导数大题经典(重点讨论)练习及答案(整理、理科)

导数大题经典(重点讨论)练习及答案(整理、理科)
导数大题经典(重点讨论)练习及答案(整理、理科)

导数大题专题训练

1.已知f (x )=xlnx -ax ,g (x )=-x 2-2,

(Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围;

(Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有lnx +1>ex e x 21-成立.

2、已知函数2()ln 2(0)f x a x a x

=+->.(Ⅰ)若曲线y=f (x)在点P (1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(Ⅱ)若对于(0,)x ?∈+∞都有f (x)>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x)=f (x)+x ―b (b ∈R ).当a=1时,函数g (x)在区间[e ―

1,e]上有两个零点,求实数b 的取值范围.

3. 设函数f (x)=lnx+(x -a)2,a ∈R .(Ⅰ)若a=0,求函数f (x)在[1,e]上的最小值;

(Ⅱ)若函数f (x)在1[,2]2

上存在单调递增区间,试求实数a 的取值范围;

(Ⅲ)求函数f (x)的极值点.

4、已知函数21()(21)2ln ()2

f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2

g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.

5、已知函数())0(2ln 2>-+=a x a x

x f (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;

(Ⅱ)若对于任意()())1(2,0->+∞∈a x f x 都有成立,试求a 的取值范围;

(Ⅲ)记g (x )=f (x )+x -b (b ∈R ).当a =1时,函数g (x )在区间[]e ,e 1-上有两个零点,求实数b 的取值范围.

6、已知函数1ln ()x f x x

+=. (1)若函数在区间1(,)2

a a +(其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1k f x x ≥

+恒成立,求实数k 的取值范围.

1.解:(Ⅰ)对一切)()(),,0(x g x f x ≥+∞∈恒成立,即2ln 2--≥-x ax x x 恒成立.也就是++≤x x a ln x

2在),0(+∞∈x 恒成立;令x x x x F 2ln )(++= ,则F '2222)1)(2(2211)(x

x x x x x x x x -+=-+=-+=, 在)10(,上F '0)(

上F '0)(>x ,因此,)(x F 在1=x 处取极小值,也是最小值, 即3)1()(min ==F x F ,所以3≤a .

(Ⅱ)当时,

1-=a x x x x f +=ln )(,f '2ln )(+=x x ,由f '0)(=x 得21e x =. ①当210e m <<时,在)1,[2e

m x ∈上f '0)(x 因此,)(x f 在21e x =处取得极小值,也是最小值. 2min 1)(e

x f -=. 由于0]1)3)[ln(3()3(,0)(>+++=+

m ≥,0)('≥x f ,因此]3,[)(+m m x f 在上单调递增,所以)1(ln )()(min +==m m m f x f , ]1)3)[ln(3()3()(max +++=+=m m m f x f ……9分 (Ⅲ)证明:问题等价于证明)),0((2ln +∞∈->+x e

e x x x x x 由(Ⅱ)知1-=a 时,x x x x

f +=ln )(的最小值是2

1e -,当且仅当21e x =时取得, 设)),0((2)(+∞∈-=x e e x x G x ,则G 'x e

x x -=1)(,易知e G x G 1)1()(max -==,当且仅当1x =时取到, 但,e e 112

->-从而可知对一切(0,)x ∈+∞,都有ex e x x 211ln ->+成立. 2、解:(Ⅰ)直线y=x+2的斜率为1.函数f (x)的定义域为(0,+∞),因为22'()a f x x x =-

+,所以22'(1)111

a f =-+=-,所以a=1.所以2()ln 2f x x x =+-. 22'()x f x x -=.由'()0f x >解得x >0;由'()0f x <解得0<x <2. 所以f (x)的单调增区间是(2,+∞),单调减区间是(0,2)

(Ⅱ)2222'()a ax f x x x x -=-+=, 由'()0f x >解得2x a >;由'()0f x <解得20x a

<<.所以f (x)在区间2(,)a +∞上单调递增,在区间2(0,)a 上单调递减.所以当2x a =时,函数f (x)取得最小值,min 2()y f a =. 因为对于(0,)x ?∈+∞都有()2(1)f x a >-成立,

所以2

()2(1)f a a >-即可. 则22ln 22(1)2a a a

a

+->-.由2ln a a a >解得20e a <<.所以a 的取值范围是2(0,)e .

(Ⅲ)依题得2()ln 2g x x x b x =++--,则22

2'()x x g x x +-=.由'()0g x >解得x >1;由'()0g x <解得0<x <1.所以函数()g x 在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数()g x 在区间[e -1

,e]上有两个零点,所以1()0()0(1)0g e g e g -?≥?≥??

.解得21e 1e b <≤+-.所以b 的取值范围是2(1,e 1]e +-. 3.解:(Ⅰ)f (x)的定义域为(0,+∞). 因为1'()20f x x x

=+>,所以f (x)在[1,e]上是增函数, 当x=1时,f (x)取得最小值f (1)=1.所以f (x)在[1,e]上的最小值为1. (Ⅱ)解法一:21221'()2()x ax f x x a x x

-+=+-=设g (x)=2x 2―2ax+1,依题意,在区间1[,2]2上存在子区间使得不等式g (x)>0成立. 注意到抛物线g (x)=2x 2―2ax+1开口向上,所以只要g (2)>0,或1

()02

g >即可由g (2)>0,即8―4a+1>0,得94a <,由1()02g >,即1102a -+>,得32a <,所以94a <, 所以实数a 的取值范围是9(,)4

-∞. 解法二:21221'()2()x ax f x x a x x

-+=+-=,依题意得,在区间1[,2]2上存在子区间使不等式2x 2―2ax+1>0成立.又因为x >0,所以12(2)a x x <+. 设1()2g x x x =+,所以2a 小于函数g (x)在区间1[,2]2的最大值.又因为1'()2g x x

=-, 由21'()20g x x =-

>

解得2x >;由21'()20g x x =-<

解得02x <<. 所以函数g (x)

在区间

上递增,在区间1(2上递减. 所以函数g (x)在12x =,或x=2处取得最大值.又9(2)2g =,1()32g =,所以922a <,94

a < 所以实数a 的取值范围是9(,

)4-∞. (Ⅲ)因为2221'()x ax f x x

-+=,令h (x)=2x 2―2ax+1 ①显然,当a ≤0时,在(0,+∞)上h (x)>0恒成立,f '(x)>0,此时函数f (x)没有极值点; ②当a >0时,

(i )当Δ≤0

,即0a <≤时,在(0,+∞)上h (x)≥0恒成立,这时f '(x)≥0,此时,函数f (x)没有极值点;

(ii )当Δ>0时,即a >x <

当0x <时,h (x)>0,这时f '(x)>0;

所以,当a >x = f (x)的极大值点;x =是函数f (x)的极小值点.

综上,当a ≤ f (x)没有极值点;

当a >x =是函数f (x)的极大值点;x = f (x)的极小值点. 4.解:2()(21)f x ax a x '=-++

(0)x >. (Ⅰ)(1)(3)f f ''=,解得23a =. (Ⅱ)(1)(2)()ax x f x x

--'=(0)x >. ①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,

故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ②当102a <<时,12a >,在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a

上()0f x '<, 故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a . ③当12a =时,2

(2)()2x f x x

-'=,故()f x 的单调递增区间是(0,)+∞. ④当12a >时,102a <<,在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a

上()0f x '<, 故()f x 的单调递增区间是1(0,)a 和(2,)+∞,单调递减区间是1(,2)a . (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <.由已知,max ()0g x =,由(Ⅱ)可知, ①当12

a ≤

时,()f x 在(0,2]上单调递增,故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212

a -<≤. ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a 上单调递减,故max 11()()22ln 2f x f a a a

==---. 由12a >可知11ln ln ln 12e a >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, 综上所述,ln 21a >-.

5、解:(Ⅰ)直线y =x +2的斜率为1, 函数f(x)的定义域为 ()+∞,0因为x

a x x f +-=2'2)(,所以()111212'-=+-

=a f ,所以a =1,所以()()2'2,2ln 2x x x f x x x f -=-+= 由()0'>x f 解得x >2 ; 由()0'

(Ⅱ)22'

22)(x

ax x a x x f -=+-=,由()0'>x f 解得;2a x >由()0'

上单调递减 所以当a x 2=时,函数f(x)取得最小值)2(min a

f y = 因为对于任意()())1(2,0->+∞∈a x f x 都有成立,所以)1(2)2(->a a f 即可 则)1(222ln 22->-+a a a a ,由a a a >2ln 解得e a 20<<;所以a 得取值范围是)2,0(e (Ⅲ)依题意得b x x x

g --+=2ln 2)(,则2

2'2)(x x x x g -+= 由()0'>x g 解得x >1,由()0'

e ,e 1-上有两个零点, 所以??

???<≥≥-0)1(0)(0)(1g e g e g 解得121-+≤

1(-+e e 6、解:(1)因为1ln ()x f x x +=,0x >,则2ln ()x f x x

'=-, 当01x <<时,()0f x '>;当1x >时,()0f x '<.

∴()f x 在(0,1)上单调递增;在(1,)+∞上单调递减,

∴函数()f x 在1x =处取得极大值.………3分

∵函数()f x 在区间1(,)2

a a +(其中0a >)上存在极值, ∴1,11,2

a a ??解得112a <<. (2)不等式()1k f x x ≥

+,即为(1)(1ln )x x k x

++≥, 记(1)(1ln )()x x g x x ++=∴22[(1)(1ln )](1)(1ln )ln ()x x x x x x x g x x x '++-++-'==,…9分 令()ln h x x x =-,则1'()1h x x

=-,∵1x ≥,∴'()0h x ≥,∴()h x 在[1,)+∞上递增, ∴min [()](1)10h x h ==>,从而()0g x '>,故()g x 在[1,)+∞上也单调递增,

∴min [()](1)2g x g ==,∴2k ≤.

导数大题练习带的答案解析

导数大题练习 1.已知f (x )=x ln x -ax ,g (x )=-x 2-2, (Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围;(Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 2 1-成立. 2、已知函数2 ()ln 2(0)f x a x a x = +->.(Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ?∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区 间[e ― 1,e]上有两个零点,求实数b 的取值范围. 3. 设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值; (Ⅱ)若函数f (x )在1 [,2]2 上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点. 4、已知函数2 1()(21)2ln ()2 f x ax a x x a = -++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2 ()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得 12()()f x g x <,求a 的取值范围. 5、已知函数())0(2ln 2 >-+= a x a x x f (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单 调区间; (Ⅱ)若对于任意()())1(2,0->+∞∈a x f x 都有成立,试求a 的取值范围; (Ⅲ)记g (x )=f (x )+x -b (b ∈R ).当a =1时,函数g (x )在区间[ ] e ,e 1 -上有两个零点, 求实数b 的取值范围. 6、已知函数1ln ()x f x x += . (1)若函数在区间1 (,)2 a a + (其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1 k f x x ≥ +恒成立,求实数k 的取值范围.

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x +为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数211log (2),1, ()2,1,x x x f x x -+-

导数测试题(含答案)

导数单元测试题 班级姓名 一、选择题 1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.44 2.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率Δy Δx 等于( ) A.4 B.4+2Δx C.4+2(Δx)2 D.4x 3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合 C.与x轴垂直D.与x轴相交但不垂直 4.曲线y=-1 x 在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=x C.y=x+2 D.y=-x-2 5.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π 4 的是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 6.已知函数f(x)=1 x ,则f′(-3)=( ) A.4 B.1 9 C.- 1 4 D.- 1 9 7.函数f(x)=(x-3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( ) A.1个B.2个 C.3个D.4个 10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分 别是( ) A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3) 11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( ) A.-10 B.-71 C.-15 D.-22 12.一点沿直线运动,如果由始点起经过t秒运动的距离为s= 1 4 t4- 5 3 t3+2t2,那么速度为零的时刻是( ) A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末 二、填空题 13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________. 14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则 b a =________. 15.函数y=x e x的最小值为________. 16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2. 三、解答题 17.求下列函数的导数:(1)y=3x2+x cos x; (2)y= x 1+x ; (3)y=lg x-e x. 18.已知抛物线y=x2+4与直线y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 19.已知函数f(x)= 1 3 x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

导数练习题含答案

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32 ()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3 y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a = +2 ()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 22 2()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2 y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线32 153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

导数大题练习带答案说课材料

导数大题练习 2 1 已知f(x) = xlnx—ax, g(x) =—x —2, (I )对一切x€( o,+旳,f(x) > g(x)恒成立,求实数a的取值范围;(n )当a=—1时,求函数f(x)在[m, m+ 3](m> 0)上的最值;(川)证明:对一切x€ (0 ,+旳,都有lnx+ 1 > 1 2 二-兰成立. e ex 2 2、已知函数f(x) aln x-2(a?0). (I)若曲线y=f (x)在点P (1, f (1))处的切线 x 与直线y=x+2垂直,求函数y=f (x)的单调区间;(n)若对于- x:=(0, ?::)都有f (x) > 2(a— 1)成立,试求a的取值范围;(川)记g (x)=f (x)+x—b ( b€ R).当a=1时,函数g (x)在区间[e—1, e]上有两个零点,求实数b的取值范围. 3、设函数f (x)=l nx+(x—a)2, a € R. (I)若a=0,求函数f (x)在[1 , e]上的最小值; 1 一 (n)若函数f (x)在[—2]上存在单调递增区间,试求实数a的取值范围; 2’ (川)求函数f (x)的极值点. 1 2 4、已知函数f (x) ax2-(2a 1)x 2l n x (a R). 2 (I )若曲线y = f (x)在x =1和x = 3处的切线互相平行,求a的值;(n)求f (x)的单 调区间;(川)设g(x)=x2-2x,若对任意x「(0,2],均存在x? ? (0,2],使得 f(xj ::g(X2),求a的取值范围. 2 5、已知函数f alnx_2(a 0) x (I )若曲线y= f(x)在点P(1, f(1))处的切线与直线y= x + 2垂直,求函数y= f(x)的单调区间; (n )若对于任意x G0,;都有f x\> 2(a -1)成立,试求a的取值范围; (川)记g( x) = f(x) + x—b( b€ R).当a= 1时,函数g( x)在区间e_1,e】上有两个零点,求实数b的取值范围. 6、已知函数f(x)=L匹 . x 1 (1) 若函数在区间(a,a -])(其中a 0)上存在极值,求实数a的取值范围;

导数大题练习题答案

导数练习题(B)答案 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II)若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数 ) (x f 的解析式; (III )在(II)的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的 图象有三 个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I)求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为,2 3 若函数]2 )('[3 1)(23m x f x x x g ++=在区间 (1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (I I)若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (I II)对于(I I)中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I)写出)(x f 的单调递增区间,并证明a e a >; (II)讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I)当1k =时,求函数()f x 的最大值; (I I)若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I)求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.(本小题满分14分)

高中数学导数的几何意义测试题含答案

高中数学导数的几何意义测试题(含答案) 选修2-21.1第3课时导数的几何意义 一、选择题 1.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么() A.f(x0)>0 B.f(x0)<0 C.f(x0)=0 D.f(x0)不存在 [答案] B [解析] 切线x+2y-3=0的斜率k=-12,即f(x0)=-12<0.故应选B. 2.曲线y=12x2-2在点1,-32处切线的倾斜角为() A.1 B.4 C.54 D.-4 [答案] B [解析] ∵y=limx0[12(x+x)2-2]-(12x2-2)x =limx0(x+12x)=x 切线的斜率k=y|x=1=1. 切线的倾斜角为4,故应选B. 3.在曲线y=x2上切线的倾斜角为4的点是() A.(0,0) B.(2,4) C.14,116 D.12,14

[答案] D 页 1 第 [解析] 易求y=2x,设在点P(x0,x20)处切线的倾斜角为4,则2x0=1,x0=12,P12,14. 4.曲线y=x3-3x2+1在点(1,-1)处的切线方程为() A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5 [答案] B [解析] y=3x2-6x,y|x=1=-3. 由点斜式有y+1=-3(x-1).即y=-3x+2. 5.设f(x)为可导函数,且满足limx0f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为() A.2 B.-1 C.1 D.-2 [答案] B [解析] limx0f(1)-f(1-2x)2x=limx0f(1-2x)-f(1)-2x =-1,即y|x=1=-1, 则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B. 6.设f(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线() A.不存在 B.与x轴平行或重合

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

导数大题经典练习及答案

导数大题专题训练 2g(x)-ax,=-x1.已知f(x)=xlnx的取值范围;,+∞),f(x)≥g(x)恒成立,求实数2,- a(Ⅰ)对一切x∈(0>1lnx+>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有1时,求函数f(x)在[m,m+3](m=-(Ⅱ)当a成立. 的单调区垂直,求函数y=f (x)f (1))处的切线与直线y=x+2P.(Ⅰ)若曲线y=f (x)在点(1,2、已知函数a=1当R).g (x)=f (x)+x―b(b∈成立,试求间;(Ⅱ)若对于都有f (x)>2(a―1)a的取值范围;(Ⅲ)记1―.,e]上有两个零点,求实数b的取值范围在区间时,函数g (x)[e a=0,求函数f (x)[1,e](Ⅰ)若af (x)=lnx+(x3.设函数-a),∈R.在2上的最小值;在 上存在单调递增区间,试求实数(Ⅱ)若函数f (x)a的取值范围;(Ⅲ)求函数f (x)的极值点. 、已知函数.4设,若对任意,均存在,使得,求的)Ⅲ(求的单调区间;)Ⅱ(若曲线在和处的切线互相平行,求的值;)Ⅰ( 取值范围. 5、已知函数 (Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于任意成立,试求a的取值范围; (Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围.

6、已知函数. (1)若函数在区间(其中)上存在极值,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围. 1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则, 在上,在上,因此,在处取极小值,也是最小值, 即,所以. (Ⅱ)当,,由得. ①当时,在上,在上 因此,在处取得极小值,也是最小值. . 由于因此, ②当,,因此上单调递增,所以, ……9分 (Ⅲ)证明:问题等价于证明 由(Ⅱ)知时,的最小值是,当且仅当时取得, 设,则,易知,当且仅当时取到, 但从而可知对一切,都有成立. 2、解:(Ⅰ)直线y=x+2的斜率为1.函数f (x)的定义域为(0,+∞),因为,所以,所以a=1.所以. .由解得x>0;由解得0<x<2. 所以f (x)的单调增区间是(2,+∞),单调减区间是(0,2) (Ⅱ),由解得;由解得.所以f (x)在区间上单调递增,在区间上单调递减.所以当时,函数f (x)取得最小值,. 因为对于都有成立, 所以即可. 则.由解得.所以a的取值范围是. (Ⅲ)依题得,则.由解得x>1;由解得0<x<1.所以函数在区间(0,1)为减函数,在区间(1,+∞)为增函-1.所以b的取值范围是[e,e]上有两个零点,所以.解得.数.又因为函数在区间,e]上是增函数,∞). 因为,所以f (x)在[103.解:(Ⅰ)f (x)的定义域为(,+ e]上的最小值为1.所以f (x)在[1,f (x)当x=1时,取得最小值f (1)=1.2注意到抛. ,依题意,在区间上存在子区间使得不等式g (x)>0成立2ax+1(Ⅱ)解法一:设g (x)=2x―2物线g (x)=2x―2ax+1开口向上,所以只要g (2)>0,或即可由g (2)>0,即8―4a+1>0,得,由,即,得,所以, 所以实数a的取值范围是. 所以.又因为x>0,依题意得,在区间上存在子区间使不等式2x―2ax+1>0成立.解法二: . 2,

(完整版)导数的计算练习题及答案

【巩固练习】 一、选择题 1.设函数310()(12)f x x =-,则'(1)f =( ) A .0 B .―1 C .―60 D .60 2.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( ) A.(0,1) B.()(),10,1-∞-U C. ()()1,01,-+∞U D.()1,+∞ 3.(2014春 永寿县校级期中)下列式子不正确的是( ) A.()'23cos 6sin x x x x +=- B. ()'1ln 2 2ln 2x x x x -=- C. ()' 2sin 22cos 2x x = D.'2sin cos sin x x x x x x -??= ??? 4.函数4538 y x x =+-的导数是( ) A .3543 x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为' ()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( ) A. 2 B.-2 C. 94 D.94- 6.设曲线1(1)1 x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12 D .―2 7.23log cos (cos 0)y x x =≠的导数是( ) A .32log tan e x -? B .32log cot e x ? C .32log cos e x -? D . 22log cos e x 二、填空题 8.曲线y=sin x 在点,12π?? ??? 处的切线方程为________。 9.设y=(2x+a)2,且2'|20x y ==,则a=________。 10.31sin x x '??-= ??? ____________,()2sin 25x x '+=????____________。 11.在平面直角坐标系xOy 中,点P 在曲线C :y=x 3―10x+3上,且在第二象限内,已知曲

2016年高考导数试题及答案(精选)

1.(新课标1)已知函数 有两个零点. (I)求a 的取值范围;(II)设x 1,x 2是的两个零点,证明: +x 2<2. 解:(Ⅰ) '()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1 ,)x ∈+∞时,'()0f x >.所 以 ()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0 b <且ln 2a b <,则22 3()(2)(1)()022 a f b b a b a b b >-+-=->,故()f x 存在两个零点. (iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2 e a ≥-,则ln(2)1a -≤,故当 (1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以() f x 不存在两个零点. 若2 e a <- ,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设1 2x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1) -∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于 222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以 222222(2)(2)x x f x x e x e --=---. 设 2()( 2 ) x x g x xe x e -=---, 则 2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从 而22()(2)0g x f x = -<,故122x x +<. 2(新课标2)(I)讨论函数x x 2f (x) x 2 -= +e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈ 时,函数2 x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a , 求函数()h a 的值域.

导数大题练习带答案汇编

1.已知f (x )=x ln x -ax ,g (x )=-x 2-2, (Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围;(Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 2 1- 成立. 2、已知函数2 ()ln 2(0)f x a x a x = +->.(Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ?∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区 间[e ― 1,e]上有两个零点,求实数b 的取值范围. 3. 设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值; (Ⅱ)若函数f (x )在1 [,2]2 上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点. 4、已知函数2 1()(21)2ln ()2 f x ax a x x a = -++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2 ()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得 12()()f x g x <,求a 的取值范围. 5、已知函数())0(2ln 2 >-+= a x a x x f (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单 调区间; (Ⅱ)若对于任意()())1(2,0->+∞∈a x f x 都有成立,试求a 的取值范围; (Ⅲ)记g (x )=f (x )+x -b (b ∈R ).当a =1时,函数g (x )在区间[ ] e ,e 1 -上有两个零点, 求实数b 的取值范围. 6、已知函数1ln ()x f x x += . (1)若函数在区间1 (,)2 a a + (其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1 k f x x ≥+恒成立,求实数k 的取值范围.

最新2019高考数学《导数及其应用》专题完整题(含答案)

2019年高中数学单元测试卷 导数及其应用 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.22 (1cos )x dx π π-+?等于( ) A .π B . 2 C . π-2 D . π+2(2009福建理) 2.若()224ln f x x x x =--,则()'f x >0的解集为( ) A .()0,+∞ B. ()()1,02,-?+∞ C. ()2,+∞ D. ()1,0-(2011江西理4) 3.若[0,)x ∈+∞,则下列不等式恒成立的是 (A)2 1x e x x ++ (211) 1 24x x <-+ (C)21cos 12x x -… (D)21 ln(1)8 x x x +-… 4.如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()() 00S t S =,则导函数()' y S t =的图像大致为 二、填空题 5.已知3 2 ()26(f x x x m m =-+为常数)在[2,2]-上有最大值3,那么此函数在[2,2]-上的最小值为____________ 6.已知f (x )=x 3,g (x )=-x 2+x -29a ,若存在x 0∈[-1,a 3](a >0),使得f (x 0)<g (x 0),则实

数a 的取值范围是 ▲ .(0,-3+21 2) 7. 若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为 .[1,5) 8.曲线2 y 21x x =-+在点(1,0)处的切线方程为________ 9.已知函数()322f x x ax bx a =+++在1x =处有极值10,则a b += . 10.已知32()33f x x bx cx =++有两个极值点12,x x ,且[][]121,0,1,2x x ∈-∈,则(1)f 的取值范围 . 11.已知函数ln ()x f x x = ,则()f x 的最大值为 12.函数y=x 3+lnx 在x=1处的导数为 . 13.若函数()()02 3 >-=a ax x x f 在区间?? ? ??+∞,320上是单调递增函数,则使方程()1000=x f 有整数解的实数a 的个数是 。 三、解答题 14. 已知函数()2 a f x x x =+,()ln g x x x =+,其中0a >. (1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值; (2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围. .

(完整word版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

导数大题经典练习及答案.pdf

导数大题专题训练 1.已知f(x)=xlnx-ax,g(x)=-x2-2, (Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围; (Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx+1>成立. 2、已知函数.(Ⅰ)若曲线y=f (x)在点P(1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(Ⅱ)若对于都有 f (x)>2(a―1)成立,试求a的取值范围;(Ⅲ)记g (x)=f (x)+x―b(b∈R).当a=1时,函数g (x)在区间[e―1,e]上有两个零点,求实数b的取值范围. 3.设函数 f (x)=lnx+(x-a)2,a∈R.(Ⅰ)若a=0,求函数 f (x)在[1,e]上的最小值; (Ⅱ)若函数 f (x)在上存在单调递增区间,试求实数a的取值范围; (Ⅲ)求函数 f (x)的极值点. 4、已知函数. (Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的

取值范围. 5、已知函数 (Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间; (Ⅱ)若对于任意成立,试求a的取值范围; (Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围. 6、已知函数. (1)若函数在区间(其中)上存在极值,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围. 1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则, 在上,在上,因此,在处取极小值,也是最小值, 即,所以. (Ⅱ)当,,由得. ①当时,在上,在上

导数单元测试题(含答案)

导数单元测试题(实验班用) 一、选择题 1.曲线3 2 3y x x =-+在点(1,2)处的切线方程为( ) A .31y x =- B .35y x =-+ C .35y x =+ D .2y x = 2.函数21()e x f x x +=?,[]1,2-∈x 的最大值为( ). A .14e - B . 0 C .2e D . 23e 3.若函数3()3f x x x a =-+有3个不同的零点,则实数a 的取值范围是( ) A.(2,2)- B.[]2,2- C.(,1)-? D.(1,)+? 4.若函数3()63f x x bx b =-+在(0,1)内有极小值,则实数b 的取值范围是( ) A.1 (0,)2 B. (,1)-? C. (0,)+? D. (0,1) 5.若2a >,则函数3 21()13 f x x ax =-+在区间(0,2)上恰好有( ) A .0个零点 B .3个零点 C .2个零点 D .1个零点 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 94 e B.2 2e C.2 e D.2 2 e 7.函数()f x 的图象如图所示,下列数值排序正确的是( ). A .(3)(2) 0(2)(3) 32 f f f f -''<<< - B .(3)(2) 0(3)(2)32 f f f f -''<<<- C . (3)(2) 0(3)(2)32 f f f f -''<<<- D .(3)(2) 0(2)(3)32 f f f f -''<<<- 8设(),()f x g x 分别是R 上的奇函数和偶函数, 当0x <时,' ' ()()()()0f x g x f x g x +>,

导数历届高考试题精选含答案

导数高考试题精选 一.选择题(共16小题) 1.(2013?河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为() A. 3 B.2 C. 1D. 2.(2012?汕头一模)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=() A.1B.C. D.﹣1 3.(2011?烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=() A. 2B.C.D.﹣2 4.(2010?泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为() A. B. C.D. 5.(2010?辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是() A. [0,) B.C. D. 6.(2010?江西模拟)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为() A. 30° B. 45°C.60°D.120°7.(2009?辽宁)曲线y=在点(1,﹣1)处的切线方程为() A. y=x﹣2 B. y=﹣3x+2C. y=2x﹣3 D. y=﹣2x+1 8.(2009?江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于() A. ﹣1或B. ﹣1或 C. 或 D. 或7 9.(2006?四川)曲线y=4x﹣x3在点(﹣1,﹣3)处的切线方程是() A.y=7x+4 B. y=7x+2 C.y=x﹣4 D.y=x﹣2 10.(2012?海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有 >2恒成立,则a的取值范围是() A. (0,1]B.(1,+∞) C. (0,1) D.[1,+∞)

相关文档
最新文档