直线与圆的方程的应用

合集下载

人教版高中数学必修二4.2.3直线与圆的方程的应用(一)1

人教版高中数学必修二4.2.3直线与圆的方程的应用(一)1
什么条件下用一般方程?
复习引入
1. 直线方程有几种情势? 分别是什么? 2. 圆的方程有几种情势?分别是哪些? 3. 求圆的方程时,什么条件下用标准方程?
什么条件下用一般方程? 4. 直线与圆的方程在生产生活实践中有广
泛的应用,想想身边有哪些呢?
复习引入
5. 如何用直线和圆的方程判断它们之间的 位置关系?
4. 对称问题 圆关于点对称,圆关于直线对称.
例4.求圆(x-1)2 +(y+1)2=4关于点(2,2) 对称的圆的方程.
练习.求圆(x-1)2 +(y-1)2=4关于直线 l:x-2y-2=0对称的圆的方程.
作业讲评
《习案》P.182第4、5题; 《习案》 P.183第6题.
课后作业
1. 阅读教材P.130到P.132; 2. 《课后限时检测》二十七 .
4.2.3直线与圆 的方程的应用
复习引入
1. 直线方程有几种情势? 分别是什么?
复习引入
1. 直线方程有几种情势? 分别是什么? 2. 圆的方程有几种情势?分别是哪些?
复习引入
1. 直线方程有几种情势? 分别是什么? 2. 圆的方程有几种情势?分别是哪些? 3. 求圆的方程时,什么条件下用标准方程?
复习引入
5. 如何用直线和圆的方程判断它们之间的 位置关系?
6. 如何根据圆的方程,判断它们之间的位 置关系?
讲授新课
1. 标准方程问题 例1. 求圆(x-2)2 +(y+3)2=4上的点到 x-y+2=0的最远、最近的距离.
2. 轨迹问题
充分利用几何图形的性质,熟练 掌握两点间的距离公式、点到直线的 距离公式.
2. 轨迹问题
例2.过点A(4,0)作直线l交圆O: x2+y2=4 于B、C两点,求线段BC的中点P的轨迹 方程.

直线与圆的方程的应用

直线与圆的方程的应用

4.2.3直线与圆的方程的应用主要概念:坐标法――建立适当的直角坐标系后,借助代数方法把要研究的几何问题,转化为坐标之间的运算,由此解决几何问题。

一、重点难点本节教材的教学重点是掌握直线和圆的方程在实际生活中的应用,以及用坐标法研究几何问题的基本思想。

难点是如何把一个实际问题转化为数学问题,即数学建模,以及在运用坐标法证明几何问题时,如何能根据具体问题灵活地建立适当的直角坐标系。

二、教材解读本节教材的理论知识有问题提出、题型介绍、思考交流三个板块组成。

第一板块问题提出解读直线与圆的方程在生产、生活实践以及数学中有着广泛的应用。

理解、掌握知识的最终目的在于应用,通过知识的应用,问题的解决,一方面可使学生亲身体验到学习数学的意义和作用,培养学生学习的自觉性;另一方面联系实际的目的就是为了更好地掌握基础知识,增加用数学的意识,培养分析问题和解决问题的能力。

第二板块题型介绍解读直线与圆的方程在实际生活以及平面几何中的应用通过介绍直线与圆的方程在实际生活中的应用,其目的在于让学生了解应用问题就是在已学数学知识的基础上,从实际问题出发,经过去粗取精、抽象概括,把实际问题抽象成数学问题,建立相应的数学模型。

让学生掌握解决实际问题的全过程,提高学生分析问题和解决问题的能力。

通过介绍直线与圆的方程在平面几何中的应用,其目的在于让学生了解坐标法的数学思想,掌握用坐标法解决平面几何问题的“三步曲”,让学生从另一个角度再次体会“数形结合”的思想方法。

第三板块思考交流解读课本P.138例4中提出:如果不建立坐标系,你能解决这个问题吗?通过让学生思考和解答,试图让学生比较坐标法和几何法在解决这一问题时的优劣,从而发现坐标法在解决一些问题时的优越性。

数学来源于实际又服务于实际,新的课程标准越来越注意对学生在数学素养、数学能力方面的要求,要求学生能应用数学知识、观点、方法去处理实际问题,从而把数学的应用与大众生活紧密地结合起来,使数学教学更具有现实意义与教育意义。

直线与圆的方程的应用

直线与圆的方程的应用

直线与圆的方程的应用(提高)学习目标1.能利用直线与圆的方程解决有关的几何问题;2.能利用直线与圆的方程解决有关的实际问题;3.进一步体会、感悟坐标法在解决有关问题时的作用.要点梳理要点一、用直线与圆的方程解决实际问题的步骤1.从实际问题中提炼几何图形;2.建立直角坐标系,用坐标和方程表示问题中的几何元素,将平面问题转化为代数问题;3.通过代数运算,解决代数问题;4.将结果“翻译”成几何结论并作答.要点二、用坐标方法解决几何问题的“三步曲”用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后再把代数运算结果“翻译”成相应的几何结论.这就是用坐标法解决平面几何问题的“三步曲”.第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:把代数运算结果“翻译”成几何结论.要点诠释:坐标法的实质就是借助于点的坐标,运用解析工具(即有关公式)将平面图形的若干性质翻译成若干数量关系.在这里,代数是工具、是方法,这是笛卡儿解析几何的精髓所在.要点三、用坐标法解决几何问题时应注意以下几点1.建立直角坐标系时不能随便,应在利于解题的原则下建立适当的直角坐标系;2.在实际问题中,有些量具有一定的条件,转化成代数问题时要注意范围;3.最后要把代数结果转化成几何结论.典型例题类型一:直线与圆的方程的实际应用1.有一种大型商品,A、B两地均有出售且价格相同,某地居民从两地之一购得商品运回来,每公里的运费A地是B地的两倍,若A、B两地相距10公里,顾客选择A地或B地购买这种商品的运费和价格的总费用较低,那么不同地点的居民应如何选择购买此商品的地点【答案】圆C内的居民应在A地购物.同理可推得圆C外的居民应在B地购物.圆C上的居民可随意选择A、B两地之一购物.【解析】以直线AB为x轴,线段AB的垂直平分线为y轴,建立直角坐标系,如下图所示.设A (―5,0),则B(5,0).在坐标平面内任取一点P(x,y),设从A地运货到P地的运费为2a元/km,则从B地运货到P地的运费为a元/km.若P地居民选择在A地购买此商品,则,整理得.即点P在圆的内部.也就是说,圆C内的居民应在A地购物.同理可推得圆C外的居民应在B地购物.圆C上的居民可随意选择A、B两地之一购物.【总结升华】利用直线与圆的方程解决实际问题的程序是:(1)认真审题,明确题意;(2)建立直角坐标系,用坐标表示点,用方程表示曲线,从而在实际问题中建立直线与圆的方程的模型;(3)利用直线与圆的方程的有关知识求解问题;(4)把代数结果还原为对实际问题的解释.在实际问题中,遇到直线与圆的问题,利用坐标法比用平面几何及纯三角的方法解决有时要简捷些,其关键在于建立适当的直角坐标系.建立适当的直角坐标系应遵循三点:(1)若曲线是轴对称图形,则可选它的对称轴为坐标轴;(2)常选特殊点作为直角坐标系的原点;(3)尽量使已知点位于坐标轴上.建立适当的直角坐标系,会简化运算过程.要想学会建立适当的直角坐标系,必须靠平时经验的积累.【变式1】如图是某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需要用一个支柱支撑,求支柱的长度(精确到).【答案】【解析】建立坐标系如图所示.圆心的坐标是(0,b),圆的半径是r,那么圆的方程是:因为P(0,4)、B(10,0)都在圆上,所以解得,.所以圆的方程为把代入圆的方程得,所以,即支柱的高度约为.【变式2】某市气象台测得今年第三号台风中心在其正东300 km处,以40 km/h的速度向西偏北30°方向移动.据测定,距台风中心250 km的圆形区域内部都将受到台风影响,请你推算该市受台风影响的起始时间与持续时间.(精确到分钟)【答案】90分钟 10 h【解析】利用坐标法来求解.如图,不妨先建立直角坐标系xOy,其中圆A的半径为250 km,过B(300,0)作倾斜角为150°的直线交圆于点C、D,则该市受台风影响的起始与终结时间分别为C开始至D结束,然后利用圆的有关知识进行求解.以该市所在位置A为原点,正东方向为x轴的正方向建立直角坐标系,开始时台风中心在B(300,0)处,台风中心沿倾斜角为150°方向的直线移动,其轨迹方程为y=(x-300)(x≤300).该市受台风影响时,台风中心在圆x2+y2=2502内,设射线与圆交于C、D,则CA=AD=250,∴台风中心到达C点时,开始影响该市,中心移至D点时,影响结束,作AH⊥CD于H,则AH=AB·sin30°=150,HB=,CH=HD==200,∴BC=-200,则该市受台风影响的起始时间t1=≈(h),即约90分钟后台风影响该市,台风影响的持续时间t2==10(h)即台风对该市的影响持续时间为10 h.【总结升华】应用问题首先要搞清题意,最好是画图分析,运用坐标法求解,首先要建立适当的坐标系,设出点的坐标.还要搞清里面叙述的术语的含义.构造圆的方程进行解题(如求函数的最值问题)时,必须充分联想其几何意义,也就是由数思形.如方程y=1+表示以(0,1)为圆心,1为半径的上半圆,表示原点与曲线f(x,y)=0上动点连线的斜率.类型二:直线与圆的方程在平面几何中的应用2.AB为圆的定直径,CD为直径,自D作AB的垂线DE,延长ED到P使|PD|=|AB|,求证:直线CP必过一定点【答案】直线CP过定点(0,―r)【解析】建立适当的直角坐标系,得到直线CP的方程,然后探讨其过定点,此时要联想证明曲线过定点的方法.证明:以线段AB所在的直线为x轴,以AB中点为原点,建立直角坐标系,如下图.设圆的方程为x2+y2=r2,直径AB位于x轴上,动直径为CD.令C(x0,y0),则D(―x0,―y0),∴P(―x0,―y0―2r).∴直线CP的方程为.即 (y0+r)x―(y+r)x0=0.∴直线CP过直线:x=0,y+r=0的交点(0,―r),即直线CP过定点(0,―r).【总结升华】利用直线与方程解决平面几何问题时,要充分利用圆的方程、直线和圆的位置关系、圆与圆的位置关系等有关知识,正确使用坐标方法,使实际问题转化为代数问题,然后通过代数运算解决代数问题,最后解释代数运算结果的实际含义.【变式】如图,在圆O上任取C点为圆心,作一圆与圆O的直径AB相切于D,圆C与圆D 交于E、F,求证:EF平分CD.证明:令圆O方程为x2+y2=1.①EF与CD相交于H,令C(x1,y1),则可得圆C的方程(x-x1)+(y-y1)2=y12,即x2+y2-2x1x-2y1y+x12=0.②①-②得2x1x+2y1y-1-x12=0.③③式就是直线EF的方程,设CD的中点为H',其坐标为,将H'代入③式,得.即H'在EF上,∴EF平分CD.类型三:直线与圆的方程在代数中的应用3.已知实数x、y满足x2+y2+4x+3=0,求的最大值与最小值.【答案】【解析】如图所示,设M(x,y),则点M在圆O:(x+2)2+y2=1上.令Q(1,2),则设,即kx―y―k+2=0.过Q作圆O1的两条切线QA、QB,则直线QM夹在两切线QA、QB之间,∴k AQ≤k QM≤k QB.又由O1到直线kx―y―k+2=0的距离为1,得,即.∴的最大值为,最小值为.【总结升华】本例中利用图形的形象直观性,使代数问题得以简捷地解决,如何由“数”联想到“形”呢关键是抓住“数”中的某些结构特征,联想到解析几何中的某些方程、公式,从而挖掘出“数”的几何意义,实现“数”向“形”的转化.本例中由方程联想得到圆,由等联想到斜率公式.由此可知,利用直线与圆的方程解决代数问题的关键是由某些代数式的结构特征联想其几何意义,然后利用直线与圆的方程及解析几何的有关知识并结合图形的形象直观性来分析解决问题,也就是数形结合思想方法的灵活运用.涉及与圆有关的最值问题,可借助图形性质利用数形结合求解,一般地:(1)形如形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题;(3)形如d=(x-a)2+(y-b)2形式的最值问题,可转化为到定点P(a,b)距离的平方的最值问题.【变式】设函数和,已知当x∈[-4,0]时,恒有,求实数a的取值范围.答案与解析【答案】【解析】因为,所以,即,分别画出和的草图,利用数形结合法,当直线与半圆相切时取到最大值,由圆心到直线的距离为2,求出,即得答案.类型四:直线与圆的方程的综合应用4.设圆满足:(1)截y轴所得的弦长为2;(2)被x轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线:x―2y=0的距离最小的圆的方程.【答案】(x―1)2+(y―1)2=2或(x+1)2+(y+1)2=2【解析】满足题设中两个条件的圆有无数个,但所求的圆须满足圆心到直线的距离最小.这样须通过求最小值的方法找出符合题意的圆的圆心坐标.设圆心为P(a,b),半径为r,则P点到x轴、y轴的距离分别是|b|和|a|.由题设知:圆P截y轴所得劣弧对的圆心角为90°,故圆P截x轴所得弦长为∴r2=2b2.又圆P截y轴所得的弦长为2,∴r2=a2+1,从而2b2―a2=1.又∵P(a,b)到直线x―2y=0的距离为,∴5d2=|a―2b|2=a2+4b2―4ab=2(a―b)2+2b2―a2=2(a―b)2+1≥1,当且仅当a=b时取等号,此时.由,得或,∴r2=2.故所求的圆的方程为(x―1)2+(y―1)2=2或(x+1)2+(y+1)2=2.【总结升华】解决直线与圆的综合问题,一方面,我们要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题,通过代数的计算,使问题得到解决;另一方面由于直线与圆和平面几何联系得十分紧密(其中直线与三角形、四边形紧密相连),因此我们要勤动手,准确地作出图形,并充分挖掘几何图形中所隐含的条件(性质),利用几何知识使问题得到较简捷的解决.本题若用代数方法求解,其计算量大得多,不信自己试试看.在解决有关直线与圆的综合问题时,经常需要引进一些参数(用字母表示相关量),但不一定要解出每一个几何量,而是利用有关方程消去某些参数,从而得到所要的几何量的方程,解此方程即可.这种解题方法就是“设而不求”(设出了但没有求出它)的思想方法.“设而不求”是解析几何中的一种重要的思想方法.【变式】已知圆x2+y2+x―6y+m=0与直线x+2y―3=0相交于P、Q两点,点O为坐标原点,若OP⊥OQ,求m的值.【答案】3【解析】由得代入,化简得:5y2-20y+12+m=0,y1+y6=4,设的坐标分别为,,由可得:===0解得:析【答案与解析】1.【答案】B【解析】圆心C(2,3),,∴切线长.2.【答案】B【解析】如图所示,以A地为原点,正东方向为x轴正方向建立直角坐标系,则A(0,0),B(40,0).设台风的移动方向是射OC,则射线OC的方程是y=x(x≥0),以B为圆心,30为半径长的圆与射线OC交于M和N两点,则当台风中心在线段MN上移动时,B城市处于危险区内.点B到直线OC的距离是,则有(千米),因此B城市处于危险区内的时间为(小时)故选B.3.【答案】D【解析】直线AB的方程是,,则当△ABC面积取最大值时,边AB上的高即点C到直线AB的距离d取最大值.又圆心M(1,0),半径r=1,点M到直线的距离是,由圆的几何性质得d的最大值是,所以△ABC面积的最大值是.故选D.4.【答案】C【解析】结合圆的几何性质,得圆心C到直线的距离d满足1<d<3.所以.解得-17<k<-7或3<k<13.故选C.5.【答案】B【解析】圆心坐标是(3,4),半径是5,圆心到点(3,5)的距离为1,根据题意最短弦BD和最长弦(即圆的直径)AC垂直,故最短弦的长为,所以四边形ABCD的面积为.6.【答案】B【解析】因为两条切线x―y=0与x―y―4=0平行,故它们之间的距离即为圆的直径,所以,所以.设圆心坐标为P(a,―a),则点P到两条切线的距离都等于半径,所以,,解得a=1,故圆心为(1,―1),所以圆的标准方程为(x―1)2+(y+1)2=2,故选B.7.【答案】B【解析】设点(x,y)与圆C1的圆心(―1,1)关于直线x―y―1=0对称,则,解得,从而可知圆C2的圆心为(2,―2),又知其半径为1,故所求圆C2的方程为(x―2)2+(y+2)2=1.8.【答案】B【解析】因为三角形的三边长分别为3、4、5,所以该三角形是直角三角形,其图为如图所示的Rt△ABC.圆O是△ABC的内切圆,可计算得其半径为1,过O点作三条直线EF、GH、MN,分别与△ABC三边平行此三条直线将△ABC分割成6个部分.记半径为1的圆O1的圆心到三条边AB、BC、CA的距离分别为d1、d2、d3.而圆心O1在这6个区域时,有(Ⅰ)(最多4个公共点);(Ⅱ)(最多2个公共点);(Ⅲ)(最多2个公共点);(Ⅳ)(最多4个公共点).而圆心O1在线段EF、GH、MN上时,最多有4个公共点,故选B.9.【答案】(x+1)2+y2=2【解析】根据题意可知圆心坐标是(―1,0),圆的半径等于,故所求的圆的方程是(x+1)2+y2=2.10.【答案】2x―y=0【解析】设所求直线方程为y=kx,即kx―y=0.由于直线kx―y=0被圆截得的弦长等于2,圆的半径是1,由此得圆心到直线距离等于,即圆心位于直线kx―y=0上,于是有k―2=0,即k=2,因此所求直线方程为2x―y=0.11.【答案】8【解析】依题意,可设圆心坐标为(a,a)、圆半径为r,其中r=a>0,因此圆方程是(x―a)2+(y―a)2=a2由圆过点(4,1)得(4―a)2+(1―a)2=a2,即a2―10a+17=0,则该方程的两根分别是圆心C1,C2的横坐标,.12.【答案】―1 x2+(y―1)2=1【解析】由题可知,又k1k PQ=―1k1=―1,圆关于直线对称,找到圆心(2,3)的对称点(0,1),又圆的半径不变,易得x2+(y―1)2=1.13.【答案】x2+y2―6x+2y―6=0【解析】设经过两圆交点的圆系方程为x2+y2―4x―6+(x2+y2―4y―6)=0(≠―1),即,∴圆心坐标为.又∵圆心在直线x―y―4=0上,∴,即,∴所求圆的方程为x2+y2―6x+2y―6=0.14.【答案】(1) h后观测站受到影响,影响时间是 (2) M城 h后受到影响, 影响时间是【解析】(1)设风暴中心到C处A开始受到影响,到D处A结束影响,由题意有AC=360,AB=450,∠ABC=45°,设BC=x,则.即,故.∴,故÷90≈,即约 h后观测站受到影响,影响时间是(h).(2)而MA∥BC,∴M城比A气象观测站迟(h)受到影响,故M城 h后受到影响,影响的时间是 h.15.【答案】(1)最大值为,最小值为(2)最大值为51 ,最小值为11(3)最大值为,最小值为【解析】方程x2+y2―6x―6y+14=0,变形为(x―3)2+(y―3)2=4.(1)表示圆上的点P与原点连线的斜率,显然PO与圆相切时,斜率最大或最小.设切线方程为y=kx,即kx―y=0,由圆心C(3,3)到切线的距离等于半径长2,可得,解得,所以,的最大值为,最小值为.(2)x2+y2+2x+3=(x+1)2+y2+2,它表示圆上的点P到E(―1,0)的距离的平方再加2,所以,当点P与点E的距离最大或最小时,所求式子就取最大值或最小值,显然点P与点E距离的最大值为|CE|+2,点P与点E距离的最小值为|CE|―2,又,所以x2+y2+2x+3的最大值为(5+2)2+2=51,最小值为(5―2)2+2=11.(3)设x+y=b,则b表示动直线y=―x+b与圆(x―3)2+(y―3)2=4相切时,b取最大值或最小值圆心C(3,3)到切线x+y=b的距离等于圆的半径长2,则,即,解得,所以x+y的最大值为,最小值为.。

高二数学《直线与圆的方程的应用》课件

高二数学《直线与圆的方程的应用》课件
提示 要先建立适当的坐标系,用坐标表示出相应的几何 元素,如点、直线、圆等,将几何问题转化为代数问题来 解决,通过代数的运算得到结果,分析结果的几何意义, 得到几何结论. 2.利用坐标法求解几何问题要注意什么? 提示 (1)利用“坐标法”解决问题首要任务是先建立平面 直角坐标系,用坐标和方程表示相应的几何元素. (2)建立不同的平面直角坐标系,对解决问题有着直接的影 响.因此,建立直角坐标系,应使所给图形尽量对称,所 需的几何元素坐标或方程尽量简单.
课前预习
课堂互动
课堂反馈
圆 C:(x-a)2+(y- r2-a2)2=r2-a2. 两方程作差得直线 EF 的方程为 2ax+2 r2-a2y=r2+a2. 令 x=a,得 y=12 r2-a2, ∴H(a,12 r2-a2),即 H 为 CD 中点,
∴EF 平分 CD.
课前预习
课堂互动
课堂反馈
规律方法 坐标法建立直角坐标系应坚持的原则: (1)若有两条相互垂直的直线,一般以它们分别为x轴和y轴. (2)充分利用图形的对称性. (3)让尽可能多的点落在坐标轴上,或关于坐标轴对称. (4)关键点的坐标易于求得.
2.利用直线与圆的方程解决最值问题的关键是由某些代数式 的结构特征联想其几何意义,然后利用直线与圆的方程及 解析几何的有关知识并结合图形的几何量值关系分析、解 决问题.
课前预习Βιβλιοθήκη 课堂互动课堂反馈于是有 aa+ -110022+ +bb22= =rr22, , a2+b-42=r2.
课前预习
课堂互动
课堂反馈
解此方程组,得a=0,b=-10.5,r=14.5. 所以这座圆拱桥的拱圆的方程是 x2+(y+10.5)2=14.52(0≤y≤4). 把点D的横坐标x=-5代入上式,得y≈3.1. 由于船在水面以上高3 m,3<3.1, 所以该船可以从桥下通过.

直线与圆的方程的应用教学设计

直线与圆的方程的应用教学设计

直线与圆的方程的应用教学设计引言在中学数学中,直线与圆的方程是一个重要的知识点。

在实际生活中,我们经常会遇到直线与圆的方程的应用问题,例如确定一条直线与一个圆的交点、求两个圆的交点等。

本文将介绍一种应用教学设计,帮助学生理解直线与圆的方程,并能够灵活运用于实际问题中。

教学目标通过本教学设计,学生将能够: - 掌握直线与圆的方程的基本概念; - 理解直线与圆的方程的应用背景和实际意义; - 能够运用直线与圆的方程解决简单的实际问题。

教学内容1.直线与圆的方程的基本概念–直线的方程:一般式、斜截式、点斜式等;–圆的方程:标准式、一般式等;2.直线与圆的方程的应用背景和实际意义–实际问题的引入,例如求两条直线的交点、求直线与圆的交点等;–直线与圆的方程在实际问题中的应用,例如求圆的切线等;3.直线与圆的方程的解题方法与实例演练–通过解题演示,让学生理解和掌握直线与圆的方程的解题方法;–通过实例演练,让学生灵活运用直线与圆的方程解决实际问题。

教学步骤1.导入引导–展示一个实际问题,例如已知直线和圆的方程,求直线与圆的交点;–引导学生思考如何解决这个问题,激发学生学习的兴趣。

2.基本概念讲解–介绍直线和圆的方程的基本概念,并解释不同形式的方程的特点;–演示如何根据已知条件和方程求解未知量。

3.应用背景与实际意义–引导学生思考直线与圆的方程在实际问题中的应用背景和实际意义;–举例说明直线与圆的方程在几何图形的创作、建筑设计等方面的应用。

4.解题方法与实例演练–分步讲解解题方法,例如直线与圆的方程联立求交点的步骤;–通过实例演练,让学生跟随教师一起解题,巩固所学知识。

5.练习与巩固–给学生布置一些相关练习题,让学生独立完成;–教师巡回指导并批改学生的答案,让学生对所学知识进行巩固。

6.总结与拓展–对本节课所学内容进行总结,强调直线与圆的方程的重要性;–拓展引导,让学生思考其他几何图形的方程与实际应用。

教学评估1.课堂互动评价–教师观察学生的思考情况,评估学生对直线与圆的方程的理解程度;–提问学生解题思路,鼓励学生表达自己的观点和解题方法。

人教版高中数学必修二直线与圆的方程的应用 (11)

人教版高中数学必修二直线与圆的方程的应用 (11)
2 , l (1 k )( x1 x 2 ) 2
P
M1
o
M2
x
r
其中k为直线的斜率,x1,x2为直线 与圆的两个交点的横坐标.
O d
二、新课:
例1、图中是某圆拱桥的一孔圆拱的示意图,该圆拱跨 度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支 柱支撑,求支柱A2P2的长度(精确到0.01)
把P2的横坐标x 2代入得y 3.86(m)
例2、已知内接于圆的四边形的对角线互相垂直,求证 圆心到一边的距离等于这条边所对边长的一半. 参见书:P131-132 例5 (略)
y
B (0,b)
(c,0) C
O
M
A (a,0)
N O`
x
a d E( , ) 2 2
(0,d) D
归纳:用坐标法解决平面几何问题的步骤(三步曲): 第一步:建立适当的坐标系,用坐标和方程表示问题 中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题;
2.直线与圆的位置关系的判定方法:
直线l:Ax+By+C=0 圆C:(x-a)2+(y-b)2=r2(r>0)
(1)几何法:利用圆心到直线的距离d与半径r的大小关 系判断: aA bB C
d
A B
2
2
d>r
d=r
直线与圆相离 直线与圆相切 直线与圆相交
d<r
(2)代数法:利用直线与圆的公共点的个数进行判断:
半径为r , 得圆的方程为
Y
X
x ( y b) r
2 2
2
依题意点O, B的坐标为 (0,0), (18.7,7.2).

10.5直线与圆的方程应用举例

10.5直线与圆的方程应用举例

48(海里).
32 42
由48 50 ,故渔船在不改变航向的情况下,它会受到台风 的影响.
10.5直线与圆的方程应用举例
1.若直线3x 4y m 0 与圆x2 y2 6x 5 0相切,求 m 的值. 2.著名的圆拱桥赵州桥跨度是 米.圆拱高约为 米,求这座 圆拱桥的圆拱所在圆的方程.
3.已知圆C:x2 y2 16 ,点 P(1, 2) 在圆内,过点 P 的直线 l与
圆 C 相交于 A、B 两点,且弦 AB是所有过点 P的弦中长度最
短的,求直线 l的方程.
解:建立如图所示直角坐标系,使圆心
在 y 轴上.设圆心的坐标是 ,圆的半径是r
,那么圆的方程是 x2 ( y b)2 r2 因为点A、P都在圆上,所以它们的坐标(9,0),
(0,4)都满足方程 x2 ( y b)2 r2 .于是,得到方程组
92 (0 b)2 r2 , 02 (4 b)2 r2.
10.5直线与圆的方程应用举例
例2 一艘渔船正沿直线返回港口的途中,接到气象台的 台风预报,台风中心位于渔船的正东方80海里处,受到影响的 范围是半径为50海里的圆形区域.已知港口位于台风中心正北 方60海里处,假设台风中心不移动,试问:渔船在不改变航向 的情况下,它是否会受到台风的影响.
解:如图以台风中心为坐标原点,东西方向
为 轴x ,南北方向为 轴y 建立平面直角坐标系.
于是渔船A和港口B的坐标分别为(80, 0)、(0, 60)
直线 AB的斜率为 k 60 0 3
0 (80) 4
求得直线 AB的方程为3x 4y 240 0 .
10.5直线与圆的方程应用举例
240
台风中心点O 到直线 AB 的距离为 d

直线与圆的方程的实际应用

直线与圆的方程的实际应用

直线与圆的方 程的实际应用
综合应用
直线与圆的方 程的实际应用
坐标法
综合应用
典例精析
题型二:坐标法的应用
例2.如图所示,AB是圆O的直径,CD是圆O的一条弦,且AB⊥CD,E为垂足.利用坐
标法证明E是CD的中点.
证明:如图所示,以O为坐标原点,以直 即b1,b2是关于b的方程m2+b2=r2的根,
径AB所在直线为x轴建立平面直角坐标系, 解方程得 b r2 m2 , 设圆O的半径为r,|OE|=m,则圆O的方 则CD的中点坐标为
12 (1)2
2
答案:-2
跟踪练习
2.如图,圆弧形拱桥的跨度AB=12 m,拱高CD=4 m, 则拱桥的直径为________ m.
解析:设圆心为O,半径为r,则由勾股定理得,|OB|2=|OD|2+|BD|2,
即 r 2 (r 4)2 62
解得 r 13
2
所以拱桥的直径为13 m.
答案:13
3
求新桥BC的长.
又因为AB⊥BC,所以直线AB的斜率
k AB
3 4
,
设点B的坐标为(a,b),

k AB
b 60 a0
3 4
, kBC
b0 4, a 170 3
解得a=80,b=120. BC (170 80)2 (0 120)2 150,
因此新桥BC的长为150 m.
课堂小结
直线与圆的方 程的实际应用
新知探索
直线与圆的方程的实际应用方法
仔细读题(审题)→建立数学模型→解答数学模型→检验,给 出实际问题的答案.
新知探索
直线与圆的方程的实际应用方法
用坐标法解决平面几何问题的“三步曲”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2.3 直线与圆的方程的应用
一、【问题导学】
(1) 直线方程有几种形式?
(2) 圆的方程有几种形式?
(3) 求圆的方程时,什么条件下,用标准方程?什么条件下用一般方程?
(4) 如何用直线和圆的方程判断它们之间的位置关系?
(5) 如何根据圆的方程,判断它们之间的位置关系?
二、【小试牛刀】
2.若直线1ax by +=与圆22
1x y +=相交,则(,)P a b 与圆的位置关系为 .
3.求圆229x y +=与圆222440x y x y +---=的公共弦的长
4.求圆22(1)(1)4x y -++=关于点(2,2)对称的圆的方程 三、【合作、探究、展示】
例1、如图是一桥圆拱的示意图,根据提供信息完成以下计算:圆拱跨度AB =84米,拱高A 6P 6=15米,在建造时每隔7米需用一个支柱支撑,求:支柱A 3P 3的长度(精确到0.01米).
【规律方法总结】_________________________________________________
变式训练:某圆拱桥的水面跨度16米,拱高4米。

有一货船,装满货过桥,顶部宽4米,水面以上高3米,请问此船能否通过?当卸完货返航时,船水面以上高3.9米,此时能否通过?
例2、已知内接于圆P 的四边形ABCD 的对角线互相垂直,AD PE ⊥于E ,求证: BC PE 2
1=.
【规律方法总结】:
解决应用问题的步骤:
(1)审题(2)建模 (3)解模(4) 还原
流程图:
实际问题 数学问题 数学结论
实际问题结论 (审题) (建模) (解模) (还原)
注:用坐标法解决平面几何问题的“三步曲”:
第一步:建立适当的坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题;
第三步:把代数运算结果“翻译”成几何结论
例3已知圆22262(1)102240()x y mx m y m m m R +---+--=∈.
(1)求证:不论m 为何值,圆心在同一直线l 上;
(2)与l 平行的直线中,哪些与圆相交、相切、相离;
(3)求证:任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等.
【规律方法总结】________________________________________________
例4从点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆224470x y x y +--+=相切,求光线l 所在直线的方程.
【规律方法总结】_______________________________________________
例5.求过点A(4,0)作直线l 交圆22
:4O x y +=于B,C 两点,求线段BC 的中点P 的轨迹方程
【规律方法总结】________________________________________________
四、【达标训练】
1、圆221:20O x y x +-=和圆222:40O x y y +-=的位置关系是 . 2.已知圆22:()(2)4(0)C x a y a -+-=>及直线:30l x y -+=,当直线l 被圆C 截得的弦长为23时,则a = .
3、实数,x y 满足方程40x y +-=,则22x y +的最小值为( ).
A. 4
B. 6
C. 8
D. 12
4.如果实数满足22(2)3x y ++=,则y x
的最大值为( ). A. 3 B. 3- C.
33 D. 33- 5由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,∠APB =60°,则动点P 的轨迹方程为 .
五、【课后作业】
1.能够使得圆22
2410x y x y +-++=上恰有两个点到直线20x y c ++=距离等于1的c 的取值范围为 .
2. .直线l 与圆22240(3)x y x y a a ++-+=< (a <3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 .
3.若直线4320x y --=与圆22224120x y ax y a +-++-=总有两个不同交点,则a 的取值范围是 .
4.若直线(2)4y k x =-+与曲线214y x =+-两个不同的交点,则k 的取值范围。

3.如图,圆O 1和圆O 2的半径都等于1,圆心距为4,过动点P 分别作圆O 1和圆O 2的切线,切点为M 、N ,且使得|PM|= |PN|,试求点P 的运动轨迹是什么曲线?。

相关文档
最新文档