高中数学指对数比较大小

合集下载

高中数学—指对数比较大小方法

高中数学—指对数比较大小方法

高中数学—指对数比较大小方法标题:高中数学——指对数比较大小方法在数学的海洋中,我们经常需要比较数字的大小。

然而,当我们面对指对数时,比较大小的方法就变得相对复杂了。

指对数是一类特殊的函数,其特点是函数的值与实数之间存在一一对应的关系。

因此,比较指对数的大小实际上就是比较它们所对应的实数的大小。

一、理解指对数我们需要理解什么是指对数。

简单来说,指对数是一种特殊的函数,它可以将一个正实数映射到一个特定的实数。

对于任何一个正实数x,都有一个唯一的实数y与之对应,这个关系可以表示为log(x) = y。

其中,log是常用对数的简写形式,它通常用来表示以10为底的对数。

二、比较指对数大小的方法1、利用函数的单调性:对于任何一个底数大于1的指对数函数,它在定义域内都是单调递增的。

因此,如果log(a) > log(b),那么a 一定大于b。

同样地,如果log(a) < log(b),那么a一定小于b。

2、利用图象:我们可以通过画出指对数函数的图象来比较大小。

如果两个数的指对数值相等,那么它们对应的点应该在同一条直线上。

反之,如果两个数的指对数值不相等,那么它们对应的点一定不在同一条直线上。

3、利用中间值:当两个数的指对数值难以确定时,我们可以利用中间值来比较它们的大小。

假设log(a) > log(m) > log(b),那么我们可以推断出a > m > b。

三、注意事项在比较指对数大小的时候,一定要注意底数的范围。

如果底数小于1,那么函数在定义域内是单调递减的。

这时,比较大小的方法就需要根据具体情况来调整了。

总结来说,比较指对数大小的方法需要我们理解指对数的概念和性质,并利用函数的单调性、图象和中间值等方法来进行比较。

我们也要注意底数的范围对比较大小的影响。

通过不断地实践和练习,我们就能熟练掌握指对数比较大小的方法了。

在数学学习中,比较大小是非常基础且重要的一项技能。

十大方法玩转指对幂比较大小

十大方法玩转指对幂比较大小

十大方法玩转指对幂比较大小指数对幂比较大小是高中数学中一个非常重要的概念,在学习指数对幂比较大小时,学生可以使用以下十种方法来更好地理解和掌握这个概念。

1.化简幂的指数:使用指数的基本性质,将幂的指数化简为最简形式。

例如,将2^3与2^(2+1)比较时,将2^(2+1)化简为2^2*2^1,然后进行比较。

2.应用指数的运算法则:利用指数的运算法则,如乘法法则和乘方法则,对幂进行化简。

例如,将2^3与(2^2)^2比较时,可以利用乘法法则将(2^2)^2化简为2^4,然后进行比较。

3.求幂的值:计算出幂的具体数值,然后进行比较。

例如,将2^3与8比较时,可以计算出2^3=8,然后进行比较。

4.比较幂的指数:比较幂的指数大小,而不必计算具体数值。

例如,比较2^3与2^4时可以直接说2^4的指数更大。

5.利用幂的递增性质:利用幂的递增性质,即相同底数的幂,指数越大幂越大。

例如,比较2^3与2^4时可以直接说2^4更大。

6.利用幂的递减性质:利用幂的递减性质,即相同底数的幂,指数越小幂越小。

例如,比较2^3与2^2时可以直接说2^3更大。

7. 利用对数函数的性质:利用对数函数的性质,将幂转化为对数进行比较。

例如,比较2^3与2^4时可以利用对数函数将其转化为比较log₂(2^3)与log₂(2^4),然后进行比较。

8.通过图像比较大小:通过绘制幂函数的图像,比较不同指数下的幂函数在数轴上的位置,进而比较幂的大小。

例如,比较2^3与2^4可以通过绘制y=2^3和y=2^4的图像,并观察图像在数轴上的位置来比较大小。

9.利用数学推理和证明:根据指数的性质和规律,运用数学推理和证明方法来比较幂的大小。

例如,通过数学归纳法证明对于任意正整数n,2^n>n。

通过以上十种方法的学习和应用,学生可以更好地理解和掌握指数对幂比较大小的方法和技巧,从而在解决相关的问题时能够灵活运用这些方法,提高数学解题的效率和准确性。

对数大小的比较

对数大小的比较

龙源期刊网 对数大小的比较作者:龚丹来源:《读与写·上旬刊》2017年第12期摘要:当两个对数式是同底时,可直接用相应对数函数的单调性得出结论;而当两个对数式不同底时,要比较大小就困难多了。

本文举例说明这种情况下求解的若干方法。

关键词:对数大小的比较;高中数学教学;重要教学内容中图分类号:G633.6文献标识码:B文章编号:1672-1578(2017)12-0128-01在高中数学学习中,指数与对数大小的比较一直是学习的难点,在以前的学习中,我们主要是采用求值、作差、作商等方法来比较大小,但是有时面对求值很繁琐或者人工无法求解的时候,学生对他们之间的比较可能会无从下手,但是只要我们掌握解决办法,很多难题便可以迎刃而解。

1.对数如果 a^x=N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作 x=log (a)N .其中,a叫做对数的底数,N叫做真数。

且a>0并且a≠1,N>0在实数范围内,负数和0没有对数[1]。

在复数范围内,负数有对数。

由于数学是为现实生活服务的--建立的必须是现实存在的数学模型,故在现实生活中不存在真数为负数的数学模型。

所以,高等数学中真数为负数的情况仅在理论上成立。

1.将以10为底的对数叫做常用对数(common logarithm),并把log(10) N 记为 lg N.2.以e为底的对数称为自然对数(natural logarithm),并把log(e) N 记为 ln N.零没有对数.3.log(a) 1 =0,log(a) a =1在实数范围内,负数无对数。

在复数范围内,负数有对数。

2.当底数相同,真数不同时当对数的底数相同,真数不同时,可直接应用对数函数的单调性来解决.例1比较下列对数的大小:。

高中数学函数对数大小教案

高中数学函数对数大小教案

高中数学函数对数大小教案
教学目标:
1. 了解函数和对数的基本概念;
2. 理解函数和对数的大小比较方法;
3. 掌握函数和对数大小比较的常见技巧。

教学重点:
1. 函数概念及大小比较方法;
2. 对数概念及大小比较方法;
3. 函数和对数大小比较综合应用。

教学难点:
1. 函数和对数的大小比较技巧的灵活运用;
2. 函数和对数大小比较问题的解决方法。

教学过程:
一、导入:
教师通过举例引导学生思考如何比较不同函数和对数的大小,激发学生的学习兴趣。

二、讲解函数大小比较方法:
1. 函数大小比较的基本原理;
2. 几种常见函数的大小比较规律;
3. 通过练习巩固函数大小比较技巧。

三、讲解对数大小比较方法:
1. 对数大小比较的基本原理;
2. 对数大小比较的常见规律;
3. 通过实例演练对数大小比较技巧。

四、综合应用:
通过综合性的例题,引导学生对函数和对数的大小比较方法进行综合运用,提高学生的解题能力。

五、总结:
让学生总结函数和对数大小比较的方法和技巧,巩固所学知识。

六、作业布置:
布置作业,要求学生练习函数和对数大小比较的题目,巩固所学知识。

教学反思:
1. 鼓励学生多练习、多思考,提高问题解决能力;
2. 注重培养学生的逻辑思维和数学分析能力;
3. 根据学生实际情况,调整教学方法,提高学生学习效果。

专题12 指、对数函数比较大小-2021年高考数学(理)母题题源解密(解析版)

专题12 指、对数函数比较大小-2021年高考数学(理)母题题源解密(解析版)

专题12 指、对数函数比较大小【母题原题1】【2020年高考全国Ⅲ卷,理数】已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >. 综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.【母题原题2】【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314) 【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.【母题原题3】【2018年高考全国Ⅲ卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B【解析】0.22log 0.3,log 0.3a b ==,0.30.311log 0.2,log 2a b∴==, 0.311log 0.4a b ∴+=,1101a b ∴<+<,即01a b ab+<<, 又0,0a b ><,0ab ∴<,∴0ab a b <+<.故选B .【名师点睛】本题主要考查对数的运算和不等式,属于中档题.【命题意图】主要考查数形结合思想、分类讨论思想的运用和考生的逻辑推理能力、数学运算能力. 【命题规律】在高考中的考查热点有:(1)比较指、对数式的大小;(2)指、对数函数的图象与性质的应用;(3)以指、对数函数为载体,与其他函数、方程、不等式等知识的综合应用.以选择题和填空题为主,难度中等.【答题模板】1.比较指数幂大小的常用方法一是单调性法,不同底的指数函数化同底后就可以应用指数函数的单调性比较大小,所以能够化同底的尽可能化同底;二是取中间值法,不同底、不同指数的指数函数比较大小时,先与中间值(特别是0,1)比较大小,进而得出大小关系;三是图解法,根据指数函数的特征,在同一平面直角坐标系中作出它们相应的函数图象,借助图象比较大小.2.比较对数值大小的类型及相应方法【方法总结】1.指数函数图象的特点(1)任意两个指数函数的图象都是相交的,过定点(0,1),底数互为倒数的两个指数函数的图象关于y轴对称.(2)当a>1时,指数函数的图象呈上升趋势;当0<a<1时,指数函数的图象呈下降趋势.(3)指数函数在同一坐标系中的图象的相对位置与底数大小关系如图所示,其中0<c<d<1<a<b,在y 轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从下到上相应的底数由大变小,即无论在y轴的左侧还是右侧,底数按逆时针方向变大.2.对数函数图象的特点(1)当a >1时,对数函数的图象呈上升趋势; 当0<a <1时,对数函数的图象呈下降趋势.(2)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.(3)在直线x =1的右侧:当a >1时,底数越大,图象越靠近x 轴;当0<a <1时,底数越小,图象越靠近x 轴,即“底大图低”.3.解决对数型复合函数的单调性问题的步骤 (1)求出函数的定义域;(2)判断对数函数的底数与1的大小关系,当底数是含字母的代数式(包含单独一个字母)时,要考查其单调性,就必须对底数进行分类讨论;(3)判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性. 研究对数型复合函数的单调性,一定要坚持“定义域优先”原则,否则所得范围易出错.1.(2020·广西壮族自治区高三月考(文))已知函数()f x 是定义在R 上的奇函数,当0x ≤时,()f x 单调递增,则( ).A .()()93log 4(1)log 4f f f >>B .()()93log 4(1)log 4f f f <<C .()()93(1)log 4log 4f f f >>D .()()93(1)log 4log 4f f f <<【答案】B 【解析】【分析】根据函数()f x 的单调性和奇偶性可知()f x 是R 上的单调增函数,只需根据对数函数的单调性比较9log 4,1,3log 4的大小即可得到答案.【详解】因为函数()f x 是定义在R 上的奇函数,当0x ≤时,()f x 单调递增, 所以()f x 在R 上单调递增,因为99log 4log 91<=,331log 3log 4=<, 所以93log 41log 4<<,所以()()93log 4(1)log 4f f f <<. 故选B.【点睛】本题考查函数的性质,对数函数的单调性的应用,考查数学抽象与逻辑推理的核心素养. 2.(2020·广西壮族自治区高三其他(文))已知0.2log 2a =,20.2b =,0.23c =,则( ) A .a b c << B .a c b << C .c a b << D .b c a <<【答案】A 【解析】【分析】利用指对函数的单调性,借助中间量比较大小. 【详解】0.2log 20a =<,()20.20,1b =∈,0.231c =>,所以a b c <<, 故选A .【点睛】利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.3.(2020·广西壮族自治区田阳高中高二月考(理))已知0.64a =, 1.12b =,4log 12c =,则( ) A .c b a << B .b a c <<C .a b c <<D .c a b <<【答案】A 【解析】【分析】利用对数函数的单调性比较c 与2的大小关系,再利用指数函数的单调性得出2a b >>,即可得出a 、b 、c 三个数的大小关系.【详解】指数函数2xy =为增函数,则 1.2 1.1222a b =>=>,对数函数4log y x =是()0,∞+上的增函数,则44log 12log 162c =<=,因此,c b a <<. 故选A.【点睛】本题考查指数与对数的大小比较,一般利用指数函数与对数函数的单调性,结合中间值法来得出各数的大小关系,考查推理能力,属于中等题.4.(2020·广西壮族自治区田阳高中高二月考(文))已知20.8a =,0.82b =,2log 0.8c =,则a ,b ,c 的大小关系为( )A .a b c >>B . a c b >>C . b a c >>D . c a b >>【答案】C 【解析】【分析】把各数与中间值0,1比较即得.【详解】200.81<<,0.821>,2log 0.80<,∴c a b <<. 故选C .【点睛】本题考查幂和对数的比较大小,掌握指数函数和对数函数的性质是解题关键.不同底的幂或对数解题时可借助于中间值0,1等比较大小.5.(2020·广西壮族自治区桂平市第五中学高三月考(文))已知()12log ,02,0x x x f x x >⎧⎪=⎨⎪≤⎩,()()2a f f =-,ln π2b =,lncos5c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .b a c >>D .c a b >>【答案】C 【解析】【分析】根据对数运算和指数运算比较大小即可.【详解】解:由题设知,()()12112log 244a f f f ⎛⎫=-=== ⎪⎝⎭,ln π1>,∴ln π22b =>,又0cos51<<, ∴lncos50c =<,则b a c >>.故选C.【点睛】本题考查对数运算和指数运算,结合对数函数,指数函数及余弦函数的性质,属于基础题. 6.(2020·广西壮族自治区南宁三中高三期末(文))已知ln 2a =,ln b π=,125ln 24c =,则a ,b ,c 的大小关系为( ) A .b c a << B .c a b << C .a b c << D .a c b <<【答案】D 【解析】【分析】化简c ,利用对数函数的单调性,即可得出结论. 【详解】因为12125255ln ln ln 2442c ⎛⎫=== ⎪⎝⎭,又因为ln y x =在(0,)+∞上单调递增, 且522π<<,所以a c b <<. 故选:D.【点睛】本题考查对数的简单运算,考查利用函数的单调性比较函数值的大小,属于基础题. 7.(2020·湖南省高三一模(理))已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( )A .a c b >>B .b c a >>C .b a c >>D .a b c >>【答案】B 【解析】【分析】由偶函数的性质可得出函数()y f x =在区间()0,∞+上为减函数,由对数的性质可得出12log 30<,由偶函数的性质得出()2log 3a f =,比较出2log 3、 1.22-、12的大小关系,再利用函数()y f x =在区间()0,∞+上的单调性可得出a 、b 、c 的大小关系.【详解】()()f x f x -=,则函数()y f x =为偶函数,函数()y f x =在区间(),0-∞内单调递增,在该函数在区间()0,∞+上为减函数,1122log 3log 10<=,由换底公式得122log 3log 3=-,由函数的性质可得()2log 3a f =,对数函数2log y x =在()0,∞+上为增函数,则22log 3log 21>=, 指数函数2xy =为增函数,则 1.2100222--<<<,即 1.210212-<<<, 1.22102log 32-∴<<<,因此,b c a >>. 【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.8.(2020·广西壮族自治区高三三模(文))已知函数()1112xf x e =-+,若()1.32a f =,()0.74b f =,()3log 8c f =,则a ,b ,c 的大小关系为( )A .c a b <<B .a c b <<C .b a c <<D .a b c <<【答案】C 【解析】【分析】由指数函数的性质,求得函数()f x 是减函数,再利用指数函数与对数函数的性质,得到1.30.73log 824<<,即可求解.【详解】由指数函数的性质,可得函数e 1xy =+为单调递增函数, 可得函数()1112xf x e =-+是定义域R 上的单调递减函数, 又因为 1.31.40.73log 82224<<<=,所以()()()0.7 1.3342log 8f f f <<,所以b a c <<. 故选C .【点睛】本题主要考查了函数的单调性的应用,以及指数式与对数式的比较大小,其中解答中根据指数函数与对数函数的性质,得到自变量的大小关系是解答的关键,着重考查了推理与计算能力. 9.(2020·广西壮族自治区南宁三中高三月考(理))已知13(ln 2)a =,13(ln 3)b =,21log 3c =,则a ,b ,c 的大小关系是( ).A .a b c <<B .c a b <<C .b a c <<D .c b a <<【答案】B 【解析】【分析】利用对数函数和指数函数的性质求解. 【详解】解:∵0ln 21<<,∴01a <<, ∵ln 31>,∴1b >, ∵221log log 313=-<-,∴0c <, ∴c a b <<, 故选B .【点睛】本题考查三个数的大小的求法,解题时要认真审题,注意对数函数和指数函数的性质的合理运用,属于基础题.10.(2020·四川省金堂中学校高三一模(文))若a ,b ,c 满足23a =,2log 5b =,32c =.则( )A .c a b <<B .b c a <<C .a b c <<D .c b a <<【答案】A 【解析】【分析】利用指数函数和对数函数的单调性即可比较大小. 【详解】23a =,12232<<,∴12a <<,22log 5log 4b =>,∴2b >,32c =,01323<<,∴01c <<,∴c a b <<,故选A.【点睛】本题考查了指数函数和对数函数的单调性,考查了计算能力和推理能力,属于基础题. 11.(2020·四川省绵阳南山中学高三一模(理))已知0.50.70.70.7,0.5,log 0.5a b c ===,则a ,b ,c 的大小关系为( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】B 【解析】【分析】先利用指数函数和幂函数的单调性比较出,a b ,1的大小,再利用对数函数的单调性判断出c 与1的大小,然后可比较出3个数的大小.【详解】解:因为0.7xy =在R 上为减函数,且0.50>,所以0.500.00.771<<=,即01a <<,同理可得01b <<, 因为0.50.500.7.50.5,0.700..55<>,所以0.50.710.70.50>>>,即10a b >>>,因为0.7log y x =在(0,)+∞上为减函数,且0.70.50>>, 所以0.70.7log 0.5log 0.71>=,即1c >, 所以b a c <<, 故选B【点睛】此题考查指数和对数大小的比较,采取了中间量法,利用了转化与化归的思想,属于基础题.12.(2020·四川省成都外国语学校高二期中(理))已知实数ln22a =,22ln2b =+,2(ln2)c =,则a ,b ,c 的大小关系是( ) A .c a b << B .c b a << C .b a c << D .a c b <<【答案】A 【解析】【分析】先判断ln2的大小范围,然后判断三个数的大小关系.【详解】解:因为0ln21<<所以1<ln 22<2,2+2ln2>2,0<2(ln2)<1,∴c <a <b . 故选A .【点睛】本题考查了有关对数式的大小比较.13.(2020·四川省绵阳南山中学高三一模(文))已知5log 312a ⎛⎫= ⎪⎝⎭,5log 314b ⎛⎫= ⎪⎝⎭,5log 0.12c =,则( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>【答案】A 【解析】【分析】利用指数函数与对数函数的单调性即可求解.【详解】5log 312a ⎛⎫= ⎪⎝⎭,555log 32log 3log 9111422b ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5555101log log log 0.1lo 10g 122212c -⎛⎫=== ⎪⎝⎭=,由5log y x =在定义域内单调递增,则555log 10log 9log 3>>,又12xy ⎛⎫= ⎪⎝⎭单调递减,所以555log 10log 9log 3111222⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以a b c >>. 故选A【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,需掌握指数函数、对数函数的图像与性质,属于基础题.14.(2020·四川省南充市第一中学高二期中(理))设0.40.831.2, 1.2,log 2a b c ===,则,,a b c 的大小关系是( ) A .b c a >> B .b a c >> C .c b a >> D .a b c >>【答案】B 【解析】【分析】由函数的单调性及与中间值“1”的大小关系,即可得到本题答案.【详解】由 1.2xy =在区间(,)-∞+∞是单调增函数,得0.80.401.2 1.2 1.21>>=, 又因为33log 2log 31c =<=,所以b a c >>. 故选B.【点睛】本题主要考查指数、对数比较大小的问题,利用函数的单调性及中间值“1”是解决此题的关键. 15.(2020·四川省高三三模(文))已知a =log 20.2,b =20.2,c =0.20.3,则A .a <b <cB .a <c <bC .c <a <bD .b <c <a【答案】B 【解析】【分析】运用中间量0比较a , c ,运用中间量1比较b , c【详解】a =log 20.2<log 21=0, b =20.2>20=1, 0<0.20.3<0.20=1,则0<c <1,a <c <b .故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.16.(2020·宜宾市叙州区第一中学校高三二模(理))已知0.22018a =,20180.2b =,2018log 0.2c =,则( )A .c b a >>B .b a c >>C .a b c >>D .a c b >>【答案】C【解析】由于020181a >=,000.21b <<=,2018log 10c <=,故a b c >>.故选C . 17.(2020·西昌市第二中学高三二模(理))已知2log 3a =,ln3b =,123c -=,则( )A .a b c <<B .c a b <<C .b c a <<D .c b a <<【答案】D 【解析】【分析】由题意结合对数函数的性质、指数函数的性质可得1101a b<<<、1c <,进而可得1c b a <<<,即可得解. 【详解】由题意31log 2a =,31log e b =,所以1101a b<<<,则1a b >>, 又102331c -=<=,所以1c b a <<<. 故选D.【点睛】本题考查了指数函数、对数函数单调性的应用,考查了指数式、对数式的大小比较与推理能力,属于基础题.18.(2020·四川省棠湖中学高三一模(文))已知0.250.5log 2,1og 0.2,0.5a b c ===,则( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b【答案】B 【解析】【分析】利用对数函数和指数函数的性质求解.【详解】555log 1log 2log <<∴102a <<,2221og 1og 54>=,∴2b >, 10.200.50.50.5<<,∴112c <<, ∴a c b <<,故选B.【点睛】本题考查指数式和对数式的大小比较,考查逻辑推理能力、运算求解能力,求解时注意中间变量的引入.19.(2020·四川省阆中中学高三二模(理))已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A .a c b << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】【分析】利用10,,12等中间值区分各个数值的大小.【详解】551log 2log 2a =<<, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5<<,故112c <<, 所以a c b <<. 故选A .【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.20.(2020·四川省高三三模(理))已知函数(1)=-y f x 的图象关于直线1x =对称,且当(0,)x ∈+∞时,ln ()x f x x =.若2e a f ⎛⎫=- ⎪⎝⎭,(2)b f =,23c f ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系是( ) A .b a c >> B .a b c >>C .a c b >>D .c b a >>【答案】D 【解析】【分析】根据函数图象平移的性质判断出函数()y f x =的对称性,结合导数判断出函数()y f x =在(1,)x e ∈时的单调性,最后利用单调性,结合对数的运算性质和对数函数的单调性进行大小比较即可.【详解】因为函数(1)=-y f x 的图象向左平移1个单位长度,得到()y f x =的图象, 而函数(1)=-y f x 的图象关于直线1x =对称,所以()y f x =的图象关于0x =对称,即关于纵轴对称,因此()y f x =是偶函数.因此22e e a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭, 当(1,)x e ∈时,'2ln ln 1ln ()()x x xf x f x x x x -==⇒=, 因为(1,)x e ∈,所以ln 1x <,即'()0f x >,所以()y f x =在(1,)x e ∈时,单调递增,因为122e e <<<,所以()(2)2ef f <,即b a > 32ln232121273ln ln()ln 232323283c f -⎛⎫===-== ⎪⎝⎭,ln 21(2)ln 222b f ===,因为2728>,所以c b >,即c b a >>. 故选D【点睛】本题考查了利用函数单调性比较函数值大小问题,考查了导数的应用,考查了对数函数的性质,考查了数学运算能力.21.(2020·贵州省高三其他(文))已知2log 0.7a =,0.12b =,ln 2c =,则( )A .b c a <<B .a c b <<C .b a c <<D .a b c <<【答案】B 【解析】【分析】找中间量0和1进行比较,根据指数函数、对数函数的单调性可得到答案. 【详解】因为2log 0.7a =2log 10<=,0.10221b =>=,ln1ln 2ln 1c e <=<=, 所以a c b <<. 故选B.【点睛】本题考查了利用指数函数和对数函数的单调性比较大小,找中间量0和1进行比较是关键,属于基础题.22.(2020·贵州省高三其他(文))若0.32=a ,2log 0.3b =,3log 2c =,则实数a ,b ,c 之间的大小关系为( ) A .a b c >> B .a c b >>C .c a b >>D .b a c >>【答案】B【解析】【分析】由已知,将a ,b ,c 与0和1比较得出结果.【详解】解:由题意可知0.30221a =>=,122log 0.3log 21b -=<=-,330log 2log 31c <=<=,∴a c b >>.故选B.【点睛】本题考查对数比较大小,属于基础题.23.(2020·嘉祥县第一中学高三三模)若x ∈(0,1),a =lnx ,b =ln 12x⎛⎫ ⎪⎝⎭,c =e lnx ,则a ,b ,c 的大小关系为( ) A .b >c >a B .c >b >aC .a >b >cD .b >a >c【答案】A 【解析】【分析】利用指数函数、对数函数的单调性直接求解. 【详解】∵x ∈(0,1), ∴a =lnx <0, b =(12)lnx >(12)0=1, 0<c =e lnx <e 0=1,∴a ,b ,c 的大小关系为b >c >a . 故选A .【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.24.(2020·贵州省凯里一中高三月考(理))已知,,a b c 均为正实数,若122log aa -=,122log bb -=,21log 2cc ⎛⎫= ⎪⎝⎭,则( ) A .c a b << B .c b a << C .a b c << D .b a c <<【答案】C 【解析】【分析】画出函数2xy =,12log xy =,12xy ⎛⎫= ⎪⎝⎭,2log y x =的图像,根据图像得到答案.【详解】122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭,利用函数2xy =,12log xy =,12xy ⎛⎫= ⎪⎝⎭,2log y x =,如图所示:由图象可得:a b c <<, 故选C.【点睛】本题考查了比较方程的解的大小关系,画出函数图像是解题的关键. 25.(2020·贵州省高三月考(理))已知132a -=, 21log 3b =, 131log 4c =,则( )A .a b c >>B .a c b >>C .c b a >>D .c a b >>【答案】D 【解析】131218a -==<, 21log 03b =<, 1331log log 414c ==>, 所以c a b >>. 故选D.26.(2020·云南省云南师大附中高三月考(理))设2log 0.2a =,0.5log 3b =,154c=,则a ,b ,c 的大小关系是( ) A .c a b >> B .c b a >>C .b a c >>D .a b c >>【答案】B 【解析】【分析】根据对数的性质,把2log 0.2a =和0.5log 3b =缩小范围,和中间值0、1、2、3比较,把154c=两边取以5为底的对数表示出c ,缩小c 的范围,最后比较大小. 【详解】解:∵2221log 0.2log log 55a ===-,22log 53<<,∴32a -<<-, ∵0.5122log 3log 3log 3b ===-,21log 32<<,∴21b -<<-; ∵154c=,∴551log log 44c ==-,50log 41<<,∴10c -<<. ∴c b a >>, 故选B .【点睛】考查对数值、幂值的大小比较,借助于中间值0、1、2、3以及一些特殊值是解决这类题的关键,基础题.27.(2020·云南省高三其他(文))已知352a =,253b =,135c -=,则( ) A .b a c << B .a b c <<C .c b a <<D .c a b <<【答案】D 【解析】【分析】求出,,a b c 的范围,比较得到b a >即得解. 【详解】由题得1305222,12a <∴<<<.120533,1b 33<∴<<<.352b a b a ===∴< 30151,15c -<=∴<.所以c a b <<. 故选D【点睛】本题主要考查指数函数幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 28.(2020·云南省下关第一中学高一期末)已知a =log 20.3,b =20.1,c =0.21.3,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<【答案】D 【解析】【分析】根据指数函数与对数函数单调性得到a ,b ,c 的取值范围,即得到它们的大小关系. 【详解】解:由对数和指数的性质可知,0.10 1.302log 0.3022100.20.21a b c a c b =<=>=<=<=∴<<,,,故选D .【点睛】本题考查对数的性质,考查指数的性质,考查比较大小,在比较大小时,若所给的数字不具有相同的底数,需要找一个中间量,把要比较大小的数字用不等号连接起来.29.(2020·四川省泸县五中高三月考(文))0.70.60.7log 6,6,0.7a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b a c >>D .b c a >>【答案】D 【解析】【分析】利用指数函数和对数函数的单调性,分别比较三个数与0或1的大小,进而可得结果. 【详解】由对数函数与指数函数的单调性可得,0.700.70.7log 6log 10,661,0a b ====<0.60.7c =00.71<=,b c a ∴>>,故选D.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.30.(2020·会泽县茚旺高级中学高一开学考试)三个数60.7,0.76,0.7log 6的大小关系为( )A .60.70.70.7log 66<<B .60.70.7log 60.76<<C .0.760.7log 660.7<<D .60.70.70.76log 6<<【答案】B 【解析】【分析】根据函数的单调性,将三个数与0,1比大小,即可求解.【详解】600.700.70.700.70.71,661,log 6log 10<<=>=<=,所以60.70.7log 60.76<<.故选:B【点睛】本题考查比较数的大小,注意函数单调性的应用,属于基础题.31.(2020·云南省云南师大附中高三月考(理))已知函数()2sin f x x x x =-,若()0.2log 3a f =,()3log 0.2b f =,()30.2c f =,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】B 【解析】【分析】判断函数()f x 为偶函数,然后利用导数求出()f x 在()0,x ∈+∞上单调递增,利用函数的单调性即可比较出大小.【详解】()()()()()22sin sin f x x x x x x x f x -=----=-=,故()f x 为偶函数,故只需考虑()0,x ∈+∞的单调性即可.()()'2sin cos sin 1cos f x x x x x x x x x =--=-+-,当()0,x ∈+∞时,设()sin h x x x =-,则()1cos 0h x x '=-> 所以()h x 在()0,∞+上单调递增,即()()00h x h >=,故sin x x >, 而()1cos 0x x -≥显然成立,故()'0fx >,故()f x 在()0,x ∈+∞上单调递增.()()0.25log 3log 3a f f ==,()()33log 0.2log 5b f f ==,35530.20.2log log 31log 5<<<<<,由函数单调性可知()()()3530.2log 3log 5f f f <<,即c a b <<,故选B .【点睛】本题考查了利用导数研究函数的单调性、利用函数的单调性比较函数值的大小,属于中档题.32.(2020·云南省高三月考(文))若13log 2a =,1312b ⎛⎫=⎪⎝⎭,2log 3c =,则a b c ,,的大小关系是( )A .b a c <<B .b c a <<C .a b c <<D .c b a <<【答案】C 【解析】【分析】利用指数函数、对数函数的单调性即可比较大小. 【详解】13log x y =为单调递减函数,1133log 2log 10a =<=∴,12xy ⎛⎫= ⎪⎝⎭为单调递减函数,13112012⎛⎫∴<<⎛⎫ ⎝⎪⎪⎭⎝=⎭,2log x y =为单调递增函数, 22log 3log 21∴>=,所以a b c <<. 故选C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题. 33.(2020·西藏自治区拉萨中学高三月考(文))已知123a =,131log 2b =,21log 3c =,则( ) A .a b c >> B .b c a >> C .c b a >> D .b a c >>【答案】 A【解析】试题分析:由指数函数,对数函数的性质,可知1231a =>,113311log ,0log 122b =<< 21log 03c =<,即a b c >>,选A 34.(2020·西藏自治区拉萨那曲第二高级中学高三月考(文))已知1(,1)x e -∈,ln a x =,ln 1()2xb =,ln x c e =,则,,a b c 的大小关系为( )A .c b a >>B .b c a >>C .a b c >>D .b a c >>【答案】B【解析】试题分析:∵1(,1)x e -∈,∴ln (1,0)x ∈-∴(1,0)a ∈-,(1,2)b ∈,1(,1)c e -∈∴b c a >>.选B.。

巧用对数比较大小的五种方法

巧用对数比较大小的五种方法

巧用对数比较大小的五种方法
唐学宁
【期刊名称】《广东教育(高中版)》
【年(卷),期】2007(000)010
【摘要】比较大小是高中数学中常见的题型,也是高考数学中常考常新的题型.涉及对数比较大小的问题,更是同学们学习的难点,这类问题涉及面广,常常与不等式、函数、数列相联系,其解法既灵活多样又有章可循。

【总页数】2页(P16-17)
【作者】唐学宁
【作者单位】珠海
【正文语种】中文
【中图分类】G633.62
【相关文献】
1.例说指数与对数比较大小问题的求解策略 [J], 闫伟
2.指数式对数式比较大小解题策略初探 [J], 郝志隆
3.对数比较大小,反思解题技巧--以2020年全国高考数学全国Ⅲ卷文科第10题为例 [J], 李晓梅;孔德宏
4.指数式及对数式比较大小试题的三种常见题型 [J], 苏艺伟;陈艺平
5.指数与对数比较大小的方法探究 [J], 陈猛
因版权原因,仅展示原文概要,查看原文内容请购买。

指对数函数比较大小

指对数函数比较大小

指对数函数比较大小一、前言对数函数是高中数学中的重要内容,它在数学中有着广泛的应用。

在比较大小时,我们经常需要比较对数函数的大小。

本文将介绍如何比较对数函数的大小。

二、对数函数的定义对数函数是指以某个正实数为底的幂函数的反函数。

设a为正实数且a≠1,则以a为底的对数函数f(x)定义为:f(x) = log<sub>a</sub>x其中,x为正实数。

三、对数函数的性质1. 对于任意正实数x和y,有以下性质:(1)log<sub>a</sub>(xy) = log<sub>a</sub>x +log<sub>a</sub>y(2)log<sub>a</sub>(x/y) = log<sub>a</sub>x -log<sub>a</sub>y(3)log<sub>a</sub>x<sup>n</sup> = nlog<sub>a</sub>x2. 对于任意正整数n,有以下性质:(1)log<sup>n</sup><sub>a</sub>x = (log<sup>n-1</sup><sub>a</sub>log<sup>n-2</sup><sub>a</sub>...log<sup>0</sup><sub>a</sub>x) (2)当n=2时,有log(logx)<leqslant logx-1四、比较两个对数函数大小的方法在比较两个对数函数大小时,我们可以使用以下方法:1. 换底公式设f(x) = log<sub>a</sub>x,g(x) = log<sub>b</sub>x,则有:f(x) = log<sub>a</sub>x = ln(x)/ln(a)g(x) = log<sub>b</sub>x = ln(x)/ln(b)因此,我们可以将两个对数函数都转化为以e为底的对数函数,然后比较它们的大小。

高中数学对数大小教案全套

高中数学对数大小教案全套

高中数学对数大小教案全套
教学目标:
1. 了解对数的概念和特点;
2. 掌握对数的运算法则;
3. 能够解决涉及对数的实际问题。

教学重点和难点:
重点:对数的概念和运算法则;
难点:应用对数解决实际问题。

教学准备:
教材:高中数学教科书;
教具:黑板、彩色粉笔、计算器。

教学过程:
一、导入(5分钟)
教师通过引入一个实际问题,如日常生活中的人口增长问题,引发学生对对数的思考和探讨,并引出对数的概念。

二、讲解对数的概念和基本性质(15分钟)
1. 对数的定义和符号表示;
2. 对数的底数、真数和指数的关系;
3. 对数运算法则:对数相加减、对数乘除等。

三、练习与讨论(20分钟)
在黑板上给出若干对数运算题目,让学生进行计算,然后进行讨论和解答疑惑。

四、实例分析与解题(20分钟)
以实际问题为例,如解决一个复杂的对数运算或者应用对数来解决一个生活中的问题,让学生分组进行讨论和解答。

五、作业布置与反思(5分钟)
布置相关的对数练习作业,并要求学生认真对待,巩固所学知识。

并让学生反思本堂对数大小课的收获和不足之处。

教学反思:
本节课设计采用了引入问题、讲解概念、练习讨论等多种教学方式,使学生在实际问题中理解对数的概念和运算法则,在实践中提高对数大小的应用能力。

同时,鼓励学生积极思考、合作探讨,培养他们的解决问题能力和团队合作精神。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指对数比较大小在填空选择题中我们会遇到一类比较大小的问题,通常是三个指数和对数混在一起,进行排序。

这类问题如果两两进行比较,则花费的时间较多,所以本讲介绍处理此类问题的方法与技巧一、一些技巧和方法1、如何快速判断对数的符号?八字真言“同区间正,异区间负”,容我慢慢道来: 判断对数的符号,关键看底数和真数,区间分为和(1)如果底数和真数均在中,或者均在中,那么对数的值为正数 (2)如果底数和真数一个在中,一个在中,那么对数的值为负数 例如:等2、要善于利用指对数图像观察指对数与特殊常数(如0,1)的大小关系,一作图,自明了3、比较大小的两个理念:(1)求同存异:如果两个指数(或对数)的底数相同,则可通过真数的大小与指对数函数的单调性,判断出指数(或对数)的关系,所以要熟练运用公式,尽量将比较的对象转化为某一部分相同的情况例如:,比较时可进行转化,尽管底数难以转化为同底,但指数可以变为相同,从而只需比较底数的大小即可(2)利用特殊值作“中间量”:在指对数中通常可优先选择“0,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤(在兵法上可称为“分割包围,各个击破”,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如,可知,进而可估计是一个1点几的数,从而便于比较4、常用的指对数变换公式:(1)(2) ()0,1()1,+¥()0,1()1,+¥()0,1()1,+¥30.52log 0.50,log 0.30,log 30<>>1113423,4,5()()()11111143634212121233,44,55===2log 32221log 2log 3log 42=<<=2log 3nm mn a a æö=ç÷èølog log log a a a M N MN +=log log log a a aM M N N-=(3)(4)换底公式: 进而有两个推论: (令) 二、典型例题:例1:设的大小关系是______________思路:可先进行分堆,可判断出,从而肯定最大,只需比较即可,观察到有相同的结构:真数均带有根号,抓住这个特点,利用对数公式进行变换:,从而可比较出,所以答案:例2:设,则的大小关系是___________思路:观察发现均在内,的真数相同,进而可通过比较底数得到大小关系:,在比较和的大小,由于是指数,很难直接与对数找到联系,考虑估计值得大小:,可考虑以为中间量,则,进而,所以大小顺序为答案: 例3:设 则的大小关系为( ) A. B. C. D. 思路:观察到都是以为底的对数,所以将其系数“放”进对数之中,再进行真数的比较。

发现真数的底与指数也不相同,所()log log 0,1,0na a N n N a a N =>¹>log log log c a c bb a=1log log a b b a =c b =log log m na a n N N m=323log ,log log a b c p ===,,a b c 0,11,0b 1,0c 1a ><<<<a ,b c ,b c 223311log log 3,log log 222b c ====32log 21log 3<<c b <c b a <<123log 2,ln 2,5a b c -===,,a b c ,,a b c ()0,1,a b a b <c c ,,a b c 12152c -==<=1231log 2log 2a =>=12a c >>b a c >>b a c >>ln 2ln3ln5,,,235a b c ===,,a b c a b c >>a c b >>b a c >>b c a >>,,a b c e 111352ln 2ln3ln5ln 2,ln3,ln5,235a b c ======以依然考虑“求同存异”,让三个真数的指数一致: ,通过比较底数的大小可得: 答案:C总结:(1)本题的核心处理方式就是“求同存异”,将三个数变形为具备某相同的部分,从而转换比较的对象,将“无法比较”转变为“可以比较”(2)本题在比较指数幂时,底数的次数较高,计算起来比较麻烦。

所以也可以考虑将这三个数两两进行比较,从而减少底数的指数便于计算。

例如可以先比较,从而,同理再比较或即可例4:设,,,则( )A. B. C. D. 思路:观察可发现:,所以可得:答案:D例5:设 则的大小关系为( )A. B. C. D. 思路:观察可发现的底数相同,的指数相同,进而考虑先进行这两轮的比较。

对于,两者底数在,则指数越大,指数幂越小,所以可得,再比较,两者指数相同,所以底数越大,则指数幂越大,所以,综上: 答案:B例6:已知三个数,则它们之间的大小关系是( ) A. B. C. D. 思路:可先进行分组,,,所以只需比较大小,两者都介于之间且一个是对数,一个是三角函数,无法找到之间的联系。

所以考虑寻找中间值作为桥梁。

()()()1111111510635230303022,33,55===b a c >>,:a b ()()11113232662=2,3=3a b <,a c ,b c 6log 3=a 10log 5=b 14log 7=c a b c >>b c a >>a c b >>a b c >>()()()335577log 321log 2,log 521log 2,log 721log 2a b c =´=+=´=+=´=+357log 2log 2log 2>>a b c >>232555322,,,555a b c æöæöæö===ç÷ç÷ç÷èøèøèø,,a b c a b c >>a c b >>b a c >>b c a >>,b c ,a c ,b c ()0,1b c <,a c a c >a c b >>0.5333,log 2,cos2a b c ===c b a <<c a b <<a b c <<b c a <<0,10.531a =>0,1b c <<,b c 0,1以作为入手点。

利用特殊角的余弦值估计其大小。

,而,从而,大小顺序为 答案:A总结:在寻找中间量时可以以其中一个为入手点,由于非特殊角的三角函数值可用特殊角三角函数值估计值的大小,所以本题优先选择作为研究对象。

例7:(2015甘肃河西三校第一次联考)设,则( ) A. B. C. D. 思路:首先进行分组,可得,下面比较的大小,可以考虑以作为中间量,,所以,从而答案:D例8:设且,则的大小关系是( )A. B. C. D. 思路:由可得:,先用将分堆,,,则为最大,只需要比较即可,由于的底数与真数不同,考虑进行适当变形并寻找中间量。

,而,因为,所以,所以顺序为 答案:C例9:下列四个数:的大小顺序为________ 思路:观察发现,其余均为正。

所以只需比较,考虑,所以,而,所以下一步比较:3cos2331cos cos 23232p p >Þ<=331log 2log 2>=12c b <<c b a <<c 1.13.13log 7,2,0.8a b c ===b a c <<a c b <<c b a <<c a b <<0,11,c a b <<,a b 21.13322,log 7log 92b a =>=<=2a b <<c a b <<0,1a b a b >>+=1111,log ,log bb a b x y ab z a a æö+ç÷èøæö===ç÷èø,,x y z y xz <<z y x <<y z x <<x y z <<0,1a b a b >>+=1012b a <<<<0,1,,x y z 0x >,0y z <x ,y z ,y z 111log log log 1a b ababa b y ab ab ab +æö+ç÷èø====-1log log b bz a a ==-01b <<log log 1,log 1b b b a b z a y <==->-=y z x <<()()2ln 2,ln ln 2,ln 2a b c d ====()ln ln 20b =<,,a c d ()ln 20,1Îa d <1ln 22c d ==<,a c,所以,综上所述,大小顺序为 答案:例10:已知均为正数,且,则( )A. B. C. D. 思路:本题要通过左右相等的条件,以某一侧的值作为突破口,去推断的范围。

首先观察等式左侧,左侧的数值均大于0,所以可得:均大于0,由对数的符号特点可得:,只需比较大小即可。

观察到,从而,所以顺序为答案:A总结:本题也可用数形结合的方式比较大小,观察发现前两个等式右侧为的形式,而第三个等式也可变形为,从而可以考虑视分别为两个函数的交点。

先作出图像,再在这个坐标系中作出,比较交点的位置即可。

()(211ln 2ln 2ln 2ln 2ln 2ln 2022a c æö-=-=-=->ç÷èøa c >b c a d <<<b c a d <<<,,a b c 11222112log ,log ,log 22b caa b c æöæö===ç÷ç÷èøèøa b c <<c b a <<c a b <<b a c <<,,a b c 11222log ,log ,log a b c (),0,1,1a b c Î>,a b 1212baæö>>ç÷èø1122log log a b a b >Þ<a b c <<12log y x =2121log log 2cc c æö-=-=ç÷èø,,a b c 12log y x =112,,22x xxy y y æöæö===-ç÷ç÷èøèø。

相关文档
最新文档