椭圆及其标准方程教案2
椭圆定义及其标准方程 精品教案

2.2椭圆【课题】:椭圆的定义及其标准方程2方案一:【设计与执教者】:广州市第89中学,田鹰,tianyingtian@。
【教学时间】:40分钟【学情分析】:(适用于特色班)学生已经学过了轨迹方程、椭圆的定义及其标准方程的概念。
本节课将主要通过例题、练习明确求轨迹方程的步骤,进一步加强学生对于知识的掌握。
【三维目标】:1、知识与技能:①使学生进一步掌握椭圆的定义;掌握焦点、焦点位置、焦距与方程关系;②进一步强化学生对求轨迹方程的方法、步骤的掌握。
2、过程与方法:通过例题、习题的评练结合,促使学生掌握求椭圆轨迹方程的方法。
3、情感态度与价值观:通过讲解求椭圆轨迹方程,使学生认识到辨证联系地看问题,学会在解题过程中抓住题目中条件与结论的联系。
【教学重点】:知识与技能①、②【教学难点】:知识与技能②【课前准备】:课件【教学过程设计】:【课题】:椭圆的定义及其标准方程2方案二:【设计与执教者】:广州市第89中学,田鹰,tianyingtian@。
【教学时间】:40分钟【学情分析】:(适用于平行班)学生已经学过了轨迹方程、椭圆的定义及其标准方程的概念。
本节课将主要通过例题、练习明确求轨迹方程的步骤,进一步加强学生对于知识的掌握。
【三维目标】:1、知识与技能:①使学生进一步掌握椭圆的定义;掌握焦点、焦点位置、焦距与方程关系;②进一步强化学生对求轨迹方程的方法、步骤的掌握。
2、过程与方法:通过例题、习题的评练结合,促使学生掌握求椭圆轨迹方程的方法。
3、情感态度与价值观:通过讲解求椭圆轨迹方程,使学生认识到辨证联系地看问题,学会在解题过程中抓住题目中条件与结论的联系。
【教学重点】:知识与技能①、②【教学难点】:知识与技能②【课前准备】:课件。
《椭圆及其标准方程》第二课时教学设计

教学篇•方法展示一、教学背景1.教材分析《椭圆及其标准方程》是继学习“圆及其标准方程”之后运用“曲线与方程”的思想解决二次曲线问题的又一实例。
从知识体系上讲,本节课是对用坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础。
从教材安排上讲,椭圆是三种圆锥曲线当中最重要的一种,教材中以椭圆为例,求椭圆方程,利用方程讨论几何性质,以及探究轨迹方程和符合椭圆标准方程的动点的轨迹的方法。
从方法上说为我们后面研究双曲线、抛物线提供了基本模式和理论基础,起着承上启下的重要作用。
2.学情分析在学习本节课前,学生已经学习了“曲线和方程”和“椭圆及其标准方程”,对用坐标法研究几何问题已经有了一些了解,基本能运用求曲线方程的一般方法求曲线的方程,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何的时间还不长,学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免有些困难,比如:自我检测2学生想不到把1a2和1b2分别看作整体,例1动点A 的运动轨迹不是椭圆,而要叙述为动点A在椭圆上运动,还有会把轨迹和轨迹方程这两个概念混淆。
二、教学目标1.知识目标:求椭圆的标准方程;求符合条件的点的轨迹方程。
2.能力目标:使学生掌握确定椭圆标准方程中参数a,b的方法;掌握求动点轨迹方程的一些方法(如直接法、相关点法等)。
3.情感目标:激发学生学习数学的兴趣,培养学生勇于探索、敢于创新的精神。
通过主动探索、合作交流,感受探索的乐趣和成功的经验,体会数学的理性和严谨。
三、教学重点、难点重点:椭圆的标准方程,求动点的轨迹方程。
难点:求动点的轨迹方程。
四、教法和学法教法:设疑诱思、问题导学、合作探究。
学法:动手练习、主动探索、共同交流。
五、教学准备1.学生准备:复习椭圆及其标准方程,预习教材第41、42页例题。
2.教师准备:教学设计,多媒体课件制作。
3.教学手段:利用计算机多媒体教学。
椭圆及其方程教案(中档篇)

椭圆及其方程教案(中档篇)第一章:椭圆的概念1.1 椭圆的定义让学生了解椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的集合。
通过图形和实例让学生理解椭圆的基本性质,如焦点、半长轴、半短轴等。
1.2 椭圆的标准方程引导学生推导椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a\)是半长轴,\(b\)是半短轴。
解释椭圆标准方程的含义和应用,如通过方程可以确定椭圆的位置和大小。
第二章:椭圆的性质2.1 焦点和焦距让学生了解椭圆的焦点和焦距的概念,焦点是椭圆上到两个焦点距离之和为常数的点,焦距是两个焦点之间的距离。
通过图形和实例解释焦点和焦距与椭圆的大小和形状的关系。
2.2 半长轴和半短轴引导学生了解椭圆的半长轴和半短轴的概念,半长轴是椭圆上横坐标方向的半径,半短轴是椭圆上纵坐标方向的半径。
解释半长轴和半短轴与椭圆的大小和形状的关系。
第三章:椭圆的参数方程3.1 椭圆的参数方程定义让学生了解椭圆的参数方程:\(x = a \cos t\),\(y = b \sin t\),其中\(t\)是参数,\(a\)是半长轴,\(b\)是半短轴。
通过图形和实例解释椭圆参数方程的含义和应用,如可以通过参数方程描绘椭圆的形状和位置。
3.2 椭圆的参数方程的应用引导学生了解椭圆的参数方程的应用,如通过参数方程可以求椭圆的面积、弧长等。
给出实例,让学生学会使用参数方程解决实际问题。
第四章:椭圆的图像4.1 椭圆的标准图像让学生了解椭圆的标准图像,即椭圆的图形。
通过图形和实例解释椭圆的标准图像的特点和形状。
4.2 椭圆的图像变换引导学生了解椭圆的图像变换,如平移、缩放等。
给出实例,让学生学会使用图像变换改变椭圆的位置和大小。
第五章:椭圆的应用5.1 椭圆在几何中的应用让学生了解椭圆在几何中的应用,如椭圆的面积、弧长等。
通过实例让学生学会使用椭圆的性质和方程解决几何问题。
高中数学选修1-1 2.1.1 椭圆及其标准方程2 教案

教学内容
2.1.2椭圆及其标准方程(第2课时)
课时
2
教学过程
教学要点及教师活动
学生活动
教学引入
教学引入:
1、椭圆的定义:
P={ M| |MF1 |+|MF2|=2a(2a>2c)}.
2、椭圆的标准方程:
方程:
教学过程
教学要点及教师活动
学生活动
题型一:对椭圆定义的理解
例1:已知甲:动点P到定点A,B的距离之和ᅵPAᅵ+ᅵPBᅵ=2a,其中a为大于0的常数;乙:点P的轨迹是椭圆,则甲是乙的( )
方法一:设椭圆的标准方程为
方法一:设椭圆的标准方程为
教
学
反
馈
及
检
测
课堂小结
1.椭圆的定义:
2.椭圆的标准方程:焦点在x轴:
焦点在y轴:
3.求椭圆的标准方程(待定系数法、定义法)
作业布置
教学反思
【板书设计】
2.2 椭圆及其标准方程
题型一:对椭圆定义的理解例1
题型二:对椭圆标准方程的理解例2
题型三:求椭圆的标准方程例3
A.充分不必要条件 B.必要不充分条件
ቤተ መጻሕፍቲ ባይዱC.充要条件 D.既不充分也不必要条件
题型二:对椭圆标准方程的理解
例2:(1)若方程 表示椭圆,则实数m的取值范围是( )
A. B. 或
C. D.
题型三:求椭圆的标准方程
例3:求两个焦点的坐标分别是(0,-2)、(0,2),并且经过点(-3/2,5/2)的椭圆的标准方程.
椭圆及其标准方程第二课时(教学设计)高中数学新教材选择性必修第一册

3.1.2 椭圆及其标准方程第2课时教学设计(一)教学内容椭圆及其标准方程(二)教学目标1.通过知识的教学,使学生能熟练掌握椭圆的标准方程,焦点、焦距等概念以及a、b、c之间的关系,发展解析几何中代数运算素养.2.通过求点的轨迹方程,能使学生体验曲线与方程之间的一一对应关系,进一步体会坐标法和数形结合的思想.(三)教学重点及难点重点:求椭圆的标准方程.难点:轨迹方程的求法.(四)教学过程设计(主体内容)用问题分解教学目标1.课题导入问题1:上节课我们学习了椭圆的定义,请同学们回忆一下,椭圆是怎样定义的?追问1:椭圆的标准方程是怎样的?它的图形有什么特点?参数a、b、c的关系是怎样的?追问2:现在我们来求椭圆的标准方程,还需要用坐标法吗?师生活动:学生作答,老师适时补充,教师板书,明确求椭圆的标准方程不需要用坐标法,可用待定系数法确定a,b即可.设计意图:目的是使学生熟悉椭圆的定义及标准方程以及a,b,c各量的关系,熟悉焦距.为下一步求椭圆的标准方程做好铺垫.2.例题教学例1 求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,且经过点(2,0)和点(0,1).(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到与它较近的一个焦点的距离为2.(3)椭圆经过点(1,32),(2)师生活动:通过学生交流探索,让学生学会分析与解决问题,学会转化问题和应用方程组思想,体会椭圆标准方程的常规方法待定系数法,便于掌握本节的重点.设计意图:巩固椭圆及其标准方程.问题2:动点的轨迹和轨迹方程有何区别?例2 如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足。
当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?(当P经过圆与x轴的交点时,规定点M与点P重合.师生活动:(1)轨迹是指图形,轨迹方程是指方程.明确求轨迹方程即是求轨迹上任意的点M的坐标(x,y)所满足的条件,因此必须先搞清楚点M所满足的条件.(2)掌握求一类轨迹问题的基本思路与方法,即通过建立点M与已知曲线上点的联系,利用已知曲线的方程求解. (3)明确椭圆与圆的联系,椭圆可看作是把圆“压扁”或“拉长”后,圆心一分为二所成的曲线.设计意图:提高思维的探究性与挑战性,理解椭圆与圆的关系.例3 如图4,设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是4 -9,求点M 的轨迹方程.师生活动:(1)在学生分析、讨论解题思路的基础上,由学生独立完成;(2)教师视情况讲解、点评;(3)注意检验方程与曲线之间是否等价;(4)此题反过来,就是椭圆的一条性质.课堂练习:教科书第109页练习第3,4题.设计意图:深化学生对求曲线的方程的方法、椭圆的几何特征的认识.师生活动:学生运用椭圆的概念与椭圆的标准方程解决第3题,运用求曲线的方程的方法解决第4题,教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程.问题3:什么是椭圆的焦点三角形?焦点三角形又蕴含哪些知识呢?定义:椭圆上一点和两个焦点构成的三角形,称之为椭圆的焦点三角形.例4 椭圆22143x y+=,点P是椭圆上一点,F1,F2是椭圆的左、右焦点,且∠PF1F2=120°,则△PF1F2的面积为________.师生活动:教师在黑板上画出示意图,引导学生可联想解三角形的知识,由学生说出解决方案.(时间允许的话)从此题可推出一般结论:(1).(2)当P 点在椭圆与y 轴的交点时,焦点三角形面积最大为bc.设计意图:例题的难度不大,由学生自主思考分析并通过运算解决,培养独立思考独立分析解决问题的能力,通过练习,提醒学生在解决问题时,要根据题目的条件,灵活选用相关知识进行求解.3.课堂小结:问题4:回顾本节课所学知识与学习过程,你能对本节课的研究内容与结论作个梳理吗?师生活动:先由学生对椭圆的标准方程和轨迹方程求法作梳理,教师进行补充.设计意图:及时梳理、提炼与升华所学知识.(五)目标检测设计1.课堂检测(1).求符合下列条件的椭圆的标准方程:①经过点P(-,(1,;②a=2b0).设计意图:考查学生对椭圆的标准方程及a ,b ,c 之间的关系的理解与掌握水平,(2).已知△ABC 的周长为6,顶点A ,B 的坐标分别为(0,1),(0,-1),则点C 的轨过方程为( ) (A)221x 2)43x y +=≠±( (B)2212)34x y +=≠±(y (C)221x 0)43x y +=≠( (D)2210)34x y +=≠(y设计意图:考查学生对椭圆及其标准方程的理解水平以及思维的严谨性.(3).已知点A(-1.0),B 是圆F :229(1)x y +=-(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,求动点P 的轨迹方程. 师生活动:学生先独立完成,后相互交流,教师视学生错误情况进行点评、校正.教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程,考查学生求轨迹方程的掌握情况.2.课后作业教科书习题3.1第2,6,10题.(六)教学反思 点的纵坐标)是(P b S PF F 0021y .cy 2tan 2==∆θ。
椭圆及其标准方程(第2课时)高中数学获奖教案

3.1.1 椭圆及其标准方程(第二课时)(人教A 版普通高中教科书数学选择性必修第一册第三章)一、教学目标1.巩固椭圆的定义和标准方程,掌握求点的轨迹方程的三种方法:定义法、直接法、代入法(相关点法);2.通过动点轨迹方程的求解过程,培养学生归纳、类比、迁移的能力,激发学生学习兴趣,提高学生的创新意识.二、教学重难点1.重点:求动点轨迹方程的三种方法.2.难点:结合条件选取恰当的方式求动点的轨迹方程.三、教学过程1.复习巩固,引入新课上节课我们学习了椭圆的定义并推导出了它的标准方程,那椭圆的定义是什么?标准方程有哪几种形式?【答案预设】(1)平面内到两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆.其中,叫椭圆的焦点,叫椭圆的焦距.1F 2F 21F F 1F 2F 21F F(2)椭圆标准方程有两种形式:焦点在x轴上, 焦点在y 轴上, 其中【设计意图】加深对椭圆定义及其标准方程的理解,为求动点的轨迹方程做准备.2.自主探究,得出新知活动1:如图所示,已知动圆P 过定点A (-3,0),并且在定圆B :的内部与其内切,求动圆圆心P 的轨迹方程.【活动预设】经过分析,发现点P 的轨迹符合椭圆的定义,再根据椭圆的定义求出点P 满足的标准方程.)(12222>>=+b a by a x )0(12222>>=+b a bx a y 22c a b -=64)3(22=+-y x【设计意图】让学生掌握定义法求动点的轨迹方程.活动2:如图设A ,B 两点的坐标分别为(-5,0),(5,0). 直线AM ,BM 相交于点M ,且他们的斜率之积是,求点M 的轨迹方程.【活动预设】设动点M 的坐标为(x ,y),根据题目意思用含x ,y 的式子表示直线AM ,BM 的斜率,得到x ,y 的关系式,求出轨迹方程.写出的关系式若学生没有注明限制条件时,引导学生关注特殊点的要求.【设计意图】类比椭圆标准方程推导过程,利用直接法求动点的轨迹方程,并去除不符合条件的特殊点.活动3:如图,在圆上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?为什么?【活动预设】由点M 是线段PD 的中点得到点M 的坐标与点P 坐标之间的关系式,并由点P 坐标满足圆的方程代入得到点M 的坐标所满足的方程.94-422=+y x【设计意图】让学生体会椭圆生成的另一种方式,利用代入法(相关点法)求动点的轨迹方程.思考:由活动3我们发现,可以由圆通过“压缩”得到椭圆.想一想,能由圆通过“拉伸”得到椭圆吗?如何“拉伸”?由此你能发现椭圆与圆之间的关系吗?3.应用巩固,强化方法已知A(0,-1),B(0,1),三角形ABC的周长为6,求顶点C的轨迹方程.4.归纳小结,思维提升(1)回顾了椭圆的定义和标准方程,学习并体会了生成椭圆轨迹的几种方式,掌握了求轨迹方程的三种方法:①定义法②直接法③代入法(相关点法).(2)数学思想:数形结合、转化化归、类比归纳【设计意图】(1)梳理本节课学习的数学知识,体会探究过程中渗透的数学思想方法;(2)培养学生敢于思考,不断总结的思维习惯,提升学生的数学核心素养,鼓励学生积极攀登知识高峰,为进一步的数学学习做好准备.四、课外作业1. 课本109页,练习第3、4题;2. 课本115页,习题3.1 第6、8、9、10题.课后探究:课下与同学一起探究完成思考题,体会由圆得到椭圆的两种方式,并思考由圆得到的椭圆有哪些性质.【设计意图】(1)通过练习巩固本节课所学的内容和方法,让学生学会用知识解决问题;(2)分层布置作业,让学有余力的同学多思考,多花时间研究问题.。
《椭圆及其标准方程》教学设计(精选3篇)

《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。
这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。
但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。
基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。
使同学真正成为课堂的主体。
三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。
2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。
3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。
《椭圆及其标准方程》教案(通用4篇)

《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆及其标准方程教案2
教学目标:
知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程
能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力
情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神
教学重点:椭圆的定义和椭圆的标准方程
教学难点:椭圆标准方程的推导
教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力教具准备:多媒体和自制教具:绘图板、图钉、细绳
教学过程:
设置情景,引出题
问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片
启发诱导,推陈出新
复习旧知识:圆的定义是什么?圆的标准方程是什么形式?
提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?
引出题:椭圆及其标准方程
小组合作,形成概念
动画演示椭圆形成过程
提问:点运动时,F1、F2移动了吗?点按照什么条运动形成的轨迹是椭圆?
下面请同学们在绘图板上作图,思考绘图板上提出的问题:
在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条?其轨迹如何?
2改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?
3当绳长小于两图钉之间的距离时,还能画出图形吗?
学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:
椭圆
线段
不存在
并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距
椭圆标准方程的推导:
回顾:求曲线方程的一般步骤:建系、设点、列式、化简2提问:如何建系,使求出的方程最简?
由各小组讨论,请小组代表汇报研讨结果
各组分别选定一种方案:
①建系:以所在直线为x轴,以线段的垂直平分线为轴,建立直角坐标系。
②设点:设是椭圆上任意一点,为了使的坐标简单及化简过程不那么繁杂,设,则
设与两定点的距离的和等于
③列式:∴
④化简:。