(完整word版)直线与圆的方程典型例题
直线与圆的方程练习题

直线与圆的方程练习题直线与圆是解析几何中的基本概念,掌握它们的方程及其应用是解题的关键。
下面将以几道习题为例,来进行练习。
1. 已知直线L过点A(3,4),斜率为2,求直线L的方程。
解析:由题目可知,直线L经过点A(3,4),斜率为2。
我们可以运用直线的点斜式来求解。
直线的点斜式方程为:y - y₁ = m(x - x₁)其中m为直线的斜率,(x₁, y₁)为直线上的已知点。
代入已知条件,得到直线L的方程为:y - 4 = 2(x - 3)化简得:y - 4 = 2x - 6最终方程为:y = 2x - 22. 已知圆O的圆心为(2,3),半径为5,求圆O的方程。
解析:圆的方程可以通过圆心和半径来确定。
我们可以利用圆的标准方程来求解。
圆的标准方程为:(x - a)² + (y - b)² = r²其中(a,b)为圆心的坐标,r为圆的半径。
代入已知条件,得到圆O的方程为:(x - 2)² + (y - 3)² = 5²化简得:(x - 2)² + (y - 3)² = 25最终方程为:x² - 4x + y² - 6y + 5 = 03. 已知直线L的方程为2x - 3y + 7 = 0,圆O的方程为x² + y² - 6x + 4y + 3 = 0,求直线L与圆O的交点坐标。
解析:直线与圆的交点坐标可以通过联立直线与圆的方程求解。
我们可以通过消元法来求解。
将直线L的方程转化为一般形式:2x - 3y = -7代入圆O的方程,得到联立方程组:x² + y² - 6x + 4y + 3 = 02x - 3y = -7通过联立方程组,我们可以求得直线L与圆O的交点坐标。
首先,将直线L的方程中的x表示为y的函数:x = (3y - 7) / 2将x代入圆O的方程中,得到二次方程:(3y - 7)² / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0化简得:(9y² - 42y + 49 + 4y² - 12y - 42 + 16y + 12) / 4 + y² - 6(3y - 7)/2 + 4y + 3 = 0整理得:13y² - 36y + 30 = 0通过求解二次方程,我们可以得到y的值,再带入x = (3y - 7) / 2,即可求得直线L与圆O的交点坐标。
直线和圆的方程精选练习题

直线和圆的方程精选练习题1.直线x+3y-3=的倾斜角是多少?答:倾斜角为π/6.2.若圆C与圆(x+2)+(y-1)=1关于原点对称,则圆C的方程是什么?答:圆C的方程为(x-2)^2+(y+1)^2=1.3.直线ax+by+c同时要经过第一、第二、第四象限,则a、b、c应满足什么条件?答:ab0.4.直线3x-4y-9=与圆x+y=4的位置关系是什么?答:相交但不过圆心。
5.已知直线ax+by+c=(abc≠0)与圆x+y=1相切,则三条边长分别为a、b、c的三角形是什么类型的?答:是锐角三角形。
6.过两点(-1,1)和(3,9)的直线在x轴上的截距是多少?答:截距为2/5.7.点(2,5)到直线y=2x的距离是多少?答:距离为1/√5.8.由点P(1,3)引圆x+y=9的切线的长度是多少?答:长度为2.9.如果直线ax+2y+1=与直线x+y-2=互相垂直,那么a的值等于多少?答:a的值等于-1/3.10.若直线ax+2y+2=与直线3x-y-2=平行,那么系数a等于多少?答:a的值等于-3/2.11.直线y=3x绕原点按逆时针方向旋转30度后所得直线与圆(x-2)^2+y^2=33的位置关系是什么?答:直线与圆相交,但不过圆心。
12.若直线ax+y+1=与圆x^2+y^2-2x=相切,则a的值为多少?答:a的值为-1.13.圆O1:x^2+y^2-4x+6y=0和圆O2:x^2+y^2-6x=0交于A、B两点,则AB的垂直平分线的方程是什么?答:垂直平分线的方程为2x-y-5=0.14.以点(1,3)和(5,-1)为端点的线段的中垂线的方程是什么?答:中垂线的方程为2x+y=7.15.过点(3,4)且与直线3x-y+2平行的直线的方程是什么?答:由于两条直线平行,所以它们的斜率相同。
直线3x-y+2的斜率为3,所以过点(3,4)且与直线3x-y+2平行的直线的斜率也是3.带入点(3,4)和斜率3,可以得到直线的方程为y-4=3(x-3),即y=3x-5.16.直线3x-2y+6在x、y轴上的截距分别是多少?答:当x=0时,直线3x-2y+6的方程化为-2y+6=0,解得y=3,所以直线在y轴上的截距是3.当y=0时,直线3x-2y+6的方程化为3x+6=0,解得x=-2,所以直线在x轴上的截距是-2.17.三点(2,-3)、(4,3)和(5,k)在同一条直线上,求k的值。
直线与圆的方程经典例题

一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0 ,故直线倾斜角α的范围是0180α< ≤.2.直线的斜率:倾斜角不是90的直线其倾斜角α的正切叫这条直线的斜率k ,即tan k α=. 注:①每一条直线都有倾斜角,但不一定有斜率.②当 90=α时,直线l 垂直于x 轴,它的斜率k 不存在.③过两点111(,)P x y 、222(,)P x y 12()x x ≠的直线斜率公式2121tan y y k x x α-==-二、直线方程的五种形式及适用条件直线的方程注:⑴确定直线方程需要有两个互相独立的条件,通常用待定系数法;⑵确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围.⑶直线是平面几何的基本图形,它与方程中的二元一次方程A x +B y +C=0(A 2+B 2≠0)是一一对应的.直线的方程例1. 过点),2(a M -和)4,(a N 的直线的斜率等于1, 则a 的值为( ) (A)1 (B)4 (C)1或3 (D)1或4 例2. 若,62ππα⎡⎫∈⎪⎢⎣⎭, 则直线2x cos α+3y +1=0的倾斜角的取值范围( ) (A),62ππ⎡⎫⎪⎢⎣⎭(B) 5,6ππ⎡⎫⎪⎢⎣⎭(C) (0,6π) (D)5,26ππ⎛⎤ ⎥⎝⎦例3. 直线123y x =-+的倾斜角是( ). (A )1arctan()3- (B )1arctan 3 (C )1πarctan()3+- (D )1arctan()3π--例4. 连接(4,1)A 和(2,4)B -两点的直线斜率为____,与y 轴的交点P 的坐标为____. 例5. 以点)1,5()3,1(-和为端点的线段的中垂线的方程是 .例6. 将直线0632=--y x绕着它与y 轴的交点逆时针旋转45的角后,在x 轴上的截距是( )(A)54(B) 52 (C) 25(D)45 例7. 将一张画了直角坐标系且两轴的长度单位相同的纸折叠一次,使点(2,0)与点(-2,4)重合,若点(7,3)与点(m ,n )重合,则m +n 的值为( ) (A)4 (B)-4 (C)10 (D)-10 例8. 与直线:2350x y ++= 平行且过点(1,4)A -的直线' 的方程是__________。
直线和圆的方程典型例题

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . 上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x . 又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D .∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
第二讲直线与圆方程含答案

第二讲第二讲 直线与圆的方程含答案直线与圆的方程含答案一、知识要点一、知识要点二、典型例题二、典型例题例1(1)、求与x 轴相交于A (1,0)和B (5,0)两点且半径为5的圆的标准方程.标准方程.解:法一:设圆的标准方程为(x -a )2+(y -b )2=5. ∵点A ,B 在圆上,所以可得到方程组:îïíïì(1-a )2+(0-b )2=5(5-a )2+(0-b )2=5,解得a =3,b =±1. ∴圆的标准方程是(x -3)2+(y -1)2=5或(x -3)2+(y +1)2=5. 法二:由A 、B 两点在圆上可知线段AB 是圆的一条弦,是圆的一条弦,根据平面根据平面几何知识:这个圆的圆心在线段AB 的垂直平分线x =3上,于是可设圆心为C (3,b ),又|AC |=5,即(3-1)2+b 2=5,解得b =1或b =-1. 因此,所求圆的标准方程为(x -3)2+(y -1)2=5或(x -3)2+(y +1)2 (2)、圆C 通过不同的三点P (k,0)、Q (2,0)、R (0,1),已知圆C 在点P 处的切线斜率为1,试求圆C 的方程.的方程.解:设圆C 的方程为x 2+y 2+Dx +Ey +F =0,则k 、2为x 2+Dx +F =0的两根,∴k +2=-D,2k =F ,即D =-(k +2),F =2k ,又圆过R (0,1),故1+E +F =0. ∴E =-2k -1. 故所求圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0,圆心坐标为(k +22,2k +12).∵圆C 在点P 处的切线斜率为1,∴k CP =-1=2k +12-k,∴k =-3.∴D =1,E =5,F =-6. ∴所求圆C 的方程为x 2+y 2+x +5y -6=0. 变式练习1:1.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 解析:选C.设圆心C 的坐标为(a ,b ),半径为r . ∵圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |2=|CB |2得(a -1)2+(b +1)2=(a +1)2+(b -1)2,即(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2,解得a =1,b =1,∴r =|CA |=(1-1)2+(1+1)2=2. 即所求圆的方程为(x -1)2+(y -1)2=4. 2.(2009年高考辽宁卷)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( ) A .(x +1)2+(y -1)2=2 B .(x -1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2 D .(x +1)2+(y +1)2=2 解析:选B.由题意可设圆心坐标为(a ,-a ),则|a +a |2=|a +a -4|2,解得a =1,故圆心坐标为(1,-1),半径r =|1+1|2=2,所以圆的方程为(x -1)2+(y +1)2=2. 3.(2008年高考山东卷)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( ) A .(x -3)2+(y -73)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1 D .(x -32)2+(y -1)2=1 解析:选B.设圆心坐标为(a ,b ),则îíì|b |=1|4a -3b |5=1,又b >0,故b =1,由|4a -3|=5得a =2或a =-12,又a >0,故a =2,所求圆的标准方程是(x -2)2+(y -1)2=1.(采用检验的方法也可以) 4.圆心在原点且圆周被直线3x +4y +15=0分成1∶2两部分的圆的方程为________.解析:如图,因为圆周被直线3x +4y+15=0分成1∶2两部分,所以∠AOB =120°而圆心到直线3x +4y +15=0的距离d =1532+42=3,在△AOB 中,可求得OA =6.所以所求圆的方程为x 2+y 2=36. 答案:x 2+y 2=36 )(,=-,4,4)1|1·|·||41,=,解得2)43k 3(3)3(-3方程①②联立得圆心坐标为(0,78)或(0,-78), 半径为(0-3)2+(±78-0)2=258, 所求圆的方程为x 2+(y +78)2=62564或x 2+(y -78)2=62564. 答案:x 2+(y +78)2=62564或x 2+(y -78)2=62564=5. 3.(2010重庆理数)(8) 直线y=323x +与圆心为D 的圆33cos ,13sin x y q q ì=+ïí=+ïî())0,2q p éÎë交与A 、B 两点,则直线AD 与BD 的倾斜角之和为的倾斜角之和为 A. 76p B. 54p C. 43p D. 53p 解析:数形结合解析:数形结合301-=Ða b p -+=Ð 302由圆的性质可知21Ð=Ðbp a -+=-\ 3030 故=+b a 43p4.(2010全国卷1理数)(1111)已知圆)已知圆O 的半径为1,PA PA、、PB 为该圆的两条切线,为该圆的两条切线,A A 、B 为两切点,那么P A P B ·的最小值为的最小值为(A) 42-+ (B)32-+ (C) 422-+ (D)322-+例3、已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.圆上的动点.(1)求线段AP 中点的轨迹方程;中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.中点的轨迹方程.解:(1)设AP 中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ).∵P 点在圆x 2+y 2=4上, ∴(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4. 故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0. 变式练习3:1.若曲线x 2+y 2+a 2x +(1-a 2)y -4=0关于直线y -x =0对称的曲线仍是其本身,则实数a 为( ) A .±12B .±22 C.12或-22 D .-12或22解析:选B.由题意知,圆心C (-a 22,a 2-12)在直线y -x =0上,∴a 2-12+a 22=0,∴a 2=12,∴a =±22.故选B. (注:F =-4<0,不需验D 2+E 2-4F >0) 2.(2009年高考上海卷)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=1 D .(x +2)2+(y -1)2=1 解析:选A.设圆上任意一点为(x 1,y 1),中点为(x ,y ),则îíì x =x 1+42,y =y 1-22,îïíïì x 1=2x -4,y 1=2y +2,代入x 2+y 2=4得 (2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1. 3.一束光线从点A (-1,1)出发经x 轴反射到圆C :(x -2)2+(y -3)2=1上的最短路程是( ) A .4 B .5 C .32-1 D .26 解析:选A.圆C 的圆心C 的坐标为(2,3),半径r =1.点A (-1,1)关于x 轴的对称点A ′的坐标为(-1,-1).因A ′在反射线上,所以最短距离为|A ′C |-r ,即[2-(-1)]2+[3-(-1)]2-1=4. 例4、已知圆O: 122=+y x ,圆C: 1)4()2(22=-+-y x ,由两圆外一点),(b a P 引两圆切线P A 、PB ,切点分别为A 、B ,满足|PA|=|PB|. (1)求实数a 、b 间满足的等量关系;间满足的等量关系;(2)求切线长|PA|的最小值;的最小值;(3)是否存在以P 为圆心的圆,使它与圆O 相内切并且与圆C 相外切?若存在,求出圆P 的方程;若不存在,说明理由. (1)连结PO 、PC ,∵|PA|=|PB|,|OA|=|CB|=1 ∴|PO|2=|PC|2,从而2222)4()2(-+-=+b a b a化简得实数a 、b 间满足的等量关系为: 052=-+b a . (2)由052=-+b a ,得52+-=b a1||||||2222-+=-=b a OA PO PA 1)52(22-++-=b b 4)2(52420522+-=+-=b b b∴当2=b 时,2||min=PA (3) ∵圆O 和圆C 的半径均为1,若存在半径为R 圆P ,与圆O 相内切并且与圆C 相外切,则有1||-=R PO 且1||+=R PC 于是有: 2||||=-PO PC 即2||||+=PO PC从而得从而得2)4()2(2222++=-+-b a b a 两边平方,整理得)2(422b a b a +-=+将52=+b a 代入上式得:0122<-=+b a 故满足条件的实数a 、b 不存在,∴不存在符合题设条件的圆P . 三、规律与方法三、规律与方法四、过关检测四、过关检测1.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5 D .x 2+(y +2)2=5 答案:A 2.已知⊙C :x 2+y 2+Dx +Ey +F =0,则F =E =0且D <0是⊙C 与y 轴相切于原点的( ) A .充分不必要条件.充分不必要条件B .必要不充分条件.必要不充分条件C .充要条件.充要条件D .既不充分也不必要条件.既不充分也不必要条件解析:选A.由题意可知,要求圆心坐标为(-D 2,0),而D 可以大于0,故选A. 3.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( ) A .πB .4πC .8π D .9π解析:选B.设P (x ,y ),由题知有:(x +2)2+y 2=4[(x -1)2+y 2],整理得x 2-4x +y 2=0,配方得(x -2)2+y 2=4.可知圆的面积为4π,故选B. 4.(2009年高考广东卷)以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是________.解析:将直线x +y =6化为x +y -6=0,圆的半径r =|2-1-6|1+1=52,所以圆的方程为(x -2)2+(y +1)2=252. 答案:(x -2)2+(y +1)2=252 5.(原创题)已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________. 解析:圆的方程变为(x +1)2+(y -2)2=5-a ,∴其圆心为(-1,2),且5-a >0,即a <5. 又圆关于直线y =2x +b 成轴对称,∴2=-2+b ,∴b =4.∴a -b =a -4<1. 答案:(-∞,1) 6.若直线x a +y b =1与圆x 2+y 2=1有公共点,则( ) A .a 2+b 2≤1 B .a 2+b 2≥1 C.1a 2+1b 2≤1 D.1a 2+1b 2≥1 解析:选D.由题意知直线与圆相交或相切,故有11a 2+1b 2≤1⇒1a 2+1b 2≥1,故选D. 7.过点(0,1)的直线与圆x 2+y 2=4相交于A ,B 两点,则|AB |的最小值为( ) A .2 B .23 C .3 D .25 解析:选B.据由弦长一半及圆的半径和圆心到直线的距离所组成的直角三角形可知,当圆心到直线距离最大时,弦长最短,易知当圆心与定点G (0,1)的连线与直线AB 垂直时,圆心到直线AB 的距离取得最大值,即d ≤|OG |=1,此时弦长最短,即|AB |2≥R 2-d 2=4-1⇒|AB |≥23,故选B. 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( ) A .x 2+y 2-2x -3=0 B .x 2+y 2+4x =0 C .x 2+y 2+2x -3=0 D .x 2+y 2-4x =0 解析:选D.设圆心为(a,0),且a >0,则(a,0)到直线3x +4y +4=0的距离为2,即|3×a +4×0+4|32+42=2⇒3a +4=±10⇒a =2或a =-143(舍去),则圆的方程为:(x -2)2+(y -0)2=22,即x 2+y 2-4x =0. 9.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =( ) A.33B.33或-33C.3 D.3或-3 解析:选D.∵OM→·CM →=0, ∴OM ⊥CM ,∴OM 是圆的切线.设OM 的方程为y =kx , 由|2k |k 2+1=3,得k =±3,即y x =± 3. 10.(2008年高考山东卷)已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( ) A .106 B .206 C .306 D .406 解析:选 B.圆的标准方程为(x -3)2+(y -4)2=52,由题意得|AC |=2×5=10,|BD |=252-12=46,且AC ⊥BD ,四边形ABCD 的面积S =12|AC |·|·||BD |=12×10×46=20 6.故选B. 11.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2. (1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得îïíïìCD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB = 2. 解得a =-7,或a =-1. 故所求直线方程为7x -y +14=0或x -y +2=0. 12.如右图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM =2PN ,试建立适当的坐标系,并求动点P 的轨迹方程.迹方程.解:以O 1O 2的中点O 为原点, O 1O 2所在直线为x 轴,建立如图所示的坐标系,则O 1(-2,0),O 2(2,0).由已知|PM |=2|PN |,∴|PM |2=2|PN |2. 又∵两圆的半径均为1,所以|PO 1|2-1=2(|PO 2|2-1).设P (x ,y ),即(x +2)2+y 2-1=2[(x -2)2+y 2-1],即(x -6)2+y 2=33. ∴所求动点P 的轨迹方程为(x-6)2+y2=33(或x2+y2-12x+3=0).。
(完整版)直线与圆知识点及经典例题(含答案)

(完整版)直线与圆知识点及经典例题(含答案)圆的方程、直线和圆的位置关系【知识要点】一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆(一)圆的标准方程222()()x a y b r -+-= 这个方程叫做圆的标准方程。
王新敞说明:1、若圆心在坐标原点上,这时0a b ==,则圆的方程就是222x y r +=。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要,,a b r 三个量确定了且r >0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件王新敞确定,,a b r ,可以根据条件,利用待定系数法来解决。
(二)圆的一般方程将圆的标准方程222)()(r b y a x =-+-,展开可得02222222=-++--+r b a by ax y x 。
可见,任何一个圆的方程都可以写成 :220x y Dx Ey F ++++= 问题:形如220x y Dx Ey F ++++=的方程的曲线是不是圆?将方程022=++++F Ey Dx y x 左边配方得:22224()()22D E D E Fx x +-+++=(1)当F E D 422-+>0时,方程(1)与标准方程比较,方程022=++++F Ey Dx y x 表示以(,)22D E--为圆 224D E F+-,(3)当F E D 422-+<0时,方程022=++++F Ey Dx y x 没有实数解,因而它不表示任何图形。
圆的一般方程的定义:当224D E F +->0时,方程220x y Dx Ey F ++++=称为圆的一般方程. 圆的一般方程的特点:(1)2x 和2y 的系数相同,不等于零;(2)没有xy 这样的二次项。
(三)直线与圆的位置关系 1、直线与圆位置关系的种类(1)相离---求距离;(2)相切---求切线;(3)相交---求焦点弦长。
直线和圆的方程测试题

直线和圆的方程测试题题目一:直线的方程1. 给定两个点A(2, 3)和B(4, 1),求过这两个点的直线方程。
解析:首先计算两点的斜率k\[k = \frac{y_2-y_1}{x_2-x_1} = \frac{1-3}{4-2} = -1\]进一步,我们可以使用点斜式方程:\[y-y_1 = k(x-x_1)\]\[y-3 = -1(x-2)\]\[y-3 = -x+2\]\[x+y = 5\]所以,过点A(2, 3)和B(4, 1)的直线方程为 \(x+y = 5\)。
题目二:圆的方程2. 以点C(5, 3)为圆心,半径为r = 2的圆,求圆的方程。
解析:对于以点C(x, y)为圆心,半径为r的圆,圆的方程可以表示为:\[(x-x_0)^2 + (y-y_0)^2 = r^2\]将圆心C(5, 3)和半径r=2代入,得到:\[(x-5)^2 + (y-3)^2 = 4\]所以,以点C(5, 3)为圆心,半径为r = 2的圆的方程为 \((x-5)^2 + (y-3)^2 = 4\)。
题目三:直线和圆的交点3. 已知直线方程为 \(3x-y = 2\),以点D(1, 0)为圆心,半径为r = 1的圆。
求直线和圆的交点坐标。
解析:我们可以使用联立方程的方法来求解直线和圆的交点。
首先,将直线方程转换为一般式方程:\[3x-y-2 = 0\]然后,将直线方程带入圆的方程:\[(x-1)^2 + (y-0)^2 = 1\]通过联立这两个方程,我们可以得到交点的坐标。
将直线方程改写为 \(y = 3x-2\),然后代入圆的方程:\[(x-1)^2 + (3x-2-0)^2 = 1\]展开并整理方程,得到二次方程:\[10x^2 - 22x + 11 = 0\]解这个二次方程,可以得到两个解x1和x2:\[x_1 = \frac{11}{10}, \quad x_2 = 1\]将x值代入直线方程,可以得到对应的y值:\[y_1 = 3\left(\frac{11}{10}\right)-2 = \frac{13}{10}, \quad y_2 = 3(1)-2 = 1\]所以,直线 \(3x-y = 2\) 和圆 \((x-1)^2 + (y-0)^2 = 1\) 的交点坐标为\(\left(\frac{11}{10}, \frac{13}{10}\right)\) 和 (1, 1)。
直线与圆的方程典型例题

直线与圆的方程典型例题
1. 由点)3,2(P 发出的光线射到直线1-=+y x 上,反射后过)1,1(Q 点,求
反射光线所在直线的一般方程?
2. 已知点(a,2)到直线l: x-y+1=0的距离为2,求a 的值
3. 预算用2000元购买单件为50元的桌子和20元的椅子,希望使桌椅的总数尽可能的多,但椅子不少于桌子数,且不多于桌子数的1.5倍,问桌、椅各买多少才行
4. 求半径为4,与圆相切,且和直线相切的圆的方程
5.已知圆1:221=++y x M )( ,圆9:221-=+y x N )(,动圆P 与圆M 外切与圆N 内切,圆心P 的轨迹为曲线C,求C 的方程。
042422=---+y x y x 0=y
6. 求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长
7. 若直线m x y +=与曲线24x y -=
有且只有一个公共点,求实数m 的取值范围
8. 已知圆,为圆上任一点.求的最大、最小值
9. 已知圆与直线相交于、两点,为原点,且,求实数的值.
1)2(222=++y x O :
),(y x P 1
2--x y 0622=+-++m y x y x 032=-+y x P Q O OQ OP ⊥m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 3 x 2即 x y 1 0.
又知圆心在直线 y 0 上,故圆心坐标为 C ( 1 , 0)
∴半径 r AC (1 1)2 42 20 . 故所求圆的方程为 (x 1)2 y 2 20 . 又点 P (2 , 4) 到圆心 C ( 1 , 0) 的距离为
d PC (2 1)2 42 ∴点 P 在圆外,与圆
2
x
2
y
4x 2y
4
0 相切,且和直线
y
0 相切的圆的方程.
第 1 页 共 21 页
分析: 根据问题的特征,宜用圆的标准方程求解.
解: 则题意,设所求圆的方程为圆 C:( x a ) 2 ( y b) 2 r 2 . 圆 C 与直线 y 0相切,且半径为 4,则圆心 C 的坐标为 C1( a , 4) 或 C 2(a , 4) . 又已知圆 x2 y2 4 x 2 y 4 0 的圆心 A 的坐标为 (2 ,1) ,半径为 3.
解之得: a 1 , r 2 20 .
所以所求圆的方程为 ( x 1)2 y2 20 .
解法二:(直接求出圆心坐标和半径)
因为圆过 A(1 , 4) 、 B (3 , 2) 两点,所以圆心
C 必在线段 AB 的垂直平分线 l 上,又因为
k AB 4 2 13
1 ,故 l 的斜率为 1,又 AB 的中点为 (2 , 3) ,故 AB 的垂直平分线 l 的方程为:
上述误解只考虑了圆心在直线 y 0 上方的情形,而疏漏了圆心在直线 y 0 下方的情形.另外,误
解中没有考虑两圆内切的情况.也是不全面的.
例 3 求经过点 A( 0 , 5) ,且与直线 x 2 y 0 和 2x y 0 都相切的圆的方程. 分析:欲确定圆的方程. 需确定圆心坐标与半径, 由于所求圆过定点 A ,故只需确定圆心坐标. 又
类型一:圆的方程
高中数学圆的方程典型例题
例 1 求过两点 A(1 , 4) 、 B(3 , 2) 且圆心在直线 y 0 上的圆的标准方程并判断点 P(2 , 4) 与圆的关
系.
分析: 欲求圆的标准方程, 需求出圆心坐标的圆的半径的大小, 而要判断点 P 与圆的位置关系, 只须看点 P 与圆心的距离和圆的半径的大小关系, 若距离大于半径, 则点在圆外; 若距离等于半径,
(1)(2) 的所有圆中,求圆心到直线 l: x 2 y 0 的距离最小的圆的方程.
分析: 要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个 条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线 的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方 程.
2
2
2
2
2
2
2
2
( x a) ( y 4) 4 .又圆 x y 4 x 2 y 4 0 ,即 (x 2) ( y 1) 3 ,其圆心为
A(2 ,1) ,半径为 3.若两圆相切, 则 CA 4 3 .故 (a 2) 2 (4 1)2 72 ,解之得 a 2 2 10 .所
以欲求圆的方程为 ( x 2 2 10 )2 ( y 4)2 42 ,或 (x 2 2 10 )2 ( y 4)2 4 2 .
解法一: 设圆心为 P (a , b) ,半径为 r .
则 P 到 x 轴、 y 轴的距离分别为 b 和 a .
由题设知:圆截 x 轴所得劣弧所对的圆心角为 90 ,故圆截 x 轴所得弦长为 2 r .
∴ r 2 2b2 又圆截 y 轴所得弦长为 2. ∴ r 2 a2 1.
若两圆相切,则 CA 4 3 7 或 CA 4 3 1. (1) 当 C1(a , 4) 时 , (a 2)2 (4 1)2 7 2 , 或 (a 2)2 (4 1) 2 12 ( 无 解 ) , 故 可 得
a 2 2 10 . ∴所求圆方程为 ( x 2 2 10 )2 ( y 4)2 4 2 ,或 (x 2 2 10)2 ( y 4) 2 4 2 . (2) 当 C 2( a , 4) 时 , (a 2)2 ( 4 1)2 7 2 , 或 (a 2) 2 ( 4 1) 2 12 ( 无 解 ) , 故
∴所求圆的方程为 (x 1)2 ( y 3)2 5 或 ( x 5) 2 ( y 15)2 125 .
说明: 本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到 圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.
例 4、 设圆满足: (1)截 y 轴所得弦长为 2; (2) 被 x 轴分成两段弧,其弧长的比为 3 :1 ,在满足条件
又∵圆过点 A(0 , 5) ,
∴圆心 C 只能在直线 3x y 0 上.
设圆心 C (t , 3t )
∵ C 到直线 2x y 0 的距离等于 AC ,
2t 3t
∴
5
t 2 (3t 5) 2 .
化简整理得 t 2 6t 5 0 . 解得: t 1或 t 5 ∴圆心是 (1, 3) ,半径为 5 或圆心是 (5 ,15) ,半径为 5 5 .
圆与两已知直线相切,故圆心必在它们的交角的平分线上.
解: ∵圆和直线 x 2y 0与 2x y 0 相切, ∴圆心 C 在这两条直线的交角平分线上, 又圆心到两直线 x 2y 0 和 2x y 0 的距离相等.
x 2y x 2y
∴
.
5
5
∴两直线交角的平分线方程是
x 3y 0 或 3x y 0 .
第 2 页 共 21 页
则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法)
设圆的标准方程为 (x a )2 ( y b) 2 r 2 .
∵圆心在 y 0上,故 b 0 .
∴圆的方程为
(x
2
a)
2
y
2
r.
又∵该圆过 A(1, 4) 、 B (3 , 2) 两点.
(1 a ) 2 16 r 2
∴
(3 a) 2 4 r 2
a 2 2 6. ∴所求圆的方程为 (x 2 2 6 ) 2 ( y 4) 2 42 ,或 ( x 2 2 6 ) 2 ( y 4) 2 42 .
说明: 对本题,易发生以下误解:
由 题 意 , 所 求 圆 与 直 线 y 0 相 切 且 半 径 为 4 , 则 圆 心 坐 标 为 C( a , 4) , 且 方 程 形 如