材料科学基础-第4章扩散
上海交通大学 材料科学基础ppt ch4

• 考虑三维情况:则扩 ∂ρ ∂2 ρ ∂2 ρ ∂2 ρ 散第二定律的普遍式 = D( 2 + 2 + 2 ) ∂t ∂x ∂y ∂z 为:
上述扩散均是由于浓度梯度引起的,通常称为 上述扩散均是由于浓度梯度引起的, 化学扩散。 化学扩散。 假设扩散是由于热振动而产生的称为自扩散, 假设扩散是由于热振动而产生的称为自扩散, 自扩散系数的表达式为: 自扩散系数的表达式为:
重点与难点
概述
扩散(diffusion) 扩散 (diffusion) (diffusion)——原子或分子的迁移现象 原子或分子的迁移现象 称为扩散。 称为扩散。 物质的迁移可以通过对流和扩散两种方式进行, 物质的迁移可以通过对流和扩散两种方式进行, 气体和液体中物质的迁移一般是通过对流和 扩散来实现的。 扩散来实现的。 扩散的本质是原子依靠热运动从一个位置迁移 到另一个位置。 到另一个位置。 扩散是固体中原子迁移的唯一方式。 扩散是固体中原子迁移的唯一方式。
分析:碳原子从内壁渗入,外壁渗出达到平衡时, 分析:碳原子从内壁渗入,外壁渗出达到平衡时,圆 筒内各处碳浓度不再随时间而变化, 筒内各处碳浓度不再随时间而变化,为稳态扩散 单位面积中碳流量,即扩散通量: 解:单位面积中碳流量,即扩散通量: J=q/(At)=q/( πrlt) J=q/(At)=q/(2πrlt) 圆筒总面积, 园筒半径及长度, A : 圆筒总面积 , r 及 l : 园筒半径及长度 , q : 通过 圆筒的碳量 根据Fick第一定律又有: Fick第一定律又有 根据Fick第一定律又有: J=q/(At)=q/( πrlt) J=q/(At)=q/(2πrlt) /dr) =-D( dρ/dr) 解得: πlt) /dlnr) 解得: q =-D (2πlt) ( dρ/dlnr) 式中, 可在实验中测得, 式中 , q 、 l 、 t 可在实验中测得 , 只要测出碳 含量沿筒径方向分布( 通过剥层法测出不同r 含量沿筒径方向分布 ( 通过剥层法测出不同 r 处的 碳含量) , 则扩散系数D 可由碳的质量浓度ρ 对 lnr 碳含量 ) 则扩散系数 D 可由碳的质量浓度 ρ 作图求得。作图结果见P132- 作图求得。作图结果见P132-4.1.
10《材料科学基础》-第四章固体中原子及分子的运动01表象理论

若D与浓度无关,则: ∂ρ ∂ρ =D ∂t ∂x
2 2
对三维各向同性的情况:
∂ρ ∂ρ ∂ρ ∂ρ = D( + + ) ∂z ∂t ∂x ∂y
2 2 2 2 2 2
菲克定律描述了固体中存在浓度 梯度时发生的扩散,称为化学扩散 当扩散不依赖于浓度梯度,仅由 热振动而引起时,则称为自扩散
定义:自扩散系数 Ds= ∂ρ →0
4.2 扩散的热力学分析
4.2.1 扩散驱动力
菲克第一定律描述了物质从高浓度向低浓度扩散的现象, 菲克第一定律描述了物质从高浓度向低浓度扩散的现象, 扩 散的结果导致浓度梯度的减小,使成份趋于均匀。 散的结果导致浓度梯度的减小,使成份趋于均匀。
有些扩散是由低浓度处向高浓度处进行的, 有些扩散是由低浓度处向高浓度处进行的, 如固溶体中某些 偏聚,这种扩散被称为“上坡扩散” 偏聚,这种扩散被称为“上坡扩散”。
扩散是固体中原子迁移的唯一方式 物质的传输方式
气体: 扩散+对流
固体: 扩散
离 子 键
液体: + 扩散+对流
金属
陶瓷
高分子
扩散机制不同
本章内容
• 扩散的表象理论 • 扩散的原子机制 • 影响扩散的因素 • 陶瓷材料中扩散的主要特征 • 高分子材料中分子运动的规律
4. 1 表象理论
扩散(diffusion): 在一个相内因分子或原子的热激活运动导 致成分混合或均匀化的分子动力学过程
3.空位机制 . 晶体中存在着空位,空位的存在使原子迁移更容易。 晶体中存在着空位,空位的存在使原子迁移更容易。通过 空位,原子从晶格中一个位置迁移到另一个位置实现交换。 空位,原子从晶格中一个位置迁移到另一个位置实现交换。
材料科学基础 第4章 点缺陷和扩散

化、烧结等都产生了重要的影响。
30
二、离子晶体中的空位及间隙原子
肖脱基缺陷:为了保持晶体的电的中性,空位只能 以与晶体相同的正离子:负离子的空位比率小组的 方式产生。这些电中性的正离子-负离子-空位丛簇 称为。 弗兰克缺陷:以空位/间隙对形式存在的缺陷群。
29
关于空位的总结
空位是热力学上稳定的点缺陷,一定的温度对应一定的 平衡浓度,偏高或偏低都不稳定。
不同金属的空位形成能是不同的,一般高熔点金属的形 成能大于低熔点金属的形成能。
空位浓度、空位形成能和加热温度之间的关系密切。在 相同的条件下,空位形成能越大,则空位浓度越低;加 热温度越高,则空位浓度越大。 C平=exp[-Ev/kT+Sc/k]
23
空位迁移也要克服一定的“势垒”,也即空位迁移能Qfv。 迁移速率为: j=zexp(Sc/k)exp(-Qfv/kT)
金属熔点越高,空位形成能和迁移能越大。所以,在相 同条件下,高熔点金属形成的空位数比低熔点金属少。
24
5.材料中空位的实际意义
空位迁移是许多材料加工工艺的基础。
晶体中原子的扩散就是依靠空位迁移而实现的。 在常温下空位迁移所引起的原子热振动动能显著提高,再加上高 温下空位浓度的增多,因此高温下原子的扩散速度十分迅速。
53扩散分类1根据?c?t分类稳态扩散和非稳态扩散2根据?c?x分类?c?x0自扩散在纯金属和均匀合金中进行?c?x?0互扩散上坡扩散和下坡扩散3根据扩散途径分类体扩散晶界扩散表面扩散短程扩散沿位错进行的扩散4根据合金组织分类单相扩散多相扩散54二扩散的物理描述fick第一扩散定律影响原子移动的速率即扩散速率的因素
《材料科学基础》第四章习题.doc

《材料科学基础》第四章固体中原子即分子的运动1.名词:扩散扩散互扩散扩散系数互扩散系数扩散激活能扩散通量上坡扩散间隙扩散空位扩散原子迁移界面扩散表面扩散柯肯达尔效应反应扩散稳态扩散2.设有一条内径为30mm的厚壁管道,被厚度为0.1mm的铁膜隔开,通过管子的一端向管内输入氮气,以保持膜片一侧氮气浓度为1200mol/m)而另一侧的I气浓度为100 mol/m3,如在700C下测得通过管道的氮气流量为2.8xl0-8mol/s,求此时氮气在铁中的扩散系数。
解:通过管道中铁膜的氮气通量为J = J* ‘°——=4.4x 10 "mol/(m'・s)jx (0.03)2膜片两侧氮浓度梯度为:一萱二'2()()-l()() = U x]0_7m〃〃秫Ax 0.0001据Fick's First Law : J = -D^- n。
= ------------ -- = 4xl0-,,m2Isox Ac / Ax3.有一-硅单晶片,厚0.5mm,其一端面上每10’个硅原子包含两个像原子,另一个端面经处理后含镣的浓度增高。
试求在该面上每个硅原子须包含儿个像原子,才能使浓度梯度成为2xl°26atoms/m3,硅的点阵常数为0.5407nm。
4. 950°C下对纯铁进行渗碳,并希望在0.1mm的深度得到Wi(C)=0.9%的碳含量。
假设表面碳含量保持在IA/2(C)=1.20%,扩散系数为D -Fe=1010m2/s,计算为达到此要求至少要渗碳多少时间。
5.在-•个富碳的环境中对钢进行渗碳,可以硬化钢的表面。
己知在1000°C下进行这种渗碳热处理,距离钢的表面l-2mm处,碳含量从x= 5%减到x=4%。
估计在近表面区域进入钢的碳原子的流人量J (atoms/m2s)o (y・Fe在1000°C的密度为7.63g/cm',碳在y-Fe • | •的扩散系数D o=2.0xl0'5m2/s,激活能Q= 142kJ/mol)o£> = 2X10-11 折公8.为什么钢铁零件渗碳温度般要选择在Y ・Fe 相区中进行?若不在Y 相区进6.有两种激活能分别为Qi = 83.7kJ/mol 和Q2 = 251kJ/mol 的扩散反应。
4 材料科学基础习题库-第4章-扩散

4 材料科学基础习题库-第4章-扩散4材料科学基础习题库-第4章-扩散4材料科学基础习题库-第4章-扩散第四章--蔓延1.在恒定源条件下820℃时,钢经1小时的渗碳,可得到一定厚度的表面渗碳层,若在同样条件下.要得到两倍厚度的渗碳层需要几个小时?2.在不能平衡蔓延条件之下800℃时,在钢中渗碳100分钟可以获得最合适厚度的渗碳层,若在1000℃时必须获得同样厚度的渗碳层,须要多少时间(d0=2.4×10m/sec:d1000℃=3×10m/sec)?4.在制造硅半导体器体中,常使硼扩散到硅单品中,若在1600k温度下.保持硼在硅单品表面的浓度恒定(恒定源半无限扩散),要求距表面10-3cm深度处硼的浓度是表面浓度的一半,问需要多长时间(已知d1600℃=8×10cm/sec;当-122-122-112erfcx2dt=0.5x时,2dt≈0.5)?5.zn2+在zns中扩散时,563℃时的扩散系数为3×10-14cm2/sec;450℃时的扩散系数为1.0×10-14cm2/sec,求:1)蔓延的活化能和d0;2)750℃时的扩散系数。
6.实验册的相同温度下碳在钛中的扩散系数分别为2×10-9cm2/s(736℃)、5×10-9cm2/s(782℃)、1.3×10-8cm2/s(838℃)。
a)恳请推论该实验结果与否合乎d=d0exp(-∆g)rt,b)请计算扩散活化能(j/mol℃),并求出在500℃时的扩散系数。
7.在某种材料中,某种粒子的晶界扩散系数与体积扩散系数分别为dgb=2.00×10-10exp(-19100/t)和dv=1.00×10-4exp(-38200/t),就是求晶界扩散系数和温度扩散系数分别在什么温度范围内占优势?8.若想说道蔓延定律实际上只要一个,而不是两个?9.要想在800℃下使通过α-fe箔的氢气通气量为2×10-8mol/(m2·s),铁箔两侧氢浓度分别为3×10-6mol/m3和8×10-8mol/m3,若d=2.2×10-6m2/s,试确定:(1)所须要浓度梯度;(2)所需铁箔厚度。
材料科学基础-第4章-扩散

边界条件:t>0时,若x=0,则ρ=ρs
ρ0
若x=∞,则ρ=ρ0
由
x
ρ A 1 exp( β )dβ A 2
2 0 β
ρ
ρs ρ0 0
得解为:
)
ρ ρ s (ρ s - ρ 0 )erf(
x 2 Dt
11
第二章
固体结构
例题:在930℃对原始含碳量为ρ0的钢制工件进行渗碳,其表 面含碳量维持为ρs。渗碳t1 时,距表面深度0.2mm处含碳量为 ρc,求渗碳t2 时,含碳量为ρc处距离表面的深度。
散物质量。 D -扩散系数;ρ-扩散物质质量浓度;x -沿扩散方向距离 式中负号表示物质扩散方向与浓度梯度方向相反。 菲克第一定律反映稳态扩散,即扩散过程中,各处浓度不 随时间变化(
ρ t 0
)。
J x
2
第二章
固体结构
二、菲克扩散第二定律
通常扩散为非稳态扩散,即扩散过程中,各处浓度随时间 而变化(
若知各β值,查误差函数表可得erf(β) 值,若知 erf(β) 值,反查误差函数表可得β值。
7
第二章
固体结构
8
第二章 对(4)式
ρ A 1 exp( β
0 β 2
固体结构
)d β A 2
由初始条件确定积分常数,当t=0时: 若x>0,则ρ=ρ1,β 代入ρ
A1
x 2
2
ρ 2 M πDt exp(2
lnρ
x
2
)
4Dt
x2
示踪原子
有: ln ρ A
x
4Dt
由lnρ-x2 曲线斜率可计算出D。
24
《材料科学基础》第四章习题

《材料科学基础》第四章 固体中原子即分子的运动1.名词:扩散 自扩散 互扩散 扩散系数 互扩散系数 扩散激活能 扩散通量 上坡扩散 间隙扩散 空位扩散 原子迁移 界面扩散 表面扩散 柯肯达尔效应 反应扩散 稳态扩散2. 设有一条内径为30mm 的厚壁管道,被厚度为0.1mm 的铁膜隔开,通过管子的一端向管内输入氮气,以保持膜片一侧氮气浓度为1200mol/m 3,而另一侧的氮气浓度为100 mol/m 3,如在700℃下测得通过管道的氮气流量为2.8×10-8mol/s ,求此时氮气在铁中的扩散系数。
解:通过管道中铁膜的氮气通量为 )/(104.4)03.0(4108.22424s m mol J ⋅⨯=⨯⨯=--π膜片两侧氮浓度梯度为:m mol x c /101.10001.010012007-⨯=-=∆∆- 据Fick ’s First Law : s m xc J D x c D J /104/211-⨯=∆∆-=⇒∂∂-=3. 有一硅单晶片,厚0.5mm ,其一端面上每107个硅原子包含两个镓原子,另一个端面经处理后含镓的浓度增高。
试求在该面上每107个硅原子须包含几个镓原子,才能使浓度梯度成为2×1026 atoms/m 3,硅的点阵常数为0.5407nm 。
4. 950℃下对纯铁进行渗碳,并希望在0.1mm 的深度得到w 1(C)=0.9%的碳含量。
假设表面碳含量保持在w 2(C)=1.20%,扩散系数 为D ɤ−Fe=10-10m 2/s ,计算为达到此要求至少要渗碳多少时间。
5. 在一个富碳的环境中对钢进行渗碳,可以硬化钢的表面。
已知在1000℃下进行这种渗碳热处理,距离钢的表面1-2mm 处,碳含量从x = 5%减到x =4%。
估计在近表面区域进入钢的碳原子的流人量J (atoms/m 2s )。
(γ-Fe 在1000℃的密度为7.63g/cm 3,碳在γ-Fe 中的扩散系数D o =2.0×10-5 m 2/s ,激活能Q =142kJ/mol)。
材料科学基础(上海交大)_第4章解析

学习方法指导
本章重点阐述了固体中物质扩散过程的规律及其应用, 内容较为抽象,理论性强,概念、公式多。根据这一特点, 在学习方法上应注意以下几点: 充分掌握相关公式建立的前提条件及推导过程,深入理 解公式及各参数的物理意义,掌握各公式的应用范围及必需 条件,切忌死记硬背。 从宏观规律和微观机理两方面深入理解扩散过程的本质, 掌握固体中原子(或分子)因热运动而迁移的规律及影响因 素,建立宏观规律与微观机理之间的有机联系。 学习时注意掌握以下主要内容:菲克第一,第二定律的 物理意义和各参数的量纲,能运用扩散定律求解较简单的扩 散问题;扩散驱动力及扩散机制:间隙扩散、置换扩散、空 位扩散;扩散系数、扩散激活能、影响扩散的因素。
4.0.1 扩散现象(Diffusion)
当外界提供能量时,固体金属中原子或分子偏离平衡 位置的周期性振动,作或长或短距离的跃迁的现象。 (原子或离子迁移的微观过程以及由此引起的宏观现象。) ( 热激活的原子通过自身的热振动克服束缚而迁移它处的 过程。)
扩散
半导体掺杂 固溶体的形成 离子晶体的导电 固相反应 相变 烧结 材料表面处理
©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning™ is a trademark used herein under license.
Figure 4.3 The flux during diffusion is defined as the number of atoms passing through a plane of unit area per unit time
材料与化学化工学院
第四章 固体中原子及分子的运动—扩散
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 扩散的统计规律 4.2 扩散的驱动力(Activation Energy for Diffusion) 4.3 扩散类型和微观机理(Mechanisms for Diffusion) 4.4 影响扩散的因素(Factors Affecting Diffusion) 4.5 扩散和材料加工(Diffusion and Materials Processing)
10
10
4.1.4 Kirkendall(柯肯达尔)效应
一般情况下,分析间隙固溶体的扩散时,主要讨论 溶质原子的扩散,不考虑溶剂原子的扩散运动。 在置换固溶体中,由于两种原子的大小相近,特别 当固溶体浓度较高时,原子的可动性属于同一数量 级,此时必须同时考虑溶质和溶剂原子的扩散,这 种扩散称为互扩散。 置换固溶体中,两种原子往往不是以大小相等、方 向相反的速率进行扩散。Kirkendall用实验证明 了互扩散过程中组元的扩散系数不同。
1
1
Applications of Diffusion
Nitriding - Carburization for Surface Hardening of Steels p-n junction - Dopant Diffusion for Semiconductor Devices Manufacturing of Plastic Beverage Bottles/MylarTM Balloons Sputtering, Annealing - Magnetic Materials for Hard Drives Hot dip galvanizing - Coatings and Thin Films Thermal Barrier Coatings for Turbine Blades
13
13
Section 4.3 Mechanisms for Diffusion
Self-diffusion - The random movement of atoms within an essentially pure material. Vacancy diffusion - Diffusion of atoms when an atom leaves a regular lattice position to fill a vacancy in the crystal. Interstitial diffusion - Diffusion of small atoms from one interstitial position to another in the crystal structure.
4
4
Figure The flux during diffusion is defined as the number of atoms passing through a plane of unit area per unit of copper atoms into nickel. Eventually, the copper atoms are randomly distributed throughout the nickel
6
6
Figure Illustration of the concentration gradient
7
7
4.1.2 菲克第二定律(Fick’s Second Law)
对于不稳定扩散,扩散物质通量不是一个常数,而是 随着时间以及 x方向各点的位置而变化。 输入平面1的速率=(JA ) ( JA) dx 输出平面2的速率=(JA )+ x 单元体积中的积累速率= [cA dx ] Adx c t t 输入速率-输出速率=积累速率
图4-1 扩散过程中溶质浓度分布图
3
3
4.1.1 菲克第一定律 (Fick’s First Law)
在稳定扩散的情况下,在单位时间内通过垂直于扩散方向的 单位截面积的扩散物质的通量与浓度梯度 成正比:
dc J D( ) dx
式中: D-扩散系数(m2/s),负号表示扩散是由高浓度 向低浓度方向进行;J-扩散通量(g/m2.s);c-扩散物质 的浓度(g/m3)。 浓度梯度一定时,扩散仅取决于扩散系数,扩散系数是描述 原子扩散能力的基本物理量。 扩散系数与很多因素有关,但是与浓度梯度无关。
11
11
图4-5 Kirkendall(柯肯达尔)实验示意图
12
12
Section 4.2 扩散的驱动力 菲克定律的普遍形式
J D x
负号表明,原子扩散的驱动力总是与化学位下降的方 向一致,扩散朝着化学位减小的方向进行。 “下坡扩散”:溶质原子从高浓度地区流向低浓度地 区的扩散,扩散的结果使成分趋向于均匀。铸锭的均 匀化退火就是这种形式的扩散。 “上坡扩散”:当浓度梯度方向与化学势梯度的方向 相反时,溶质原子就会朝浓度梯度相反的方向迁移, 即从低浓度区域流向高浓度区域。因为同类原子的聚 集可显著地降低系统的自由能。例如,过饱和固溶体 的分解过程,使合金趋向于分解为复相组织。 温度梯度、电场和局部应力状态也会影响扩散过程。
J c x t
[ D c
d c x t
8
]
2c c D 2 x t
8
图4-2 扩散通过微小体积的情况
图4-3 无限长扩散偶中的溶质原子分布
9
9
Figure Diffusion of atoms into the surface of a material illustrating the use of Fick’s second law
2
2
Section 4.1 扩散的统计规律
由于原子(或分子)热运动而导致物质在材料中宏 观迁移的现象称为扩散(Diffusion) 。 稳定扩散:指定区域浓度不随时间而变化的扩散。 不稳定扩散:浓度随时间而变化的扩散。 扩散的宏观统计规律:扩散过程中,扩散物质的分 布与时间的关系。