =−+,1x >,求出单调性,即可得到1ln x x x −<成立;(3)设()()11x G x c x c =+−−,求()G x 的二次导数,判断()G x ′的单调性,进而证明原不等式.【解答】解:(1)函数()ln 1f x x x =−+的导数为()11f x x′=−, 由()0f x ′>,可得01x <<;由()0f x ′<,可得1x >. 即有()f x 的增区间为()0,1;减区间为()1,+∞; (2)证明:当()1,x ∈+∞时,11ln x x x−<<,即为ln 1ln x x x x <−<. 由(1)可得()ln 1f x x x =−+在()1,+∞递减, 可得()()10f x f <=,即有ln 1x x <−;设()ln 1F x x x x =−+,1x >,()1ln 1ln F x x x ′=+−=, 当1x >时,()0F x ′>,可得()F x 递增,即有()()10F x F >=, 即有ln 1x x x >−,则原不等式成立; (3)证明:设()()11x G x c x c =+−−,则需要证明:当()0,1x ∈时,()0G x >(1c >);()1ln x G x c c c ′=−−,()()2ln 0x G x c c ′′=−<,∴()G x ′在()0,1单调递减,而()01ln G c c ′=−−,()11ln G c c c ′=−−, 由(1)中()f x 的单调性,可得()01ln 0G c c ′=−−>,由(2)可得()()11ln 1ln 10G c c c c c ′=−−=−−<,∴()0,1t ∃∈,使得0G t ′=(),即()0,x t ∈时,()0G x ′>,(),1x t ∈时,()0G x ′<; 即()G x 在()0,t 递增,在(),1t 递减; 又因为:()()010G G ==,∴()0,1x ∈时()0G x >成立,不等式得证; 即1c >,当()0,1x ∈时,()11x c x c +−>.【点评】本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.【第14题】(2015新课标I)设函数()2e ln x f x a x =−. (1)讨论()f x 的导函数()f x ′零点的个数; (2)证明:当0a >时,()22lnf x a a a≥+. 【分析】(1)先求导,在分类讨论,当0a ≤时,当0a >时,根据零点存在定理,即可求出;(2)设导函数()f x ′在()0,+∞上的唯一零点为0x ,根据函数()f x 的单调性得到函数的最小值()0f x ,只要最小值大于22ln a a a+,问题得以证明.【解答】解:(1)()2e ln x f x a x =−的定义域为()0,+∞, ∴()22e x xx af =′−. 当0a ≤时,()0f x ′>恒成立,故()f x ′没有零点, 当0a >时,∵2e x y =为单调递增,ay x=−单调递增, ∴()f x ′在()0,+∞单调递增, 又()0f a ′>,假设存在b 满足0ln2a b <<时,且14b <,()0f b ′<, 故当0a >时,导函数()f x ′存在唯一的零点;(2)由(1)知,可设导函数()f x ′在()0,+∞上的唯一零点为0x , 当()00,x x ∈时,()0f x ′<, 当()0,x x ∈+∞时,()0f x ′>,故f(x)在()00,x 单调递减,在()0,x +∞单调递增, 所欲当0x x =时,()f x 取得最小值,最小值为()0f x , 由于0202e 0x ax −=,所以()002a f x x =+02ax +2ln a a ≥2a +2ln a a. 故当0a >时,()22lnf x a a a≥+. 【点评】本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.【第15题】(2015安徽)设n ∗∈N ,n x 是曲线221n y x +=+在点()1,2处的切线与x 轴交点的横坐标. (1)求数列{}n x 的通项公式; (2)记2221321n n T x x x −= ,证明:14n T n≥. 【分析】(1)利用导数求切线方程求得切线直线并求得横坐标; (2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)2221'1'22n n y x n x ++=+=+()(),曲线221n y x +=+在点()1,2处的切线斜率为22n +,从而切线方程为()()2221y n x −=+−.令0y =,解得切线与x 轴的交点的横坐标为1111n n x n n =−=++;(2)证明:由题设和(1)中的计算结果可知:22213222211321242n n n n T x x x−− = =, 当1n =时,114T =, 当2n ≥时,因为()()()()2222212221211212212222n n n n n n n n n n n x −−−−−−−=>=== , 所以2112112234n T n n n − >××××= ;综上所述,可得对任意的n ∗∈N ,均有14n T n≥. 【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.四、【零点问题】【第16题】(2018秋•龙岩期末)已知函数()()2ln 12f x x ax a x a =−−−+(a ∈R ). (1)讨论()f x 的单调性;(2)令函数()()()()22e 1ln 1x g x f x x a x −=+−+−−,若函数()g x 有且只有一个零点0x ,试判断0x 与3的大小,并说明理由.【分析】(1)由()222211a x x a f x x a x x +− ′−−−−(1x >),分212a +≤和212a +>两类分析函数的单调性;(2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+,求其导函数,可得()21e 1x g x a x −′=−−−,令()()h x g x ′=,对()h x 求导,分析可得()g x ′在()1,+∞上有唯一零点1x ,结合已知可得01x x =,则()()0000g x g x ′ = = ,由此可得()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 再利用导数判断其单调性,结合函数零点的判定可得03x <. 【解答】解:(1)()222211a x x a f x x a x x +− ′−−−−(1x >), 当212a +≤,即0a ≤时,()0f x ′>在()1,+∞上恒成立,()f x 在()1,+∞上单调递增; 当212a +>,即0a >时,若21,2a x + ∈ ,则()0f x ′<,若2,2a x + ∈+∞,则()0f x ′>, ∴()f x 在21,2a + 上单调递减,在2,2a ++∞上单调递增; (2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+. 则()21e 1x g x a x −′=−−−,易知()g x ′在()1,+∞上单调递增,当1x >且1x →时,()g x ′→−∞,x →+∞,()g x ′→+∞, ∴()g x ′在()1,+∞上有唯一零点1x ,当()11,x x ∈时,()0g x ′<,当()1,x x ∈+∞时,()0g x ′>. ∴()()1min g x g x =,由已知函数()g x 有且只有一个零点0x ,则01x x =. ∴()()0000g x g x ′ = = ,即()0022001e 01e ln 120x x a x ax x a −− −−= − −−−+=, 消a 得,()000222000011e ln 1e 2e 011x x x x x x x −−−−−−−+−= −−, ()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 则()()()2212e 1x t x x x −′=−+−. ∴()1,2x ∈时,()0t x ′>,()2,x ∈+∞时,()0t x ′<. ∴()t x 在()2,+∞上单调递减. ∵()210t =>,()13ln 202t =−+<, ∴()t x 在()2,3上有一个零点,在()3,+∞上无零点. 若()t x 在()1,2上有一个零点,则该零点必小于3. 综上,03x <.【点评】本题考查了利用导数研究函数的单调性,考查函数零点的判定,考查了推理能力与计算能力,属于难题.【第17题】(2019•大庆二模)已知函数()22ln f x x a x =−(a ∈R ). (1)当12a =时,点M 在函数()y f x =的图象上运动,直线2y x =−与函数()y f x =的图象不相交,求点M 到直线2y x =−距离的最小值; (2)讨论函数()f x 零点的个数,并说明理由.【分析】(1)首先写出函数的定义域,对函数求导,分析在什么情况下满足距离最小,构造等量关系式,求解,得到对应的点的坐标,之后应用点到直线的距离公式进行求解即可;(2)对函数求导,分情况讨论函数的单调性,依次得出函数零点的个数. 【解答】解:(1)()f x 的定义域为()0,+∞, 12a =时,()2ln f x x x =−,()12f x x x ′=−,令()1f x ′=,解得:1x =或12x =−,又()11f =,故图像上的点到直线20x y −−=的距离的最小值即为点()1,1M 到直线20x y −−=的距离,其距离d(2)由()0f x =,得22ln x a x =(0x >且1x ≠),设()2ln x g x x=(0x >且1x ≠),2y a =, 问题转化为讨论()y g x =的图象和2y a =的图象的交点个数问题, ()()22ln 1ln x x g x x−′=,(0x >且1x ≠),令()0g x ′=,解得x ,当01x <<或1x <<时,()0g x ′<,当x 时,()0g x ′>,故()g x 在()0,1,(递减,在)+∞递增,故()2e g x g =极小值,又01x <<时,()0g x <,当1x >时,()0g x >,故当20a <或22e a =即0a <或e a =时,直线2y a =与函数()y g x =的图象有1个交点, 当22e a >即e a >时,有2个交点, 当0e a ≤<时没有交点,故函数()f x 当0a <或e a =时1个零点,当0a <或e a =时2个零点,0e a ≤<时没有零点.【点评】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有图象上的点到直线的距离的最小值的求解,导数的几何意义,应用导数研究函数的零点的问题,注意对分类讨论思想的应用,要做到不重不漏,属于较难题目.【第18题】(2018秋•周口期末)已知函数()22ln f x ax x =−(a ∈R ). (1)讨论函数()f x 的单调性; (2)当21e a =时,若函数()y f x =的两个零点分别为1x ,2x (12x x <),证明:()12ln ln 21x x +>+.【分析】(1)求函数的定义域和函数的导数,分0a ≤和0a >分类讨论函数的单调性即可;(2)欲证()12ln ln 21x x +>+,只需证122e x x +>,即证122e x x >−,只需证()()212e 0f x f x −>=,将()22e f x −表示出来化简整理并构造函数()()442ln 2ln 2e 1etg t t =−+−−,由函数()g t 的单调性即可证明. 【解答】解:(1)易知()f x 的定义域是()0,+∞,()()22122ax f x ax x x−′=−=, 当0a ≤时,()0f x ′<,()f x 在()0,+∞递减,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞递增; (2)证明:当21ea =时,()222ln e x f x x =−,由(1)知()()min e 1f x f ==−,且()10,e x ∈,()2e,x ∈+∞,又由()2e 22ln 20f =−>知22e x <,即()2e,2e x ∈,故()22e 0,e x −∈,由()222222ln 0e x f x x =−=,得22222e ln x x =,故()()()()222222222e 42e 2ln 2e 42ln 2ln 2e eex x f x x x x −−=−−=−+−−,()2e,2e x ∈,令()()442ln 2ln 2e etg t t t =−+−−,()e,2e t ∈, 则()()()24e 0e 2e t g t t t −′=>−, 故()g t 在()e,2e 递增,故()()e 0g t g >=,即()()212e 0f x f x −>=, 又()f x 在()0,e 上单调递减,故212e x x −<,即()12ln ln 21x x +>+.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想考查不等式的证明,是一道综合题.(2018秋•咸阳期末)已知函数()221ln 2f x x a x =−(0a >). (1)讨论()f x 的单调性;(2)若()f x 在[]1,e 上没有零点,求a 的取值范围.【分析】(1)求出()f x ′,解不等式()0f x ′>,()0f x ′<,即可求出()f x 的单调区间; (2)用导数求出函数()f x 在区间[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <,分类讨论,根据导数和函数的最值得关系即可求出.【解答】解:(1)()222a x a f x x x x −′=−=(0x >), 令()0f x ′>,解得x a >;令()0f x ′<,解得0x a <<, ∴函数()f x 的单调增区间为(),a +∞,单调减区间为()0,a .(2)要使()f x 在[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <, 又()1102f =>,只需在区间[]1,e 上,()min 0f x >. ①当e a ≥时,()f x 在区间[]1,e 上单调递减,则()()22min 1e e 02f x f a ==−>,解得0a <<与e a ≥矛盾. ②当1e a <<时,()f x 在区间[)1,a 上单调递减,在区间(],e a 上单调递增, ()()()2min 112ln 02f x f a a a ==−>,解得0a <1a <③当01a <≤时,()f x 在区间[]1,e 上单调递增,()()min 10f x f =>,满足题意, 综上所述,实数a 的取值范围是:0a <<【点评】本题是导数在函数中的综合运用,考查运用导数求单调区间,求极值,求最值,考查分类讨论的思想方法,同时应注意在闭区间内只有一个极值,则一定为最值的结论的运用.(2018秋•芜湖期末)已知函数()2ln 1f x x a x =−−(a ∈R ). (1)求()f x 的极值点;(2)若函数()f x 在区间()0,1内无零点,求a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,求出函数的极值点即可;(2)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,从而确定是否存在零点,进而判断a 的范围.【解答】解:(1)()222a x a f x x x x −′=−=(0x >),当0a ≤时,()0f x ′>,()f x 在()0,+∞递增,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞ 递增,故x =是极小值点,无极大值点; (2)()22x af x x −′=(01x <<), ∵01x <<,∴2022x <<,当0a ≤时,()0f x ′>,()f x 在()0,1递增, 故()()10f x f <=,函数无零点,符合题意; 当2a ≥时,()0f x ′<,()f x 在()0,1递减, 故()()10f x f >=,函数无零点,符合题意;当02a <<时,存在()00,1x =,使得()00f x ′=,故()f x 在 递减,在递增,又10e1a−<<,1e 0a f −> ,()10f f <=, 故()f x 在()0,1有零点,不合题意;综上,若函数()f x 在区间()0,1内无零点,则2a ≥或0a ≤.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及函数零点问题,考查分类讨论思想,转化思想,是一道综合题.。

导数复习导数大题练习(含详解答案)

导数复习导数大题练习(含详解答案)

1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。

〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。

2019届高三数学理科导数大题训练(含答案)

2019届高三数学理科导数大题训练(含答案)

高三数学理科大题训练1.已知函数1()()ln (,,0).f x a x m x a m R m x=--∈≠ (1)若曲线()y f x =在点1(1))f (,处的切线方程为20,x y m --=求a m 、的值; (2)若1m =且关于x 的不等式'()0f x ≥在[2,)+∞上恒成立,求实数a 的取值范围.1.已知函数),(,)()(2R b a b ax x x f ∈+=在2=x 时有极值,其图象在点))1(,1(f 处的切线与直线03=+y x 平行.(1)求b a 、的值和函数)(x f 的单调区间;(2)若当[]4,1∈x 时,恒有()x f t ≥,试确定t 的取值范围.3.已知函数()ln ()=+∈f x ax x x a R(1)若函数()f x 在区间[,]e +∞上为增函数,求a 的取值范围;(2)当1a =且k z ∈时,不等式(1)()k x f x -<在(1,)x ∈+∞上恒成立,求k 的最大值。

4.已知函数()2axf x x e =⋅(a 为小于0的常数).(1)当1a =-时,求函数()x f 的单调区间; (2)存在[1,2]x ∈使不等式44()f x e ≥成立,求实数a 的取值范围.5.已知R a ∈,函数x ax x f ln 21)(2-=. (1)当1=a 时,求曲线)(x f y =在点))1(1(f ,处的切线的斜率; (2)讨论)(x f 的单调性;(3)是否存在实数a ,使得方程2)(=x f 有两个不等的实数根?若存在,求出a 的取值范围;若不存在,说明理由.6.函数R k kx x x f ∈-=,31)(3。

(1)当4=k 时,求函数)(x f 的极值;(2)若曲线)(x f y =与直线k y =只有一个交点,求实数k 的取值范围。

7.已知函数()ln (,)R b f x x ax a b x =-+∈,且对任意0x >,都有0)1()(=+xf x f . (1)用含a 的表达式表示b ;(2)若)(x f 存在两个极值点1x ,2x ,且12x x <,求出a 的取值范围,并证明0)2(2>af ;(3)在(2)的条件下,判断()y f x =零点的个数,并说明理由.8.设函数)1ln(1)(2++-=x x x f (1)求函数)(x f 的单调区间; (2)若不等式21)(x x kxx f -+> (k N *∈)在),0(+∞上恒成立,求k 的最大值.9.已知函数1)(--=ax e x f x(a ∈R ). (1)求函数)(x f 的单调区间;(2)若函数221)()(x x f x F -=在[1,2]上有且仅有一个零点,求a 的取值范围;(3)已知当x>-1,n≥1时,nx x n+≥+1)1(,求证:当n ∈N *,x 2<n 时,不等式2)1(x e nx n n x n ≤--成立.10.已知函数322()(0).+f x x ax a x m a =+->(1)若函数()f x 在[]1,1-内没有极值点,求实数a 的取值范围;(2)若a =1时函数()f x 有三个互不相同的零点,求实数m 的取值范围;(3)若对任意的[]3,6a ∈,不等式()1f x ≤在[]2,2-上恒成立,求实数m 的取值范围.11.已知函数2()(1)||f x x x x a =+--. (1)若1a =-,解方程()1f x =;(2)若函数()f x 在R 上单调递增,求实数a 的取值范围;(3)若1a <且不等式()23f x x ≥-对一切实数x R ∈恒成立,求a 的取值范围12.已知函数),(ln 2)(2R b a x bx x a x f ∈+-=. (1)若1==b a ,求)(x f 点())1(,1f 处的切线方程; (2)设0≤a ,求)(x f 的单调区间;(3)设0<a ,且对任意的)2()(,0f x f x ≤>,试比较)ln(a -与b 2-的大小13.已知函数22()(2)ln 2f x x x x ax =-⋅++.(1)当1a=-时,求()f x 在(1,(1))f 处的切线方程;(2)设函数()()2g x f x x =--,(ⅰ)若函数()g x 有且仅有一个零点时,求a 的值; (ⅱ)在(ⅰ)的条件下,若2e x e -<<,()g x m ≤,求m 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数大题专题训练1.已知f (x )=xlnx -ax ,g (x )=-x 2-2,(Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围;(Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有lnx +1>ex e x 21-成立.2、已知函数2()ln 2(0)f x a x a x=+->.(Ⅰ)若曲线y=f (x)在点P (1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有f (x)>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x)=f (x)+x ―b (b ∈R ).当a=1时,函数g (x)在区间[e ―1,e]上有两个零点,求实数b 的取值范围.3. 设函数f (x)=lnx+(x -a)2,a ∈R .(Ⅰ)若a=0,求函数f (x)在[1,e]上的最小值;(Ⅱ)若函数f (x)在1[,2]2上存在单调递增区间,试求实数a 的取值范围;(Ⅲ)求函数f (x)的极值点.4、已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.5、已知函数())0(2ln 2>-+=a x a xx f (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于任意()())1(2,0->+∞∈a x f x 都有成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x -b (b ∈R ).当a =1时,函数g (x )在区间[]e ,e 1-上有两个零点,求实数b 的取值范围.6、已知函数1ln ()x f x x+=. (1)若函数在区间1(,)2a a +(其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1k f x x ≥+恒成立,求实数k 的取值范围.1.解:(Ⅰ)对一切)()(),,0(x g x f x ≥+∞∈恒成立,即2ln 2--≥-x ax x x 恒成立.也就是++≤x x a ln x2在),0(+∞∈x 恒成立;令x x x x F 2ln )(++= ,则F '2222)1)(2(2211)(xx x x x x x x x -+=-+=-+=, 在)10(,上F '0)(<x ,在)1(∞+,上F '0)(>x ,因此,)(x F 在1=x 处取极小值,也是最小值,即3)1()(min ==F x F ,所以3≤a .(Ⅱ)当时,1-=a x x x x f +=ln )(,f '2ln )(+=x x ,由f '0)(=x 得21e x =. ①当210em <<时,在)1,[2e m x ∈上f '0)(<x ,在]3,1(2+∈m e x 上f '0)(>x 因此,)(x f 在21e x =处取得极小值,也是最小值. 2min 1)(ex f -=. 由于0]1)3)[ln(3()3(,0)(>+++=+<m m m f m f 因此,]1)3)[ln(3()3()(max +++=+=m m m f x f ②当时21e m ≥,0)('≥x f ,因此]3,[)(+m m x f 在上单调递增,所以)1(ln )()(min +==m m m f x f , ]1)3)[ln(3()3()(max +++=+=m m m f x f ……9分(Ⅲ)证明:问题等价于证明)),0((2ln +∞∈->+x ee x x x x x 由(Ⅱ)知1-=a 时,x x x xf +=ln )(的最小值是21e -,当且仅当21e x =时取得, 设)),0((2)(+∞∈-=x e e x x G x ,则G 'x ex x -=1)(,易知e G x G 1)1()(max -==,当且仅当1x =时取到, 但,e e 112->-从而可知对一切(0,)x ∈+∞,都有ex e x x 211ln ->+成立. 2、解:(Ⅰ)直线y=x+2的斜率为1.函数f (x)的定义域为(0,+∞),因为22'()a f x x x =-+,所以22'(1)111a f =-+=-,所以a=1.所以2()ln 2f x x x =+-. 22'()x f x x -=.由'()0f x >解得x >0;由'()0f x <解得0<x <2. 所以f (x)的单调增区间是(2,+∞),单调减区间是(0,2)(Ⅱ)2222'()a ax f x x x x -=-+=, 由'()0f x >解得2x a >;由'()0f x <解得20x a<<.所以f (x)在区间2(,)a +∞上单调递增,在区间2(0,)a 上单调递减.所以当2x a =时,函数f (x)取得最小值,min 2()y f a =. 因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a >-即可. 则22ln 22(1)2a a a a+->-.由2ln a a a >解得20e a <<.所以a 的取值范围是2(0,)e.(Ⅲ)依题得2()ln 2g x x x b x=++--,则222'()x x g x x +-=.由'()0g x >解得x >1;由'()0g x <解得0<x <1.所以函数()g x 在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数()g x 在区间[e -1,e]上有两个零点,所以1()0()0(1)0g e g e g -⎧≥⎪≥⎨⎪<⎩.解得21e 1e b <≤+-.所以b 的取值范围是2(1,e 1]e +-. 3.解:(Ⅰ)f (x)的定义域为(0,+∞). 因为1'()20f x x x=+>,所以f (x)在[1,e]上是增函数, 当x=1时,f (x)取得最小值f (1)=1.所以f (x)在[1,e]上的最小值为1. (Ⅱ)解法一:21221'()2()x ax f x x a x x -+=+-=设g (x)=2x 2―2ax+1,依题意,在区间1[,2]2上存在子区间使得不等式g (x)>0成立. 注意到抛物线g (x)=2x 2―2ax+1开口向上,所以只要g (2)>0,或1()02g >即可由g (2)>0,即8―4a+1>0,得94a <,由1()02g >,即1102a -+>,得32a <,所以94a <, 所以实数a 的取值范围是9(,)4-∞. 解法二:21221'()2()x ax f x x a x x -+=+-=,依题意得,在区间1[,2]2上存在子区间使不等式2x 2―2ax+1>0成立.又因为x >0,所以12(2)a x x <+. 设1()2g x x x =+,所以2a 小于函数g (x)在区间1[,2]2的最大值.又因为1'()2g x x=-, 由21'()20g x x =->解得2x >;由21'()20g x x =-<解得02x <<. 所以函数g (x)在区间2)2上递增,在区间1(,22上递减. 所以函数g (x)在12x =,或x=2处取得最大值.又9(2)2g =,1()32g =,所以922a <,94a < 所以实数a 的取值范围是9(,)4-∞. (Ⅲ)因为2221'()x ax f x x-+=,令h (x)=2x 2―2ax+1 ①显然,当a ≤0时,在(0,+∞)上h (x)>0恒成立,f '(x)>0,此时函数f (x)没有极值点; ②当a >0时,(i )当Δ≤0,即0a <≤时,在(0,+∞)上h (x)≥0恒成立,这时f '(x)≥0,此时,函数f (x)没有极值点;(ii )当Δ>0时,即a >x <<h (x)<0,这时f '(x)<0;当02a x <<或2a x +>时,h (x)>0,这时f '(x)>0;所以,当a >x =是函数f (x)的极大值点;x = f (x)的极小值点.综上,当a ≤ f (x)没有极值点;当a >x =是函数f (x)的极大值点;x =是函数f (x)的极小值点. 4.解:2()(21)f x ax a x '=-++(0)x >. (Ⅰ)(1)(3)f f ''=,解得23a =. (Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ②当102a <<时,12a >,在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<, 故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a . ③当12a =时,2(2)()2x f x x -'=,故()f x 的单调递增区间是(0,)+∞. ④当12a >时,102a <<,在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<, 故()f x 的单调递增区间是1(0,)a 和(2,)+∞,单调递减区间是1(,2)a . (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <.由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增,故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤. ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a 上单调递减,故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12e a >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, 综上所述,ln 21a >-.5、解:(Ⅰ)直线y =x +2的斜率为1, 函数f(x)的定义域为 ()+∞,0因为xa x x f +-=2'2)(,所以()111212'-=+-=a f ,所以a =1,所以()()2'2,2ln 2x x x f x x x f -=-+= 由()0'>x f 解得x >2 ; 由()0'<x f 解得0<x <2所以f(x)得单调增区间是()+∞,2,单调减区间是()2,0(Ⅱ)22'22)(xax x a x x f -=+-=,由()0'>x f 解得;2a x >由()0'<x f 解得a x 20<< 所以f(x)在区间),2(+∞a 上单调递增,在区间)2,0(a上单调递减 所以当a x 2=时,函数f(x)取得最小值)2(min af y = 因为对于任意()())1(2,0->+∞∈a x f x 都有成立,所以)1(2)2(->a a f 即可 则)1(222ln 22->-+a a a a ,由a a a >2ln 解得e a 20<<;所以a 得取值范围是)2,0(e (Ⅲ)依题意得b x x xg --+=2ln 2)(,则22'2)(x x x x g -+= 由()0'>x g 解得x >1,由()0'<x g 解得0<x <1所以函数g(x)在区间[]e ,e 1-上有两个零点, 所以⎪⎩⎪⎨⎧<≥≥-0)1(0)(0)(1g e g e g 解得121-+≤<e e b 所以b 得取值范围是]12,1(-+e e 6、解:(1)因为1ln ()x f x x +=,0x >,则2ln ()x f x x'=-, 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴()f x 在(0,1)上单调递增;在(1,)+∞上单调递减,∴函数()f x 在1x =处取得极大值.………3分∵函数()f x 在区间1(,)2a a +(其中0a >)上存在极值, ∴1,11,2a a <⎧⎪⎨+>⎪⎩解得112a <<. (2)不等式()1k f x x ≥+,即为(1)(1ln )x x k x++≥, 记(1)(1ln )()x x g x x ++=∴22[(1)(1ln )](1)(1ln )ln ()x x x x x x x g x x x '++-++-'==,…9分 令()ln h x x x =-,则1'()1h x x=-,∵1x ≥,∴'()0h x ≥,∴()h x 在[1,)+∞上递增, ∴min [()](1)10h x h ==>,从而()0g x '>,故()g x 在[1,)+∞上也单调递增,∴min [()](1)2g x g ==,∴2k ≤.。

相关文档
最新文档