北京市海淀区首都师范大学附属中学2019-2020学高一数学下学期期中试题(C)(含解析)
北京市海淀区首都师范大学附属中学2019_2020学高一数学下学期期中试题(A)(含解析)

北京市海淀区首都师范大学附属中学2019-2020学高一数学下学期期中试题(A )(含解析)一、单选题1.已知,2sin cos R ααα∈-=,则tan(2)4πα-=( )A.43B. 7-C. 34-D.17【答案】B 【解析】 【分析】将条件中所给的式子的两边平方后化简得23tan 8tan 30αα--=,解得tan α后再根据两角差的正切公式求解.【详解】条件中的式子两边平方,得2254sin 4sin cos cos 2αααα-+=, 即233sin 4sin cos 2ααα-=, 所以()22233sin 4sin cos sin cos 2ααααα-=+, 即23tan 8tan 30αα--=,解得tan 3α=或1tan 3α=-, 所以22tan 3tan21tan 4ααα==--,故21tan 27412tan tan πααα-⎛⎫-==- ⎪+⎝⎭. 故选B .【点睛】解答本题的关键是根据条件进行适当的三角恒等变换,得到tan α后再根据公式求解,考查变换能力和运算能力,属于基础题.2.已知0,0,22x y x y >>+=,则xy 的最大值为( )A.12B. 1 D.14【答案】A【分析】 化简xy =12(2x •y ),再利用基本不等式求最大值得解. 【详解】解:∵x >0,y >0,且2x +y =2,∴xy =12(2x •y )≤12(22x y +)2=12,当且仅当x =12,y =1时取等号, 故则xy 的最大值为12,故选A【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平. 3.设{}1,2,3,4,5U =,{}2,5A =,{}2,3,4B =,则()UA B ⋃=( )A {}5B. {}1,2,3,4,5C. {}1,2,5D. ∅【答案】C 【解析】 【分析】 先求出UB ,再求出()UA B ⋃即可.【详解】∵{}{}1,2,3,4,5,2,3,4U B ==, ∴{}1,5UB =,∴(){}1,2,5UA B ⋃=.故选C .【点睛】本题考查补集与并集的混合运算,求解时根据集合运算的定义进行求解即可,属于基础题.4.已知函数2log ,0(){3,0x x x f x x >=≤,则1[()]4f f 的值是( )A. 14 B. 4 C. 19【答案】C试题分析:根据分段函数解析式可知211()log 244f ==-,()21239f --==,所以11[()]49f f =,故选C.考点:分段函数.5.已知a b 、为实数,则22a b >是22log log a b >的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】分别解出22a b >,22log log a b >中a ,b 的关系,然后根据a ,b 的范围,确定充分条件,还是必要条件. 【详解】解:22a b >,a b ∴>当0a <或0b <时,不能得到22log log a b >,反之由22log log a b >即:0a b >>可得22a b >成立. 故22a b >是22log log a b >的必要不充分条件 故选:B .【点睛】本题考查对数函数的单调性与特殊点,必要条件、充分条件与充要条件的判断,是基础题.6.已知集合{}{}2|120,|45M x x x N x x =-->=-<<,则MN =( )A. RB. ()3,4-C. (4,5)D.(4,3)(4,5)--⋃【答案】D 【解析】 【分析】解一元二次不等式求得集合M ,由此求得M N ⋂【详解】由()()212430x x x x --=-+>,解得3x <-或4x >,即{3M x x =-或}4x >.所以(4,3)(4,5)M N --⋃⋂=. 故选:D.【点睛】本小题主要考查交集的概念和运算,考查一元二次不等式的解法,属于基础题. 7.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n 座城市作实验基地,这n 座城市共享单车的使用量(单位:人次/天)分别为1x ,2x ,…,n x ,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是( )A. 1x ,2x ,…,n x 的标准差B. 1x ,2x ,…,n x 的平均数C. 1x ,2x ,…,n x 的最大值D. 1x ,2x ,…,n x 的中位数【答案】A 【解析】 【分析】利用方差或标准差表示一组数据的稳定程度可得出选项.【详解】表示一组数据的稳定程度是方差或标准差,标准差越小,数据越稳定 故选:A【点睛】本题考查了用样本估计总体,需掌握住数据的稳定程度是用方差或标准差估计的,属于基础题.8.集合A ={x |2230x x --≥},B ={x |240x ->},则()R A B = ( )A. [-2,-1]B. [-1,2)C. [-1,1]D. [1,2)【答案】A 【解析】{|13}A x x x =≤-≥或,{|22}B x x x =-或,{|22}RB x x =-≤≤,∴()R A B ⋂=[-2,-1].9.某位居民站在离地20m 高的阳台上观测到对面小高层房顶的仰角为60,小高层底部的俯角为45,那么这栋小高层的高度为( )A. 3201m 3⎛⎫+ ⎪ ⎪⎝⎭ B. ()2013m +C. ()1026m +D.()2026m +【答案】B 【解析】 【分析】根据题意作出简图,根据已知条件和三角形的边角关系解三角形【详解】依题意作图所示:AB 20m =,仰角DAE 60∠=,俯角EAC 45∠=, 在等腰直角ACE 中,AE EC 20m ==, 在直角DAE 中,DAE 60∠=,DE AEtan60203m ∴==,∴小高层的高度为()()CD 202032013m =+=+.故选B .【点睛】解决解三角形实际应用问题注意事项: 1.首先明确方向角或方位角的含义;2.分析题意,分清已知与所求,再根据题意画出正确的示意图;3.将实际问题转化为可用数学方法解决的问题10.关于函数()sin f x x x =+,下列说法错误的是( ) A. ()f x 是奇函数B. ()f x 是周期函数C. ()f x 有零点D. ()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 【答案】B 【解析】 【分析】根据奇偶性定义可判断选项A 正确;依据周期性定义,选项B 错误;()00f =,选项C 正确;求()f x ',判断选项D 正确.【详解】()()sin f x x x f x -=--=-, 则()f x 为奇函数,故A 正确;根据周期的定义,可知它一定不是周期函数, 故B 错误;因为()00sin00f =+=,()f x 在,22ππ⎛⎫- ⎪⎝⎭上有零点,故C 正确;由于()'1cos 0f x x =+≥,故()f x 在(),-∞+∞ 上单调递增,故D 正确. 故选B.【点睛】本题考查函数的性质,涉及到奇偶性、单调性、周期性、零点,属于基础题. 二、填空题11.设函数()f x 是定义在R 上的偶函数,记2()()g x f x x =-,且函数()g x 在区间[0,)+∞上是增函数,则不等式2(2)(2)4f x f x x +->+的解集为_____ 【答案】()(),40,-∞-+∞【解析】 【分析】根据题意,分析可得()g x 为偶函数,进而分析可得原不等式转化为()()22g x g +>,结合函数的奇偶性与单调性分析可得22x +>,解可得x 的取值范围.【详解】根据题意()()2g x f x x =-,且()f x 是定义在R 上的偶函数,则()()()()()22g x f x x f x x g x -=---=-=,则函数()g x 为偶函数,()()()()()()()22224222422f x f x x f x x f g x g +->+⇒+--⇒+>>+,又由()g x 为增函数且在区间[0,)+∞上是增函数,则22x +>, 解可得:4x <-或0x >, 即x 的取值范围为()(),40,-∞-+∞,故答案为()(),40,-∞-+∞;【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析()g x 的奇偶性与单调性,属于中档题. 12.设1sin 3sin αβ+=,不等式2sin cos 0m αβ--≤对满足条件的α,β恒成立,则实数m 的最小值为________.【答案】43【解析】 【分析】将不等式2sin cos 0m αβ--≤对满足条件的α,β恒成立,利用1sin 3sin αβ+=,转化为不等式21sin cos 03m ββ---≤对满足条件的β恒成立,即不等式22sin sin 3m ββ--≤对满足条件的β恒成立,然后用二次函数的性质求22()sin sin 3βββ=--f 的最大值即可。
2020-2021学年北京市首都师范大学附属中学高一上学期开学分班考试数学试题(解析版)

A. y x 1和 y x2 1 x 1
B. y x0 和 y 1 x R
C. y = x2 和 y x 12
D. y (
x)2 和 y
x
(
x x )2
【答案】D 【解析】根据函数的定义域和解析式是否相同判断. 【详解】
A. y x 1的定义域为 R, y x2 1 的定义域为x | x 1 ,故错误;
7.设 M 2a(a 2) 7 , N (a 2)(a 3) ,则 M 与 N 的大小关系是( )
A. M N
B. M N
C. M N
D. M N
【答案】A
【解析】利用作差法求解出 M N 的结果,将所求结果与 0 作比较,然后可得 M , N 的
大小关系.
【详解】
因为
M
N
2a a
6
【点睛】 本题考查函数的最值的求法,注意运用单调性,考查运算能力,属于基础题.
14.已知 f (x) 为一次函数,且 f [ f (x)] 4x 3, 则 f (1) 的值为()
A.0
B.1
C.2
D.3
【答案】B
【解析】设 f (x) kx b ,代入 f [ f (x)] 4x 3, 得到 f (x) 2x 1或
2020-2021 学年北京市首都师范大学附属中学高一上学期开 学分班考试数学试题
一、单选题
1.已知全集U 0,1, 2,3, 4, M 0,1, 2, N 2,3 则 CU M N ( )
A.2
B.3
C.2,3, 4
D.0,1, 2,3, 4
【答案】B 【解析】先求 M 的补集,再与 N 求交集. 【详解】 ∵全集 U={0,1,2,3,4},M={0,1,2}, ∴∁UM={3,4}. ∵N={2,3}, ∴(∁UM)∩N={3}. 故选 B. 【点睛】 本题考查了交、并、补集的混合运算,是基础题.
2019-2020学年北京市海淀区高一(下)期中数学试卷(含解析)

2019-2020学年北京市海淀区高一(下)期中数学试卷一、单选题(本大题共8小题,共32.0分)1.在△ABC中,角A,B,C的对边分别是a,b,c.若a=5bsinC,且cosA=5cosBcosC,则tan A的值为()A. 5B. 6C. −4D. −62.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2√2,b=4,B=45°,则A=()A. 30°B. 60°C. 30°或150°D. 60°或120°3.方程√3sin2x+cos2x=2k−1,x∈[0,π]有两个不等根,则实数k的取值范围为()A. (−12,32) B. (−12,1)∪(1,32) C. [−12,32] D. [−12,1)∪(1,32]4.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是某空间几何体的三视图,则该几何体的体积为()A. 2B. 23C. 4D. 435.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知AB=50m,BC=120m,于A处测得水深AD=80m,于B处测得水深BE=200m,于C处测得水深CF=110m,则∠DEF的余弦值为()A. 1665B. 1965C. 1657D. 17576.已知α,β是不同的平面,m,n是不同的直线,给出下列命题:①m⊥n,m//α,α//β⇒n⊥β;②m⊥n,m⊥α,α//β⇒n⊥β;③m ⊥α,n//β,α//β⇒m ⊥n ;④m ⊥α,m//n ,α//β⇒n ⊥β.其中正确的是( )A. ①②B. ②③C. ①④D. ③④ 7. 若0<x ,y <π2,且sinx =xcosy ,则( ) A. y <x 4B. x 4<y <x 2C. x 2<y <xD. x <y8. 已知△ABC 的面积为,则角C 的度数为( ) A. B. C. D.二、单空题(本大题共5小题,共20.0分)9. 已知3sin 2θ=5cosθ+1,则cos(π+2θ)=______.10. α是第二象限角,,则tanα=________.11. 在平行四边形ABCD 中,AB⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0,沿BD 将四边形折起成直二面角A −BD −C ,且|√2AB ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ |=2,则三棱锥A −BCD 的外接球的表面积为______. 12. 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,c =√3,A +B =2C ,则sinB =______.13. 已知函数f(x)=asinx +cosx 的一条对称轴为x =π3,则a =______.三、多空题(本大题共1小题,共4.0分)14. 如图,在△ABC 中,AB =BC =2,∠ABC =120°,若平面ABC 外的点P 和线段AC 上的点D ,线段BC 上的点Q ,满足PD =DA ,PB =BA ,则四面体P −BCD 的体积的最大值是 (1) ;当P −BCD 体积取最大值时,|PQ|min = (2) .四、解答题(本大题共4小题,共44.0分)15. 已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f(x)的解析式;(2)求函数f(x)在区间[−π2,0]上的最大值和最小值.16.已知a、b、c分别为△ABC的三个内角A、B、C的对边,2sinAcos2C2+2sinC⋅cos2A2=3sinB(1)证明a、b、c成等差数列;(2)若∠B为锐角,且a=btanA,求a:b:c的值.17.如图所示,直三棱柱ABC−A′B′C中,∠ABC=90°,AB=BC=BB′=2,D为底棱AC的中点.(1)求证:A′B⊥平面AB′C′;(2)过B′C′以及点D的平面与AB交于点E,求证:E为AB中点;(3)求三棱锥D−AB′C′的体积.18.已知函数.(1)求函f(x)的最小正周期和单调递增区间;(2)将函数f(x)的图象向右平移π个单位后得到函数y=g(x)的图象,求函数y=g(x)在区间4[0,π]上的值域.2【答案与解析】1.答案:B解析:本题主要考查解三角形中的正弦定理及应用,同时考查两角和差的余弦公式,诱导公式,以及同角三角函数的关系式,这些都是三角中的基本公式,务必要掌握,注意公式的逆用.运用正弦定理,把边化成角得到sinA=5sinBsinC,再与条件cosA=5cosBcosC相减,运用两角和的余弦公式,再用诱导公式转化为cos A,由同角公式,即可求出tan A.解:∵a=5bsinC,由正弦定理得:sinA=5sinBsinC①,又cosA=5cosBcosC②,②−①得,cosA−sinA=5(cosBcosC−sinBsinC),=5cos(B+C)=−5cosA,∴sinA=6cosA,∴tanA=sinAcosA=6.故选B.2.答案:A解析:解:∵a=2√2,b=4,B=45°,∴由正弦定理asinA =bsinB,可得:2√2sinA=4sin45∘,∴解得sinA=12,∵a<b,∴A<B,∴A=30°.故选:A.由已知及正弦定理解得sinA=12,结合大边对大角可求A为锐角,进而由特殊角的三角函数值可求A 的值.本题主要考查了正弦定理,大边对大角,特殊角的三角函数值等知识在解三角形中的应用,考查了转化思想,属于基础题.3.答案:B解析:解:cos2x+√3sin2x=2k−1,得2(12cos2x+√32sin2x)=2k−1,即2sin(2x+π6)=2k−1,可得:sin(2x+π6)=2k−12=k−12,由0≤x≤π,得π6≤2x+π6≤13π6,∵y=sin(2x+π6)在x∈[0,π]上的图象形状如图,∴当12<k−12<1和−1<k−12<12时,方程有两个不同的根,解得:1<k<32,−12<k<1.故选:B.利用辅助角公式化简,由x的范围求出这个角的范围,画出此时正弦函数的图象,根据函数值y对应的x有两个不同的值,由图象得出满足题意的正弦函数的值域,列出关于k的不等式,求出不等式的解集即可得到k的取值范围.本题考查了辅助角公式,正弦函数的图象与性质,以及正弦函数的定义域与值域,利用了数形结合的思想,属于中档题.4.答案:D解析:本题考查由三视图还原几何体,锥体体积的有关计算,还原几何体是解决问题的关键,属于基础题.由已知三视图还原几何体,代入四棱锥的体积公式计算可得.解:构造棱长为2的正方体如图所示,由三视图知该几何体是图中的四棱锥P−ABCD,其中B,D分别为棱的中点,则其体积V=13×[2×2−2×(12×2×1)]×2=43.故选D.5.答案:A解析:解:如图所示,作DM//AC交BE于N,交CF于M.DF=√MF2+DM2=√302+1702=10√298(m),DE=√DN2+EN2=√502+1202=130(m),EF=√(BE−FC)2+BC2=√902+1202=150(m).在△DEF中,由余弦定理,得cos∠DEF=DE2+EF2−DF22DF×EF =1302+1502−102×2982×130×150=1665.故选A分别在Rt△DMF中和Rt△DNE中利用勾股定理,求得DF,DE再算出EF=150m,在△DEF中利用余弦定理,可算出cos∠DEF的值.本题给出实际应用问题,求∠DEF的余弦值.主要考查了运用解三角形知识解决实际应用问题,考查了三角形问题中勾股定理、余弦定理的灵活运用,属于中档题.6.答案:D解析:解:①应该是n⊥β或n//β或n⊂β,即①错误;②应该是n//β或n⊂β,即②错误;③由线面垂直、线面平行和面面平行的性质定理可知③正确;④∵m⊥α,m//n,∴n⊥α,∵α//β,∴n⊥β,即④正确;故选:D.根据空间中线面的位置关系、平行与垂直的判定定理和性质定理,即可得解.本题考查了空间中线线、线面和面面的位置关系,需要熟记其判定定理和性质定理,考查了学生的空间立体感,属于基础题.7.答案:C解析:解:∵0<x,y<π2,∴0<sinx<x<tanx,又∵sinx=xcosy,∴cosy=sinxx >sinxtanx=cosx,故y<x,又∵sinx=xcosy,即12sinx=12xcosy,∴sin x2⋅cos x2=12xcosy,即cosy=sin x2⋅cos x212x<cos x2,故y>x2,综上所述,x2<y<x,故选:C.根据已知中0<x,y<π2,可得0<sinx<x<tanx,进而可将已知sinx=xcosy变形为cosy=sinxx>sinx tanx =cosx和12sinx=12xcosy,即cosy=sinx2⋅cos x212x<cos x2,进而结合余弦函数的单调性,得到答案.本题考查的知识点是三角函数线,余弦函数的单调性,本题的变形思路比较难,特别是对已知两个式子的变形.8.答案:D解析:试题分析:解:∵ab sin C,∴absinC=即.又根据余弦定理得,∴−2absinC=−2abcosC,即sinC=cosC.∴C=.故选D.考点:解三角形点评:关键是对于已知中的面积关系式的表示,再结合余弦定理来求解得到角的值,属于基础题。
2024届首都师范大学附属中学高三年级第二学期期末数学试题

2024届首都师范大学附属中学高三年级第二学期期末数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数13log ,0()1,03x x x f x a x >⎧⎪⎪=⎨⎛⎫⎪⋅≤ ⎪⎪⎝⎭⎩,若关于x 的方程[()]0f f x =有且只有一个实数根,则实数a 的取值范围是( ) A .(,0)(0,1)-∞ B .(,0)(1,)-∞⋃+∞ C .(,0)-∞ D .(0,1)(1,)⋃+∞2.已知(1,3),(2,2),(,1)a b c n ===-,若()a c b -⊥,则n 等于( )A .3B .4C .5D .63. “角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )A .6B .7C .8D .94.已知集合{}2|230A x x x =--<,集合{|10}B x x =-≥,则()A B ⋂=R ( ).A .(,1)[3,)-∞+∞ B .(,1][3,)-∞+∞ C .(,1)(3,)-∞+∞D .(1,3)5.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )A .14B .13C .532D .3166.定义两种运算“★”与“◆”,对任意N n *∈,满足下列运算性质:①2★2018=1,2018◆11=;②(2n )★2018=[2(22)n +★]2018 ,2018◆(1)2(2018n +=◆)n ,则(2018◆2020)(2020★2018)的值为( ) A .10112B .10102C .10092D .10082 7.已知函数2,0()4,0x x f x x x -⎧⎪=⎨+>⎪⎩,若()02f x <,则0x 的取值范围是( ) A .(,1)-∞- B .(1,0]- C .(1,)-+∞ D .(,0)-∞8.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )A .83B .163C .43D .89.函数()2ln x f x x x=-的图象大致为( ) A . B .C .D .10.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( )A .48B .60C .72D .12011.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .3y x =±C .2y x =±D .y x =±12.已知,a b ∈R ,3(21)ai b a i +=--,则|3|a bi +=( )A .10B .23C .3D .4二、填空题:本题共4小题,每小题5分,共20分。
北京市海淀区首都师范大学附属中学2024-2025学年九年级上学期11月期中数学试题(无答案)

首都师大附中2024—2025学年第一学期期中练习初三数学命题人:张彩萍刘宇航审核人:周素裹第Ⅰ卷(共16分)一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列图形中,是中心对称图形的是( )A .B .C .D .2.用配方法解方程,下列变形正确的是( )A .B .C .D .3.如图,OA 交于点B ,AD 切于点D ,点C 在上.若,则为()A .20°B .25°C .30°D .35°4.平移抛物线使其顶点在原点,可以平移的方法是()A .向左1个单位B .向右1个单位C .向上1个单位D .向下1个单位5.如图,在正方形ABCD 中,将边BC 绕点B 逆时针旋转至BE ,于F ,若,,则线段BE 的长为( )A .4B .C .6D .6.如图,AB 是的直径,弦AC ,AD 分别是的内接正六边形和内接正方形的一边.若,下2230x x +-=()212x +=-()214x +=()214x +=-()212x +=O O O 40A ∠=︒C ∠()21y x =-BF CE ⊥90CED ∠=︒2DE=O O 1AC =列结论中错误的是()A .的直径为2B .连接OD ,则C .D .连接CD ,则7.二次函数自变量和函数值的部分对应值如下表所示.当时,y 的取值范围是,则m 的取值范围是( )x...-3-11...y (8)n 8…A .B .C .D .8.已知内接于,.点A 从圆周上某一点开始沿圆周运动,设点A 运动的路线长为l ,的面积为S ,S 随l 变化的图象如图所示,其中.①点A 在运动的过程中,始终有;②点M;③存在4个点A 的位置,使得.上述结论中,所有正确结论的序号是()A .②B .①③C .②③D .①②③第Ⅱ卷(共84分)二、填空题(共16分,每题2分)9.点关于原点的对称点的坐标是______.10.若关于x 的一元二次方程有两个不相等的实数根,则k 的取值范围为______.11.如图,将绕点A 逆时针旋转30°得到,点B 的对应点D 落在边BC 上,的度数为______.O OD AB⊥ 3BD CD =2AC CD=2y ax bx c =++3x m -≤≤8n y ≤≤3m ≥-31m -≤≤1m ≥-11m -≤≤ABC △O 2BC =ABC △21l l -=45BAC ∠=︒1+12S =()6,5-2x k =ABC △ADE △ADE ∠第11题图12.抛物线的顶点为,其部分图象如图所示,若,则x 的取值范围是______.第12题图13.如图,PA ,PB 分别切于点A ,B .若的半径为1.,则的长度为______.第13题图14.小华利用网络平台帮助家乡小红销售农产品.8月份销售额为1000元,10月份销售额为1210元,求销售额平均每月的增长率.设销售额平均每月的增长率为x ,根据题意,可列方程为______.15.已知的半径为3,线段,若与线段AB 有两个交点,则点O 到直线AB 的距离d 的取值范围是______.16.对于函数(其中h 为常数,)和其图象上的一点.(1)若时,,则的取值范围是______;(2)若时,,则的取值范围是______.三、解答题(共68分,第17-20题,每题5分,21题6分,第22-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答写出文字说明、演算步骤或证明过程.17.解方程:.18.已知m 是方程的根,求代数式的值.23y ax bx =++()2,A m 3y <O O 60P ∠=︒AB O 2AB =O 22y x hx =+0h <()00,x y 0x x >0y y >0x 02x x >0y y >0x 210x x +-=2310x x -+=()2143m m m --+19.如图,和都是等边三角形,B ,C ,D 共线.求证:.20.已知:如图1,P 为上一点.求作:直线PQ ,使得PQ 与相切.作法:如图2,①连接OP ;②以点P 为圆心,OP 长为半径作弧,与的一个交点为A ,作射线OA ;③以点A 为圆心,OP 长为半径作圆,交射线OA 于点Q (不与点O 重合);④作直线PQ .直线PQ 就是所求作的直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹):(2)完成下面的证明.证明:连接PA .由作法可知,∴点P 在以OQ 为直径的上.∴______①______(______②______)(填推理的依据).∴.又∵OP 是的半径,∴PQ 是的切线(______③______)(填推理的依据).21.关于x 的一元二次方程.(1)求证:方程总有两个实数根:(2)若方程有一根为负数,求m 的取值范围.22.如图,已知AB 为半圆O 的直径.弦BC ,AD 相交于点E .连接AC ,点C 是的中点.若,.ABC △ADE △60ECD ∠=︒O O O AP AO AQ ==A OPQ ∠=OP PQ ⊥O O ()2210x m x m -+++=AD 6OA =30CBA ∠=︒(1)求CE 的长:(2)M 为的中点,点P 在直径AB 上,直接写出的最小值为______.23.已知二次函数的图象经过(0,3),(3,0).(1)求这个二次函数的表达式;(2)一次函数,当时,总有,直接写出k 的取值范围.24.如图,在中,,AB 为的直径.AC 与相交于点D .过点D 作于点E ,CB 延长线交于点F .(1)求证:DE 为的切线;(2)若,,求AD 的长.25.为了探究某飞机某次着陆后滑行的距离y (单位:m )与滑行时间x (单位:s )之间的关系,测得几组数据如下表:滑行时间x /s024681012滑行距离y /m 0112208288352400432(1)根据上述数据,在平面直角坐标系xOy 中描出表格中对应的点,并判断此次滑行的距离y 与滑行时间x 满足的是______函数关系(填“一次”或“二次”);(2)求y 与x 的函数关系式;BDDP MP +212y ax x c =++21y kx =+2x >12y y <ABC △AB BC =O O DE BC ⊥O O 3BE =4BF =(3)飞机着陆后滑行______s 能停下来,此时滑行的距离是______m .26.在平面直角坐标系xOy 中,已知抛物线,点,,是抛物线上不同的三点.(1)若,直接写出a 的值:(2)若对于任意的,都有,求a 的取值范围.27.已知在中,,CD ,BE 分别为AB ,AC 边上的高.(1)如图1,CD ,BE 交于点P ,若,求证:;(2)在线段CD 上取一点P ,使得,连接BP ,EP .①在图2中补全图形;②用等式表示PB 与PE 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,的半径为1,MN 为的弦.对于平面内的一点P ,若点P 关于MN 的中点对称的点恰好在内,则称点P 为弦MN 的“内称点”.已知点,,.(1)以下各点中,是弦AB 的“内称点”的是______;①②③④(2)已知点D ,E 在上运动,且,若内的每一个点都能成为某一时刻弦DE 的“内称点”,求a 的取值范围;(3)点P 在上运动,若直线与x ,y 轴的交点所连线段上的每一个点都可以成为某一时刻弦CF 的“内称点”,则b 的取值范围为______.()()20y a x a c a =-+≠()12,A y ()23,B a y ()3,C t y 12y y =21t -<<-321y y y >>ABC △45ACB ∠=︒2CP DB =AD BD =2CP DB =O O O ()0,1A ()1,0B ()1,0C -130,2P ⎛⎫ ⎪⎝⎭211,22P ⎛⎫ ⎪⎝⎭()31,1P 41P ⎛++ ⎝O DE a =O O y x b =+。
北京市海淀区首都师范大学附属中学2019_2020学高一数学下学期期中试题(C)(含解析)

北京市海淀区首都师范大学附属中学2019-2020学高一数学下学期期中试题(C)(含解析)一、单选题1.已知变量,x y满足430{140x yxx y-+≤≥+-≤,则x y-的取值范围是()A.6[2,]5- B.[2,0]- C.6[0,]5D. [2,-1]-【答案】A【解析】试题分析:由题意得,画出约束条件所表示的平面区域,如图所示,设目标函数z x y=-,当z x y=-过点137(,)55A时,目标函数取得最大值,此时最大值为max1376555z=-=;当z x y=-过点()1,3B时,目标函数取得最小值,此时最小值为min132z=-=-,所以x y-的取值范围是62,5⎡⎤-⎢⎥⎣⎦,故选A.考点:简单的线性规划求最值.2.若实数a,b满足3412a b==,则11a b+=()A.12B.15C.16D. 1【答案】D【解析】【分析】先将指数式化成对数式,求出,a b,再利用换底公式的推论log log1a bb a⋅=以及对数的运算法则即可求出.【详解】因为3412a b ==,所以34log 12,log 12a b ==,121212341111log 3log 4log 1211212a b log log +=+=+==. 故选D .【点睛】本题主要考查指数式与对数式的互化、换底公式推论log log 1a b b a ⋅=的应用以及对数的运算法则的应用.3.已知集合{}(6)(4)0A x x x =-+<,{B x y ==,则A B =( )A. [1,6)-B. (1,6)-C. (4,1]--D. (4,1)--【答案】A 【解析】()(){}640A x x x =-+<解得46x-<<,即()46A =-, {)1B x y ⎡===-+∞⎣,A B ⋂= [)1,6-故选A4.在ABC 中,角A ,B ,C 的对边分别为,,a b c ,若cos b c A =⋅,则ABC 的形状为 A. 正三角形 B. 等腰三角形或直角三角形 C. 直角三角形 D. 等腰直角三角形【答案】C 【解析】 【分析】根据题目,,a b c 分别为角A ,B ,C 的对边,且cos b c A =⋅可知,利用边化角的方法,将式子化为sin sin cos B C A =,利用三角形的性质将sin B 化为sin()A C +,化简得cos 0C =,推出90C ∠=︒,从而得出ABC 的形状为直角三角形. 【详解】由题意知,cos b c A =⋅∴由正弦定理得sin sin cos B C A =又()B A C∴sin()sin cos A C C A +=展开得,sin cos sin cos sin cos A C C A C A +=∴sin cos 0A C =又角A ,B ,C 是三角形的内角sin 0cos 0A C ∴>∴=又0<C<π2C π∴=综上所述,ABC 的形状为直角三角形,故答案选C .【点睛】本题主要考查了解三角形的相关问题,主要根据正余弦定理,利用边化角或角化边,若转化成角时,要注意A B C π++=的应用.5.已知二项式2(*)nx n N⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A 14 B. 14-C. 240D. 240-【答案】C 【解析】 【分析】由二项展开式的通项公式为()12rn rrr n T C x -+⎛= ⎝及展开式中第2项与第3项的二项式系数之比是2︰5可得:6n =,令展开式通项中x 的指数为3,即可求得2r ,问题得解.【详解】二项展开式的第1r +项的通项公式为()12rn rrr nT Cx -+⎛= ⎝由展开式中第2项与第3项的二项式系数之比是2︰5,可得:12:2:5n n C C =. 解得:6n =.所以()()3 66216221rrn r rr r rr nT C x C xx---+⎛=-=-⎪⎝⎭令3632r-=,解得:2r,所以3x的系数为()2262621240C--=故选C【点睛】本题主要考查了二项式定理及其展开式,考查了方程思想及计算能力,还考查了分析能力,属于中档题.6.函数2x241(0)()2(0)ex x xf xx⎧++<⎪=⎨≥⎪⎩的图像上关于原点对称的点有()对A. 0B. 2C. 3D. 无数个【答案】B【解析】【分析】作出函数2x241(0)()2(0)ex x xf xx⎧++<⎪=⎨≥⎪⎩的图象如图所示,再作出2241y x x=++关于原点对称的图象,根据交点个数得解.【详解】作出函数2x241(0)()2(0)ex x xf xx⎧++<⎪=⎨≥⎪⎩的图象如图所示,再作出2241y x x=++关于原点对称的图象,记为曲线C.容易发现与曲线C有且只有两个不同的交点,所以满足条件的对称点有两对,即图中的,A B就是符合题意的点.故选:B.【点睛】本题主要考查了基本初等函数的图象及其应用,考查了数形结合的思想方法,属于中档题.解答本题的关键是作出函数()f x 位于y 轴左侧的图象关于原点的对称图象,从而转化为二次函数图象与指数函数图象的交点个数问题,就容易解答了. 作2241y x x =++关于原点对称的图象时,要把握好其三要素开口方向、对称轴和顶点. 7.下列说法错误的是( )A. 若OD +OE =OM ,则OM -OE =ODB. 若OD +OE =OM ,则OM -OD =OEC. 若OD +OE =OM ,则OD -EO =OMD. 若OD +OE =OM ,则DO +EO =OM 【答案】D 【解析】 【分析】由向量的减法就是向量加法的逆运算判断,A B ,由相反向量的定义判断,C D . 【详解】由向量的减法就是向量加法的逆运算可知,A B 正确; 由相反向量的定义可知OE EO =-,所以若OD +OE =OM ,则OD -EO =OM ,C 正确; 若OD +OE =OM ,由相反向量定义知,DO +EO =OD --OE =OD -(+OE OM )=- ,故D 错误,故选D .【点睛】本题主要考查向量的运算,以及相反向量的定义,意在考查对基础知识的掌握情况,属于基础题.8.已知实数,x y 满足4030x y y x y +-≥⎧⎪-≤⎨⎪-≤⎩,则11y z x -=+的最大值为( )A. 1B.12C.13D. 2【答案】A 【解析】分析: 作出不等式组对应的平面区域,利用直线的斜率公式,结合数形结合进行求解即可.详解: 作出不等式组对应的平面区域如图,z 的几何意义是区域内的点到定点P (﹣1,1)的斜率,由图象知当直线过B (1,3)时,直线斜率最大,此时直线斜率为1, 则11y z x -=+的最大值为1, 故选A .点睛: 本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得. 9.若1,01a b c >><<,则下列不等式错误的是( ) A. c c a b >B. c c ab ba >C. log log a b c c >D.log log b a a c b c >【答案】D 【解析】试题分析:由题意得,此题比较适合用特殊值法,令,那么对于A 选项,正确,B 选项中,可化简为,即成立,C 选项,成立,而对于D 选项,,不等式不成立,故D 选项错误,综合选D.考点:1.指数函数的单调性;2.对数函数的单调性;3.特殊值法. 【思路点晴】本题主要考查是利用指数函数的单调性和对数函数的单调性比较大小问题,属于难题,此类题目的核心思想就是指数函数比较时,尽量变成同底数幂比较或者是同指数比较,对数函数就是利用换底公式将对数转换成同一个底数下,再利用对数函数的单调性比较大小,但对于具体题目而言,可在其取值范围内,取特殊值(特殊值要方便计算),能够有效地化难为易,大大降低了试题的难度,又快以准地得到答案.10.函数()()()sin 0,0,0f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象( )A. 向左平移3π个单位长度 B. 向左平移12π个单位长度 C. 向右平移3π个单位长度D. 向右平移12π个单位长度【答案】B 【解析】 【分析】由函数的最值求出A ,由周期求出ω,由特殊点求出φ的值,可得凹函数f (x )的解析式,再利用y=()sin A x ωϕ+的图象变换规律,得出结论.【详解】由函数f (x )=()()sin 0,0,0A x A ωϕωπϕ+>>-<<的部分图象,可得A=2,∵2362T πππ⎛⎫=--= ⎪⎝⎭,∴T=π,ω=2,f (x )=2sin (2x+φ), 将23π⎛⎫⎪⎝⎭,代入得213sin πϕ⎛⎫+= ⎪⎝⎭,∵﹣π<φ<0, ∴()22226612f x sin x sin x πππϕ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,.故可将函数y=f (x )的图象向左平移12π个单位长度得到的图象,即为()sin g x A x ω=的图象, 故选B .【点睛】由sin y x =的图象变换出()sin y x ωϕ=+ ()0ω>的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换,利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 二、填空题11.定义运算(){()a ab a b b a b ≤*=>,例如,121*=,则函数2()(1)f x x x =*-的最大值为 . 【答案】352【解析】【详解】由22151||100x x x x x -+≤-⇔+-≤∴≤≤151522x --+≤≤; 所以21515,()2215(){1,()2151,(2x x f x x x x x -≤≤-+=-<-+<, 此函数图象如图所示,35;12.函数1()424xf x x =-+-的定义域为______. 【答案】[2,2)- 【解析】 【分析】根据二次根式及分式成立的条件,即可求得函数的定义域.【详解】函数1()24x f x =- 所以自变量x 的取值满足240240x x ⎧-≥⎨-≠⎩解不等式组可得22x -≤< 即[)2,2x ∈- 故答案为: [)2,2-【点睛】本题考查了函数定义域的求法,属于基础题.13.设集合{}|1,A x x a x R =-<∈,{}|15,B x x x R =<<∈,若A B ≠⊂,则a 的取值范围为________. 【答案】24a ≤≤. 【解析】 【分析】先化简集合A,再根据A B ≠⊂得到关于a 的不等式求出a 的取值范围. 【详解】由1x a <-得11x a --<<,∴11a x a <<-+,由A B ≠⊂得1115a a ->⎧⎨+<⎩,∴24a <<.又当2a =时,{}A |13x x <<=满足A B ≠⊂,4a =时,{}|35A x x =<<也满足A B ≠⊂,∴24a ≤≤. 故答案为24a ≤≤【点睛】(1)本题主要考查集合的化简和关系运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 利用数轴处理集合的交集、并集、补集运算时,要注意端点是实心还是空心,在含有参数时,要注意验证区间端点是否符合题意.14.已知关于x ,y 的不等式组210020x y x m y -+≥⎧⎪+≤⎨⎪+≥⎩,表示的平面区域内存在点()00,P x y ,满足0022x y -=,则m 的取值范围是______.【答案】4,3⎛⎤-∞ ⎥⎝⎦【解析】 【分析】作出不等式组对应的平面区域,要使平面区域内存在点点()00,P x y 满足0022x y -=,则平面区域内必存在一个C 点在直线22x y -=的下方,A 在直线是上方,由图象可得m 的取值范围.【详解】作出x ,y 的不等式组210020x y x m y -+≥⎧⎪+≤⎨⎪+≥⎩对应的平面如图:交点C 的坐标为(),2m --, 直线22x y -=的斜率为12,斜截式方程为112y x =-, 要使平面区域内存在点()00,P x y 满足0022x y -=, 则点(),2C m --必在直线22x y -=的下方, 即1212m -≤--,解得2m ≤,并且A 在直线的上方;(),12A m m --,可得11212m m -≥--,解得43m ≤, 故m 的取值范围是:4,.3⎛⎤-∞ ⎥⎝⎦ 故答案为4,.3⎛⎤-∞ ⎥⎝⎦【点睛】本题主要考查线性规划的基本应用,利用数形结合是解决本题的关键,综合性较强.在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.15.已知函数()()1,421,4xx f x f x x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪+<⎩,则f (log 23)=_____. 【答案】124【解析】由已知得222(log 3)(log 31)(log 32)f f f =+=+22(log 33)(log 24)f f =+=122log 24log (24)1()22-==124= 三、解答题16.已知函数()412x f x a a=-+(0a >且1a ≠)是定义在(),-∞+∞上的奇函数. (1)求a 值;(2)当(]0,1x ∈时, ()22xtf x ≥-恒成立,求实数t 的取值范围. 【答案】(1)2 ;(2)0t ≥.【解析】【分析】(1)根据奇函数的定义,(0)0f =,即可求出a 的值;(2)由(1)得函数()f x 的解析式,当(]0,1x ∈ 时,220x +>,将不等式转化为()()221220x x t t -+⋅+-≤.利用换元法:令2x u =,代入上式转化为(]1,2u ∈时, ()2120u t u t -+⋅+-≤恒成立,根据二次函数的图象与性质,即可求出t 的取值范围.【详解】解:(1)∵()f x 在(),-∞+∞上奇函数,即()()f x f x -=-恒成立,∴()00f =.即04102a a-=⨯+, 解得2a =. (2)由(1)知()22112121x x x f x -=-=++, 原不等式()22xtf x ≥-,即为22222x x x t t ⋅-≥-+.即()()221220x x t t -+⋅+-≤. 设2x u =,∵(]0,1x ∈,∴(]1,2u ∈,∵(]0,1x ∈时, ()22x tf x ≥-恒成立, ∴(]1,2u ∈时, ()2120u t u t -+⋅+-≤恒成立, 令函数()()212g u u t u t =-+⋅+-,根据二次函数的图象与性质,可得 (1)0(2)0g g ≤⎧⎨≤⎩,即2211120,21220,t t t t ⎧-+⨯+-≤⎨-+⨯+-≤⎩解得0t ≥.【点睛】本题考查奇函数的定义与性质,二次函数的图象与性质,考查不等式恒成立含参数的取值范围,考查转化思想和换元法17.已知集合A={x|3≤x<7},B={x|x 2﹣12x+20<0},C={x|x <a}.(1)求A∪B;(∁R A )∩B;(2)若A∩C≠∅,求a 的取值范围.【答案】(1)A∪B={x|2<x <10};(C R A )∩B={x|2<x <3或7≤x<10}.(2)a >3.【解析】试题分析:(1)先通过解二次不等式化简集合B ,利用并集的定义求出A∪B,利用补集的定义求出C R A ,进一步利用交集的定义求出(C R A )∩B;(2)根据交集的定义要使A∩C≠∅,得到a >3.解:(1)B═{x|x 2﹣12x+20<0}={x|2<x <10};因为A={x|3≤x<7},所以A∪B={x|2<x <10};(1分)因为A={x|3≤x<7},所以C R A={x|x <3或x≥7};(1分)(C R A )∩B={x|2<x <3或7≤x<10}.(1分)(2)因为A={x|3≤x<7},C={x|x <a}.A∩C≠∅,所以a >3.(2分)考点:交、并、补集的混合运算;集合关系中的参数取值问题.18.已知函数1()3sin()126f x x π=+-. 求:(1)函数的最值及相应的x 的值;(2)函数的最小正周期.【答案】(1)见解析(2)4π【解析】试题分析:(1)由11sin()126x π-≤+≤,可推得143sin()1226x π-≤+-≤,即可求解函数的最值及其相应的x 的值.(2)利用三角函数的周期公式,即可求解函数()f x 的最小正周期.试题解析:(1)因为11126sin x π⎛⎫-≤+≤ ⎪⎝⎭,所以133326sin x π⎛⎫-≤+≤ ⎪⎝⎭, 所以143i 1226s n x π⎛⎫-≤+-≤ ⎪⎝⎭, 所以()2max f x =,此时12262x k πππ+=+,即24,3x k k Z ππ=+∈; 所以()4min f x =-,此时12262x k πππ+=-,即44,3x k k Z ππ=-∈. (2)函数()f x 的最小正周期24T ππω==. 19.已知向量a ,b ,c ,求作a b c -+和()a b c --.【答案】详见解析【解析】【分析】根据向量加减法的三角形法则作图即可.【详解】由向量加法的三角形法则作图:a b c-+由向量三角形加减法则作图:()a b c--【点睛】本题主要考查了向量加减法的三角形法则,属于中档题.20.设 (1-x)15=a0+ a1x+ a2x2+⋯+ a15x15求: (1) a1+ a2+ a3+ a4+ ⋯+ a15(2) a1+ a3+ a5+ ⋯+ a15【答案】(1) -1 (2) -214【解析】试题分析:(1)利用赋值法,令0x =可得01a =,再令1x =即可求得121501a a a a ++=-=-;(2)利用赋值法,令1x =,1x =-,所得的两式做差计算可得14135152a a a a ++++=-. 试题解析:(1)题中的等式中,令0x =可得:1501a =,即01a =,令1x =可得:15012150a a a a =+++,据此可得:121501a a a a ++=-=-.(2)题中的等式中,令1x =-可得:150123152a a a a a =-+-+-,① 令1x =可得:15012150a a a a =+++,②①-②可得:()151351522a a a a =-++++,则:14135152a a a a ++++=-.点睛:求解这类问题要注意:①区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质;②根据题目特征,恰当赋值代换,常见的赋值方法是使得字母因式的值或目标式的值为0,1,-1.21.化简求值(1)07log 23(9.8)log lg25lg47+-++(2)())121023170.0272179--⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)132;(2)45-. 【解析】 试题分析:根据实数指数幂和对数的运算公式,即可求解上述各式的值.试题解析:(1)原式()323log 3lg 25421=+⨯++ 3313lg100323222=++=++=;(2)原式=()()1122313250.3719---⎛⎫-+- ⎪⎝⎭=154910.33-+-=45-。
精品解析:北京市海淀区首都师范大学附属中学2019-2020学年高一下学期第二次月考英语试题(原卷版)
北京市海淀区2019-2020学年度第二学期第二次月考试卷首师附中学校高一英语一、完形填空(共20道题,每小题1.5分,共30分)A friend of mine is a musician. He ____1____ seems to be learning new tunes, new ____2____, and new ways of making music in cool ways. At the weekends, he ____3____ to go into Central Park in the center of Nagoya during the daytime where lots of bands ____4____. Some of these bands are really good, but some of them are quite ____5____. One of the reasons why my friend likes ____6____ all the bands is that they are ____7____! And as he says to me, ''____8____ expensive things don't necessarily mean that they're good, free things don't necessarily mean they have no ____9____. You have to listen and look yourself and ______10______ what is valuable for you. And ______11______, as you listen and look, you may learn different things.''So my friend goes to the ______12______ every week when the weather is fine, and he says he learns______13______ from every single band! When he watches and listens to the really good bands, he learns new concertos (协奏曲) from the ______14______ and cool rhythms from the drummers. I guess that it's not______15______ that you can learn a lot by watching ______16______ performers. But what really ______17______ me are my friend's words — ''You can learn by watching and listening to the bad performers, too. When I watch a bad performer, I think to myself-wow, that's another thing that I'm going to ______18______.''So my friend makes ______19______ by learning from both good and bad performers. And he says he also finds ______20______ and pleasure in learning and improving in ways that he never even imagined!1. A. finally B. quickly C. seldom D. always2. A. games B. systems C. instruments D. languages3. A. loves B. wishes C. agrees D. affords4. A. compete B. perform C. study D. succeed5. A. poor B. shy C. unlucky D. fierce6. A. forming B. watching C. inspiring D. training7. A. right B. familiar C. famous D. free8. A. Since B. For C. While D. Unless9. A. price B. fault C. soul D. value10. A. find out B. wait for C. bring out D. call for11. A. in short B. of course C. at first D. as usual12. A. park B. club C. studio D. cinema13. A. nothing B. anything C. everything D. something14. A. listeners B. learners C. players D. dancers15. A. touching B. exciting C. surprising D. satisfying16. A. excellent B. strange C. energetic D. amateur17. A. embarrasses B. impresses C. comforts D. convinces18. A. come up with B. get hold of C. look down on D. get rid of19. A. time B. money C. progress D. way20. A. duty B. fun C. pride D. respect二、阅读理解(共5篇文章,为A、B、C、D、E文章,每个文章共4道题,共计20小题,每道题3分,共60分)AFor a herder (放牧人) in Africa, the hardest part of the job is searching for cattle lost in the bush. But for Andrew, a herder at a farm in Zimbabwe, it's not a problem. Once he spo ts Toro, he knows the rest of the herd is nearby. That’s because Toro isn’t an ordinary member of the herd. He's a giraffe. In hot weather, cattle rest in the shade under his belly. And because of his height, Toro can spot lions long before they come close to the herd.Toro's unusual situation came about after his mother was killed by lions. Toro survived the attack, but he was left with no one to protect him or give him milk. About two days later, some herders spotted and rescued him. With the permission of the Department of Wildlife, the herders moved Toro to Andrew's farm. Since giraffes and cattle are both plant-eating animals that live in groups, their behaviors are much the same. Toro was accepted into the herd and wandered among the cattle as they ate grass.Toro doesn't always behave like the other members of his new herd. Like many kinds of animals, cattle compete for dominance (支配). Standing more than 13 feet tall, Toro is more than three times taller than the biggest bull, But Toro never tries to be ''the boss. ''He is very used to their company, '' Andrew said. When the herd enters the kraal (家畜栏), the cows and bulls push each other. ''But thanks to his height, Toro does not need to join the mess, '' said Andrew.When asked if Toro would ever be returned to the wild, Munetsi, an officer of the Department of Wildlife said no. ''In the wild, he would find it difficult to be accepted into another herd or defend himself from predators (猎食者),'' he added. ''He seems very much at home and is respected by the cattle.''21. What was Toro like when the herders found him?A. He was left alone.B. He was seriously ill.C. He was lost in the bush.D. He was fighting with lions.22. What do we know about Toro in the cattle herd?A. He has fought to be the leader.B. He gets along well with the herd.C. He is pushed around by the bulls.D. He stays away from the herd most of the time23. What will happen to Toro according to Munetsi?A. He will be sent back to the wild.B. He will be put into another herd of giraffes.C. He will continue to live together with Andrew.D. He will be trained to fight with the big animals.24. What may be the best title for the text?A. Giraffes under threat in the wildB. A surprising new family for a giraffeC. A new way of herding appearing in AfricaD. Moments showing friendship between animalsBWhen Faith Wanjiku graduated from the Technical University of Kenya last year, she immediately enrolled (注册) at the Confucius Institute in Kenyatta University. She wanted to learn Chinese, as she believed that it would help her land a good job.She has just completed the hanyu Shuiping Kaoshi (HSK) 3 exam. HSK is a test of Chinese language level fornon-native speakers, organized by the Confucius Institute Headquarters.However, this level isn’t enough for Wanjiku, who plans to pass HSK 6. She wanted to increase her level of Chinese and improve her spoken Chinese. And Wanjiku isn’t alone. The number of people taking the HSK reached 6.8 million in 2018 and went up 4.6 percent from a year earlier, the Ministry of Education said on May 31.Chinese is becoming an increasingly popular choice of language to study around the world. Currently, middle school students in Russia can take Chinese as an elective language test in the country’s national colleg e entrance exam, Sputnik News reported.In May, Zambia became the fourth country in Africa-after Kenya, Uganda and South Africa—to introduce Chinese language to its schools.And many English-speaking countries have shown an interest in allowing their students to learn Chinese. The US government announced the launch of “1 Million Strong” in 2015, a plan that aims to bring the total number of learners of Chinese to l million by 2020.Behind the growing popularity of Chinese language learning is the internatio nal community’s positive attitude toward Chinas future development, as well as the people’s longing to learn about Chinese civilization and culture.Indeed, it’s as the former president of South Africa Nelson Mandela put it, “if you talk to a man in a lang uage he understands, that goes to his head. If you talk to him in his own language, that goes to his heart.”25. What did Wanjiku do after graduating from university?A. She went abroad.B. She learned Chinese.C. She found a job.D. She travelled to China.26. HSK is a test for ______.A. non-native speakersB. native speakersC. middle school studentsD. college students27. What does the underlined sentence mean?A. Wangjiku has lots of friends.B. Lots of people want to pass HSK6 exam.C. Wangjiku has passed HSK3 exam.D. Many people want to live in China.28. What may be the best title for the text?A. Chinese Language Study Takes OffB. Chinese Play an Important Role in EconomyC.People Share the Experience of Learning ChineseD. Different Opinions about the Function of Chinese C Australia and New Zealand’s health organizations have given their advice on when to use sunscreen (防晒霜),suggesting Australians apply it every day to avoid bad health effects.A Sunscreen Summit took place in the Australian State of Queensland. During the summit, representatives from some of Australia’s leading research, medical and public health organizations examined the evidence on sunscreen use and determined that in most parts of the country it is beneficial to apply sunscreen every day.“Up until now, public health organizations have recommended applying sunscreen ahead of planned outdoor activities but haven t recommended applying it every day as part of a morning routine (惯例),” professor Rachel Neale from QIMR Berghofer Medical Research Institute said. “In recent years, it has become clear that the DNA damage causes skin cancer and melanoma(黑色素瘤), which is caused by repeated small exposure to sunlight over a period of time,” Neale said. “In Australia, we get a lot of sun exposure from everyday activities such as alking to the bus stop or train station,” Neale said.A study showed that one in two Australians believed it was unhealthy and potentially dangerous to use sunscreen every day. However, Terry Slevin from the Public Health Association of Australia says it is wrong. “There is consistent and compelling evidence that sunscreens are safe,” Slevin said. “Importantly, medical trials have found that people who use sunscreen daily have the same levels of vitamin d as those w ho don’t,” Slevin added.Australia has one of the highest rates of skin cancer in the world which is made worse by the country’s close to Antarctica where there is a hole in the ozone layer (臭氧层), letting in higher numbers of UV rays.29. What made Australian health organizations advise Australians to use sunscreen?A. The makers of sunscreen.B. Australian government.C.The Sunscreen Summit.D. New Zealand’s researchers.30. What is not recommended before the Sunscreen Summit? A. Using sunscreen before outdoor activities. B. Using sunscreen as a morning routine. C. Reducing the use of sunscreen. D. Reducing outdoor activities.31. What is the misunderstanding of many Australians?A. People using sunscreen won’t have skin cancer.B.Sunscreen will never take effect.C. People using sunscreen have the same levels of vitaminD. D. Sunscreen is bad for people’s health.32. Which of the following best explains “compelling” underlined in paragraph 4?A.Interesting. B. Disappointing. C. Boring. D. Convincing. D Scientists blame greenhouse gases for being a major cause of climate change around the world. This is becausegreenhouse gases trap heat in the atmosphere and make the planet warmer.Now, a team of researchers has announced a successful experiment that turned carbon dioxide into useful liquid fuel. The researchers created a device, called a reactor, which changes bon dioxide into a pure form of formic acid(甲酸). Formic acid is a substance (物质) found in ants and some other insects, as well as in many plants. It is used as an antibacterial material and in the processing of some kinds of clothing.Haotian Wang led the research team. He said in a statement that the results of the experiment were important because formic acid is a major carrier of energy. So, the substance can provide a way to reuse carbon dioxide and prevent it from being released into the atmosphere. “It’s a fuel-cell fuel that can generate electricity and send out carbon dioxide which you can grab and recycle again,” Wang said.“Other methods for turning carbon dioxide into formic acid require intense purification processes,” Wang said. Such methods are very costly and require a lot of energy. The Rice University team said it was able to reduce the number of steps in the traditional process to create a low-cost, energy-saving method.The researchers reported the reactor device performed with a conversion rate (转化率) of 42 percent. This means that nearly half of the electrical energy can be stored in formic acid as liquid fuel. The team said the reactor was able to create formic acid continuously for 100 hours with little degradation (退化) of the device’s parts.Wang said the reactor could easily be used to produce other high-value products, including alcohol-based fuels. The researchers noted that the technology could also be a big help in solving another major energy problem—how to store large amounts of power in small places.33. What factor is the main cause of climate change?A. Greenhouse gases.B. Chemistry waste.C. Formic acid.D. Liquid fuel.34. What do we know about formic acid?A. It is a large amount of power.B. It can be found in ants.C. It is high- value equipment.D. It is a substance in clothing.35. What is Wang’s attitude towards his own research?A. Doubtful.B. Aggressive.C. Optimistic.D. Uncaring.36. In what magazine can you read this text?A. A travel magazine.B. A sports magazine.C. A music magazine.D. A science magazine.EThe 2016 Rio Olympic Games have come to an end. Without doubt, many Chinese sports fans sat in front of the TV and cheered our athletes on, hoping that they would get as many gold medals as possible.But sometimes our desire for gold medals can result in the sadness of failure. When Liu Xiang, China’s track hero, pulled out of the Beijing Olympics due to injury, he greatly disappointed many Chinese sports fans.But things are different now. In the 2016 Rio Olympic Games, we saw a healthier Chinese attitude towards the sports people, fully in line with the Olympic spirit.China didn’t win any gold medals o n the first day. But, instead of criticizing(批评) the athletes who failed to win, most of the fans were happy with their efforts. “Looking at the results in the right way when an athlete misses out on gold shows the maturity(成熟) of a person, and is also a challenge for a country to face up to in the process of development,” commented CRI.Swimmer Fu Yuanhui won fans’ hearts, even if she only won the third place in the 100m backstroke final. Her fans on her Sina Weibo have increased 100,000 to over 6 million. Many sports fans appreciated her straightforward character and attitude towards competitions.“The warm support from Internet users shows that public attitude towards competitive sports and the Olympics has gotten to a higher level”, said an article in the People’s Daily.37. What can we know from Paragraph 2?A. Gold medals can also cause sadness.B. Liu Xiang always disappoints his fans.C. Fans have high expectations of Liu Xiang.D. Liu Xiang got injured before the Olympics.38. What is people’s attitu de now towards the athletes who failed?A. Interested.B. Understanding.C. Angry.D. Disappointed.39. What makes people like Fu Yuanhui?A. Her Sina Weibo.B. Her kindness to the fans.C. Her attitude to competitions.D. Her winning a gold medal.40. What does the author mainly want to tell us in this passage?A. Winning gold medals is important.B. Changing attitude to athletes is a must.C. Results are not important in the competition.D. Peoples’ attitude towards competitive sports is healthier.三、七选五(共5小题,每道题2分,共10分)After a long day at work, coming home is a breath of fresh air. ____41____ However, is it as healthy as it can be? Below are a number of things we can do to create a healthy home environment that will help to case the workday stress and promote our physical and mental health.Cleaning the house regularly is the first thing we should do. It may seem like a tiring thing to clean but there is a reason for doing so. We can remove dust by cleaning the house. Leaving layers of dust everywhere means that there is a build-up of dust. ____42____ Into our lungs.Making sure the rooms are full of sunlight is also important. We may not realize it but sunlight is an important part of our growth. We all know that sunlight promotes better working conditions. ____43____ Think about using a Parans system where sunlight does not reach. This technology gathers the sunlight by using solar panels (板). It can send out sunlight wherever we are.____44____ Going green will help to remove toxins (毒素) in the air. They also give off oxygen, which can lower stress and improve our moods.Along the lines of being green, it can also be vital to think about what things we are bringing into the house. Try to avoid specific plastics that are harmful to health. ____45____ They may contain poisonous chemicals that can be breathed in, or simply absorbed through the skin.A. And where do these layers of dust go?B. Home is a comfortable place to sit back and relax.C. Is our home as safe as it used to be?D. The same thing applies to certain carpets and paint.E. It is also a good idea to add more plants in our house.F. Besides, it can reduce both stress and high blood pressure.G. It is acknowledged that a greener lifestyle is linked to better health.四、写作第一节提纲类作文共1题,共15分。
北京市首都师范大学附属中学2022-2023学年高一下学期期中练习数学试题
北京市首都师范大学附属中学2022-2023学年高一下学期
期中练习数学试题
学校:___________姓名:___________班级:___________考号:___________
A .5
B .10
C .13
D .26
三、双空题
16.声音是由物体振动而产生的声波通过介质(空气、固体或液体)传播并能被人的听觉器官所感知的波动现象.在现实生活中经常需要把两个不同的声波进行合成,这种技术被广泛运用在乐器的调音和耳机的主动降噪技术方面.
(1)若甲声波的数学模型为()1
sin 200f t t p =,乙声波的数学模型为
()()()2sin 2000f t t p j j =+>,甲、乙声波合成后的数学模型为()()()12f t f t f t =+.要
使()0f t =恒成立,则j 的最小值为____________;
(2)技术人员获取某种声波,其数学模型记为()H t ,其部分图像如图所示,对该声波进行逆向分析,发现它是由S 1,S 2两种不同的声波合成得到的,S 1,S 2的数学模型分
(ⅱ)记()()()()()()s P M PA M PB M PC M PD M PE =++++uuu r uuu r uuu r uuu r uuu r
.求()s P 的最小值及相应的
点P 的坐标.。
北京市海淀区首都师范大学附属中学2023-2024学年高二上学期期中考试数学试题
16.已知椭圆
C:
x2 4
+
y2
= 1,
P (0,1)
,过
P
点斜率为
k
的直线与椭圆
C
交于另一点为
Q.
(1)若VPOQ 的面积为 8 ,求 k 的值; 17
(2)若直线 y = x + m 与椭圆 C 交于 M,N 两点,且 PM = PN ,求 m 的值.
17.已知在多面体 ABCDE 中, DE ∥ AB , AC ^ BC , BC = 2AC = 4 , AB = 2DE ,
在曲线 x + y = 1(0 < x < 1,0 < y <1) 上任取一点 (a,b) ,
答案第41 页,共22 页
则1 = a + b > a + b ,即点 (a, b) 在直线 x + y = 1的下方,如下图所示.
直线 x + y = 1交 x 轴于点 A(1,0) ,交 y 轴于点 B(0,1) ,
北京市海淀区首都师范大学附属中学 2023-2024 学年高二
上学期期中考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知双曲线 C :
x2 a2
-
y2 b2
= 1 的渐近线经过点 (1, 2) ,则双曲线的离心率为(
B.(-¥,0) È (8,+¥)
C. (0, 4)
D. (0,8)
试卷第21 页,共33 页
二、填空题
9.已知焦点在 x 轴上的椭圆
x2 m
+
北京市首都师范大学附属中学2023-2024学年高一下学期期中考试数学试题(含简单答案)
首都师范大学附属中学2023-2024学年高一下学期期中考试数学第Ⅰ卷(共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题所列出的四个选项中,只有一项是最符合题目要求的)1. 下列函数中,既是偶函数又是周期为函数为( ).A. B. C. D.2. 已知是第二象限的角,为其终边上的一点,且,则( ).A. B. C.D. 3. 角的度量除了有角度制和弧度制之外,在军事上角的度量还有密位制,密位制的单位是密位.1密位等于周角的,即弧度密位.在密位制中,采用四个数字来记一个角的密位数.且在百位数字与十位数字之间画一条短线,例如3密位写成,123密位写成,设圆的半径为1,那么密位的圆心角所对的弧长为( )A.B.C.D.4. 已知点A (1,2),B (3,7),向量,则A. ,且与方向相同B. ,且与方向相同C. ,且与方向相反D. ,且与方向相反5. 关于函数,则下列结论中:①为该函数的一个周期;②该函数的图象关于直线对称;③将该函数的图象向左平移个单位长度得到的图象:④该函数在区间上单调递减.所有正确结论的序号是( )A. ①②B. ③④C. ①②④D. ①③④的πsin y x=cos y x=tan2y x=cos2y x=α(),6P x 3sin 5α=x =4-4±8-8±160002π3606000=︒=003-123-1000-π6π4π3π2(,1),//a x AB a =-25x =AB a25x =-AB a25x =AB a 25x =-AB a π3cos 23y x ⎛⎫=+⎪⎝⎭π-π3x =π63cos 2y x =ππ,66⎡⎤-⎢⎥⎣⎦6. 设,是两个不共线向量,则“与的夹角为钝角”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 已知函数,,其图象如下图所示.为得到函数图象,只需先将函数图象上各点的横坐标缩短到原来的(纵坐标不变),再( )A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位8. 若P 是内部或边上的一个动点,且,则的最大值是( )A.B.C. 1D. 29. 如图,质点在以坐标原点为圆心,半径为1的圆上逆时针作匀速圆周运动,的角速度大小为,起点为射线与的交点.则当时,动点的纵坐标关于(单位:)的函数的单调递增区间是( )A. B. C. D. 10. 如图,圆M 为的外接圆,,,N 为边BC 的中点,则( )的a b a b()a ab ⊥+ 111()sin()f x A x ωϕ=+222()sin()g x A x ωϕ=+()g x ()f x 12π6π12π6π3ABC V AP xAB y AC =+xy 1412P O P 2rad /s 0P ()0y x x =-≥O e 012t ≤≤P y t s π0,2⎡⎤⎢⎥⎣⎦7π11π,88⎡⎤⎢⎥⎣⎦11π15π,88⎡⎤⎢⎥⎣⎦3π11π,44⎡⎤⎢⎥⎣⎦ABC V 4AB =6AC =AN AM ⋅=A. 5B. 10C. 13D. 26第Ⅱ卷(共80分)二、填空题(本大题共5小题,敏小题5分,共25分)11 _________.12. 已知是第四象限角,且,则______,______.13. 在正方形网格中的位置如图所示,则______,向量在向量上的投影的数量为______.14. 已知函数的图象关于直线对称,且在上单调,则的最大值为_____.15 已知函数,给出下列四个结论:①存在无数个零点;②在上有最大值;③若,则;④区间是的单调递减区间.其中所有正确结论的序号为__________.三、解答题(本大题共5小题,共55分.解答应写出文字说明、演算步骤或证明过程.)16. 如图,在平行四边形ABCD 中,,.设,...sin 330︒=α5tan 12α=-cos α=πcos()2α+=,a b ,a b 〈〉=a b ()()cos 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭1110x π=()f x ,6m π⎡⎤⎢⎥⎣⎦m ()2sin πxf x x x=-()f x ()f x ()1,+∞()2023.7f a =()2022.7f a -=1,12⎛⎫⎪⎝⎭()f x 2AE AB = 13DF DE = AB a =AD b =(1)用,表示,;(2)用向量的方法证明:A ,F ,C 三点共线.17. 已知函数,其中,且的图象过点.(1)求的值;(2)求的单调减区间和对称中心的坐标;(3)若,函数在区间上最小值为,求实数的取值范围.18. 在平面直角坐标系中,已知点,点是直线上的一个动点.(1)求的值;(2)若四边形是平行四边形,求点的坐标;(3)求的最小值.19. 在条件①对任意的,都有;条件②最小正周期为;条件③在上为增函数,这三个条件中选择两个,补充在下面的题目中,并解答.已知,若______,则唯一确定.(1)求的解析式;(2)设函数,对任意的,不等式恒成立,求实数的取值范围.20. 设(为正整数),对任意的,,定义(1)当时,,,求;a b AC DE()sin(2)f x x ϕ=-π||2ϕ<()y f x =π(,0)12ϕ()f x 0m >()f x []0,m 12-m xOy ()()()3,3,5,1,2,1A B P M OP PA PB -APBQ Q MA MB ⋅x ∈R ()π6f x f x ⎛⎫-=⎪⎝⎭()f x π()f x 5ππ,1212⎡⎤-⎢⎥⎣⎦()()()sin ,0,02πf x x ωϕωϕ=+>≤<,ωϕ()f x ()π216g x f x ⎛⎫=++ ⎪⎝⎭ππ,612x ⎡⎤∈-⎢⎥⎣⎦()()210g x mg x --≤m (){}{}12,,,0,1,1,2,,n niS x x x x i n =⋯∈=⋯n ()12,,,nx x x α=⋅⋅⋅()12,,,n y y y β=⋅⋅⋅1122n nx y x y x y αβ⋅=++⋅⋅⋅+3n =()1,1,0α=()1,0,1β=αβ⋅(2)当时,集合,对于任意,,均为偶数,求A 中元素个数的最大值;(3)集合,对于任意,,,均有,求A 中元素个数的最大值.3n =n A S ⊆αA β∈αβ⋅n A S ⊆αA β∈αβ≠0αβ⋅≠首都师范大学附属中学2023-2024学年高一下学期期中考试数学 简要答案第Ⅰ卷(共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题所列出的四个选项中,只有一项是最符合题目要求的)【1题答案】【答案】D 【2题答案】【答案】C 【3题答案】【答案】C 【4题答案】【答案】D 【5题答案】【答案】C 【6题答案】【答案】B 【7题答案】【答案】A 【8题答案】【答案】A 【9题答案】【答案】B 【10题答案】【答案】C第Ⅱ卷(共80分)二、填空题(本大题共5小题,敏小题5分,共25分)【11题答案】【答案】【12题答案】12【答案】 ①.②.【13题答案】【答案】①②.【14题答案】【答案】【15题答案】【答案】①②③三、解答题(本大题共5小题,共55分.解答应写出文字说明、演算步骤或证明过程.)【16题答案】【答案】(1),;(2)略【17题答案】【答案】(1); (2),; (3).【18题答案】【答案】(1)(2); (3).【19题答案】【答案】(1) (2)【20题答案】【答案】(1)1 (2)4(3).12135133π43π5A C a b =+2DE a b =- π6ϕ=π5π[π,π](Z)36k k k ++∈()ππ,0Z 122k k ⎛⎫+∈ ⎪⎝⎭2π(0,3(6,3)2-()π()sin 32f x x +=8[,)3+∞12n -。