单纯形方法求解

合集下载

单纯形法求解过程

单纯形法求解过程

单纯形法求解过程单纯形法是一种用于求解线性规划问题的数学方法。

它通过不断迭代优化目标函数的值,找到最优解。

下面将详细介绍单纯形法的求解过程。

我们需要明确线性规划问题的目标函数和约束条件。

目标函数是我们要优化的指标,约束条件是问题的限制条件。

假设我们有n个决策变量x1,x2,...,xn,目标函数为f(x),约束条件为g(x)≤b。

接下来,我们需要将约束条件转化为标准形式,即将不等式约束转化为等式约束。

假设我们有m个约束条件,将其转化为等式约束后,我们得到形式如下的线性规划问题:maximize f(x)subject to Ax = bx ≥ 0其中A是一个m×n的矩阵,x是一个n维向量,b是一个m维向量。

然后,我们需要引入松弛变量,将等式约束转化为不等式约束。

假设第i个等式约束为ai1x1 + ai2x2 + ... + ainxn = bi,我们引入松弛变量xi+1,使得等式变为ai1x1 + ai2x2 + ... + ainxn + xi+1 = bi。

这样,我们就得到了形式如下的线性规划问题:maximize f(x)subject to Ax + x0 = bx, x0 ≥ 0其中x0是一个m维向量,表示松弛变量。

接下来,我们需要找到初始可行解。

初始可行解是指满足约束条件的解,可以通过人工选取或者使用其他方法求得。

然后,我们需要确定初始基本可行解。

基本可行解是指初始可行解中的基变量取值非零,非基变量取值为零。

基变量是指约束条件中与松弛变量对应的变量,非基变量是指约束条件中与决策变量对应的变量。

我们可以通过高斯消元法或者其他方法求得初始基本可行解。

接下来,我们需要计算当前基本可行解的目标函数值。

根据初始基本可行解,我们可以计算出目标函数的值。

然后,我们需要判断当前基本可行解是否是最优解。

如果当前基本可行解的目标函数值已经达到最大值或最小值,那么它就是最优解。

如果不是最优解,我们需要进行迭代优化。

运筹学课件 单纯形法的计算步骤

运筹学课件 单纯形法的计算步骤
第二阶段:以第一阶段的最优解(不含人工变量)为初 始解,以原目标函数为目标函数。
例8 试用两阶段法求解线性规划问题
min z =-3x1+x2+x3
x1 2 x2 x3 11
s.t.

4 x1 2 x1

x2

2x3 3 x3 1
x1 , x2 , x3 0
0 0 -1 0 0
x2

3 5 11/5
Z0=0
Z1=15
x1
如果将x1换入基底,得 另一解,由可行域凸性 易知,有两个最优解必 有无穷多组最优解 当非基底变量的检验数 中有取零值,或检验数 中零的个数大于基变量 个数时,有无穷多解。
四、无(有)界解
max z=x1+x2 -2x1+x2 4 x1- x2 2 -3x1+x23 x1 ,x2 0
反之,若加了人工变量的问题解后最优解中仍含人工变量为 基变量,便说明原问题无可行解。例3的单纯形表格为:
Cj
3
-1
-1
0
0
-M
CB XB b
x1
x2
x3
x4
x5
x6
0 x4 1
1
-2
1
1
0
0
-M x6 13 -4
1
2
0
-1
1
-M x7 1 -2
0
[1] 0
0
0
j
3-6M M-1 3M-1 0
-M
x1 2 x2 x3 x4
11

4 2
x1 x1

x2

2
x3 x3

单纯形法求解过程

单纯形法求解过程

单纯形法求解过程单纯形法是一种经典的线性规划求解方法,它是由乔治·达竞士等人在1947年提出的。

该方法的基本思想是,通过在单纯形空间内不断移动顶点的位置来寻找最优解。

单纯形法是目前广泛应用的线性规划求解方法之一,它求解线性规划问题可大大地简化计算过程。

单纯形法的求解过程包括以下几个步骤:1. 将线性规划问题转化为标准形式线性规划问题的标准形式为:$ \max_{x} \ \ c^T x $$s.t. \ Ax=b$$x\geq 0$其中,$x$是要求解的向量;$b$是一个常数向量;$A$是一个$m\times n$的矩阵;$c$是一个常数向量。

2. 初始化单纯形表因为单纯形法是通过移动顶点来寻找最优解的方法,因此需要初始化单纯形表。

单纯形表是将原始的约束条件表示为不等式形式时形成的。

例如,对于一个带有3个变量的线性规划问题,其单纯形表的形式如下:CB | X1 | X2 | X3 | X4 | RHS----|-----|-----|-----|-----|----0 | a11| a12| a13| 0 | b10 | a21| a22| a23| 0 | b20 | a31| a32| a33| 0 | b31 | z1 | z2 | z3 | 0 | 0其中,CB代表成本系数,X1、X2、X3、X4分别代表变量。

a11、a12、a13等代表矩阵A中的元素,b1、b2、b3代表矩阵b中的元素。

3. 选择进入变量和离开变量在单纯形表中,规定最后一列为等式右边的常数(RHS),即b。

在单纯形法的求解过程中,首先需要选择一个“进入变量”,即在单纯形表的第一行中,寻找一个系数为正的变量,使得将其加入目标函数后,目标函数值可以上升。

这里以X1为例,X1为进入变量。

接着,需要选择一个“离开变量”,即在单纯形表中,寻找一个使得添加X1变量后,约束条件不改变且取得约束条件中系数最小的一个变量离开。

程序求解 单纯形法

程序求解 单纯形法

程序求解单纯形法
单纯形法是一种求解线性规划问题的常用方法。

它通过一系列的迭代步骤,从一个初始的基本可行解开始,逐步改进解,直到找到最优解或证明问题无最优解。

以下是使用单纯形法求解线性规划问题的一般步骤:
1. 构建初始基本可行解:选择一个初始的基本可行解,通常可以通过引入松弛变量或人工变量来构建。

2. 计算目标函数值:计算当前基本可行解下的目标函数值。

3. 检查最优性:如果当前基本可行解满足最优性条件(目标函数值最小或最大),则停止迭代,当前解即为最优解。

4. 寻找改进方向:如果当前基本可行解不满足最优性条件,则需要找到一个改进的方向。

这可以通过计算每个非基变量(即未被选入基本可行解的变量)的检验数来完成。

5. 选择进入变量:根据检验数,选择一个具有正检验数的非基变量作为进入变量。

6. 确定离开变量:为了保持基本可行解的可行性,需要选择一个离开变量。

通常选择一个具有最小比值的基变量作为离开变量。

7. 更新基本可行解:通过替换离开变量和进入变量,构建一个新的基本可行解。

8. 重复步骤 2 至步骤 7,直到找到最优解或证明问题无最优解。

需要注意的是,单纯形法的具体实现可能因问题的规模和结构而有所不同。

在实际应用中,可以使用编程语言或优化软件来实现单纯形法。

希望以上内容对你有所帮助。

如果你有具体的线性规划问题需要求解,我可以根据具体问题提供更详细的帮助。

运筹学课件1-4单纯形法计算步骤

运筹学课件1-4单纯形法计算步骤

b 21 4
9 4
3 x1 1 -1 3 4 -1 12
9 x2 3 1 9 0 1 0
0 x3 1 0 0 1 0 0
0 x4 0 1 0 -3 1 -9
θ 7 4
9/4 -
所以把x3换出为非基变量,x1为换入变量即新的基变量。
第20页
cj
CB 0 0
0 9 3
XB x3 x4 cj-zj x3 x2 cj-zj x1
cj-zj
x3 x1 x5 cj-zj
6
0 1 0
5
5/2 1/2 1
0
1 0 0
0
-1/2 1/2 -1
0
0 0 1
75 5
0
2
0
-3
0
5
x2
5
0
1
0
-1
1
第10页
cj CB 0 0 0 0 6 0 XB x3 x4 x5 b 90 75 80 105/2 75/2 5
6 x1 1 2 2
5 x2 3 1 2
9/4
-
3 9
9/4 25/4
1 0 0
25
第24页
cj CB 0 0 XB x3 x4 cj-zj b 21 4
3 x1 1 -1 3
9 x2 3 1 9
0 x3 1 0 0
0 x4 0 1 0 θ 7 4
0
9
x3
x2 cj-zj x1 x2 cj-zj
9
4
4
-1 12
0
1 0 0 1 0
1
0 0 1/4 1/4 -3
i 1
第1页
单纯形表求解线性规划问题

单纯形算法

单纯形算法

遗传算法和单纯形法的函数优化混合算法
一元多极点函数f(x),A、B、C为极小值点,其中B为最小值点. 混合算法的步骤是先用遗传算法搜索到某一个点D点,转用单纯形法快速 搜索到极小值点C,然后转用遗传算法.一旦用遗传算法搜索到比点C的函 数值稍低的点,立即用单纯形法寻找附近的谷底.如此交替进行
20 18 16 14 12 10 8 6 4 2
单纯形
单纯形算法是由Nelder-Mead于1965年提出 的,它可求解有多个变量的函数的局部极小值, 该方法也称为“amoeba”方法 。
• 单纯形算法的基本思想:
在n维空间中取n+1个点构成初始单纯形,比较各 点处目标函数值得大小,丢弃最坏的点(函数最 大值点),代之以新的点,构成新的单纯形,反 复迭代,使其顶点处的函数值逐步下降,顶点逐 步逼近目标函数最小值。
0
50
100
150
200
250
300
350
400
f
(W )
N
W=R
j = j + 1
W =C
向 B方 向 压 缩 , j =
j +1
41 36.923 33.633 33.633 22.222 22.222 20.147 18.579 18.579 13.727 13.727 12.32 12.32 4.233 4.233 4.233 4.233 4.233 4.233 4.233 4.233 4.233 4.233 0.17752
34 34 34 30.342 30.342 15.729 15.729 15.729 15.729 15.729 7.7465 7.7465 7.7465 7.7465 7.7465 7.7465 7.7465 7.7465 6.4248 6.4248 5.3579 4.5188 3.8617 3 .8617

单纯形法的计算步骤

单纯形法的计算步骤

变量作为换出变量。
L
min
bi
aik
a ik
0
单纯形法旳计算环节
Page 4
③ 用换入变量xk替代基变量中旳换出变量,得到一种新旳基。 相应新旳基能够找出一种新旳基可行解,并相应地能够画出 一种新旳单纯形表。
④ 5)反复3)、4)步直到计算结束为止。
单纯形法旳计算环节
将3化为1
换入列
j

,
x2
,
x3
,
x4
0
Page 1
单纯形法旳计算环节
Page 2
2)求出线性规划旳初始基可行解,列出初始单纯形表。
j
检验数
1 c1 (c3a11 c4a21 ) 3 (0 2 0 1) 3
单纯形法旳计算环节
Page 3
3)进行最优性检验
假如表中全部检验数 止。不然继续下一步。
,j 则表0中旳基可行解就是问题旳最优解,计算停
单纯形法旳计算环节
例1.8 用单纯形法求下列线性规划旳最优解
max Z 3 x1 4 x2
2 x1 x2 40
x1
3x2
30
x1
,
x2
0
解:1)将问题化为原则型,加入松驰变量x3、x4则原则型为:
max Z 3 x1 4 x2
2 x1 x2 x3 40
x1
3x2
x4
30
x1

1/3 后
j


j
30 5/3 0 10 1/3 1
5/3 0
18 1
0
40
1
0
0
Page 5
bi /ai2,ai2>0

单纯形法计算步骤

单纯形法计算步骤

单纯形法计算步骤引言单纯形法是一种常用的数学优化方法,主要用于求解线性规划问题。

它的基本思想是通过不断地在可行解集合内移动,逐步靠近最优解,直到找到最优解。

本文将介绍单纯形法的基本步骤,以帮助读者了解如何使用该方法解决线性规划问题。

步骤一:建立线性规划模型在使用单纯形法之前,首先需要建立线性规划模型。

线性规划模型由决策变量、目标函数和约束条件组成。

决策变量是需要在问题中决策的变量,目标函数是需要最大化或最小化的目标,约束条件是限制决策变量取值范围的条件。

步骤二:将线性规划模型转化为标准形式单纯形法只适用于标准形式的线性规划模型。

标准形式要求目标函数为最大化,并且所有的约束条件都是等式形式。

如果初始线性规划模型不符合标准形式,我们可以通过适当的代数操作将其转化为标准形式。

步骤三:构造初始单纯形表初始单纯形表是单纯形法求解线性规划问题的起点。

它由决策变量、松弛变量、人工变量、目标函数系数和约束条件组成。

初始单纯形表的构造方法如下: 1. 将决策变量的系数及其对应的松弛变量、人工变量放在单纯形表的第一行。

2. 将目标函数的系数放在单纯形表的第一列。

3. 将约束条件的系数及其对应的松弛变量、人工变量放在单纯形表的其他行。

步骤四:确定基变量和非基变量基变量是单纯形表中拥有非零系数的变量,非基变量是单纯形表中拥有零系数的变量。

基变量和非基变量的确定方法如下: 1. 将目标函数的系数列中不为零的变量作为基变量。

2. 将约束条件中非零系数列中对应的变量作为基变量。

3. 剩余的变量作为非基变量。

步骤五:计算单纯形表中的系数根据基变量和非基变量的定义,我们可以计算单纯形表中的系数。

计算方法如下: 1. 将基变量的系数列除以对应的基变量系数。

2. 将非基变量的系数列减去对应的基变量系数列乘以非基变量所在行和基变量所在行之间的系数。

步骤六:检查是否达到最优解在每次迭代过程中,都需要检查是否达到最优解。

如果单纯形表中目标函数系数列的所有值都是非负的,表示已经达到最优解;否则,需要进行下一次迭代。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 基变量:与基向量pi相应的变量xi叫基变量,基变量有m个。
• 非基变量:与非基向量 pj相应的变量xj叫非基变量,非基变量有n -m个。
2
一、单纯形法的基本原理
顶点的逐步转移

即从可行域的一个顶点(基本可行解) 开始,转移到另一个顶点(另一个基本可 行解)的迭代过程,转移的条件是使目标 函数值得到改善(逐步变优),当目标函 数达到最优值时,问题也就得到了最优解。
基本思路:
确定初始基础可行解 检查是否为 最优解? 否 确定改善方向 求新的基础可行解 是
求最优解的目标函数值
顶点转移的依据
根据线性规划问题的可行域是凸多边形 或凸多面体,一个线性规划问题有最优解, 就一定可以在可行域的顶点上找到。 于是,若某线性规划只有唯一的一个最 优解,这个最优解所对应的点一定是可行域 的一个顶点;若该线性规划有多个最优解, 那么肯定在可行域的顶点中可以找到至少一 个最优解。
cB
0 0 0
xB
cj xj
x3 x4 x5
-3 x1 1 3 0
-4 x2 2 2 1
0 x3 1 0 0
0 x4 0 1 0
0 x5 0 0 1
常数 d 6 12 2
检验数b
3
4
0
0
0
0
这说明我要调整非基变量x2 ,使其成为基变量,并 相应调出一个基变量为非基变量。
(2)确定换出基的变量。为确定哪个基变量调出 首先计算: d
b j cn i aij c j
i 1
• 求例题的检验数:
• b01=0*1+0*3+0*0-(-3) 同理求得b02,b03,b04,b05 则最右下角的我们称之为b0,
b0 cni d j
i 1
m
所以b0=0
• 解答:
• (1)确定换入基的变量。只要有检验数b﹥0, 对应的变量xj就可作为换入基的变量,当有一个 以上检验数大于零时,一般从最大的开始。因此 在本题的检验数中找到最大的正检验数。
min
0 aij
i
所以本题有:
6 12 2 2 min( , , ) 2 2 2 1 1
则此最小值对应x5,所以我们将x5行与x2列相交的 数值“1”圈起来。即要将x2与x5进行调整。“1” 被称为旋转元素。
(3)用换入变量xj替换换出变量xB,得到一个 新的基。对应这个基找出新的基可行解并列出 新的单纯性表。
两阶段法:
• 第一阶段:先求解一个目标函数中只包含人工变 量的线性规划问题,即令目标函数中的其他变量 系数取零,人工变量的系数取某个正的常数(一 般取1),在保持原问题约束条件不变的情况下求 这个目标函数极小化的解。显然在第一阶段中, 当人工变量取值为零时,目标函数值为零。这个 时候的最优解就是原线性规划问题的一个基可行 解。如果第一阶段求解结果最优解的目标函数值 不为零,即最优解的非基变量中含有非零的人工 变量,表明线性规划问题无可行解。 • 第二阶段:当第一阶段求解结果表明问题有可行 解,则此阶段在原问题中去除人工变量,并从此 可行解出发继续寻找最优解。
例3:两阶段法
min f x1 x2 x3 x 2 x 3x 6 1 2 3 4 x 5 x 6 x 6 1 2 3 x1 0, x2 0, x3 0
单纯形法一般还可证明:
• 1.解的情况:
• (1)如果在单纯形表中所有检验数都非正: 1)若基变量中含非零的人工变量,则无可行解。 2)若基变量中不含非零的人工变量:
ⅰ)首先将旋转元变为“1”,即将所要转换的基变量 行除以旋转元。因为本题中旋转元已经为“1”,所 以x5行不用调整。 ⅱ)将旋转元所在行转换后的整行数字乘以(-aij),加 到表中的第i行数字上,即将要转化为基变量的列变 为除转换元为“1”外,其他数字都为“0”的列。 在本题中,即是将x5行中的各数乘以(-2),分别加 到x3和x4行上。再将x5行乘以(-4)加到检验行上。 使得x2列上除了旋转元变为“1”,其余数字都变为 “0”。并将xB列中的x5调为x2,表示x2调入基变量, x5调入非基变量。因此得到下表。
表格单纯形法
• 例题1:用单纯形法求解线性规划问题
max f =3x1+4x2 x1+2x2≤6 3x1+2x2≤12 x2≤2 x1≥0,x2≥0
• 首先将此现行规划问题化为标准形式
得到: min f ’=- f =-3x1-4x2 x1+2x2+x3 =6 3x1+2x2 +x4 =12 x2 +x5=2 x1≥0,x2≥0,x3≥0,x4≥0,x5≥0
练习2:
min f x1 3 x2 2 x3 x 2x 2x 2 1 2 3 3 x1 x2 x3 3 x1 x2 x3 1 x1 0, x2 0, x3 0
人工变量法
人工变量
• 用单纯形法解题时,需要有一个单位阵作为初始基。 • 当约束条件都是“≤”时,加入松弛变量就形成了初始基。 • 但实际存在“≥”或“=”型的约束,没有现成的单位矩阵。
• 以上线性规划问题所得的最后检验数都小于或等 于“0”的单纯形法表格如下:
cB
-3
0 -4
xB
cj xj
x1
x5 x2
-3 x1
-4 x2
0 x3
0 x4
0 x5
常数 d
1
0 0
0
0 1
-1/2
-3/4 3/4
1/2
1/4 -1/4
0
1 0
3
1/2 3/2
0 0 -3/2 -1/2 0 -15 检验数b 因此得到当x1=3,x2=3/2,x3=x4=0,x5=1/2时,目标函 数最大值f=15.
表格单纯形法:
1、 初始单纯形表的建立
(1)表格结构: cB
0 0
xB
cj xj
x3 x4
-3 x1 1 3
-4 x2 2 2
0 x3 1 0
0 x4 0 1
0 x5 0 0
常数 d 6 12
0
x5
0
3
1
4
0
0
0
0
1
0
2
0
检验数b
单纯形表的列法:
• 原方程中自带的变量称为非基变量,如x1,x2;为 解题而设出的变量称为基变量,如x3,x4,x5。 • cj:目标函数中变量的系数; • xj:变量; • xB:基变量; • cB:基变量在目标函数中对应的系数; • d:各约束条件的常数项; • 检验数: m
练习1:
max f 2 x1 x2 5 x 15 2 6 x1 2 x2 24 x x 5 1纯形法的计算步骤
①将线性规划问题化成标准型 ②建立初始单纯形表
③计算各非基变量xB的检验数
b j cn i aij c j
大M 法:
• 本题化为标准形式后,发现只有x4一个基变量,但 题中需要三个基变量,于是,加入行x6,x7两个人 工变量。其目标函数中的系数为M,M代表任意大 的正值。
练习3:
max f 2 x1 x2 x x 2 1 2 2 x 2 x 6 1 2 x1 , x2 0
• 采用人造基的办法:人工构造单位矩阵
在没有单位列向量的等式约束中加入人工变量,构成原线性 规划问题的伴随问题,从而得到一个初始基。 人工变量是在等式中人为加进的,只有它等于0时,约束条件 才是它本来的意义。
• 处理方法有两种:
大M 法 两阶段法
例题2:大M 法
max f 3 x1 x3 x x x 4 1 2 3 2 x1 x2 x3 1 3x x 9 2 3 x1 , x2 , x3 0
1.图解法的局限
• 图解法只可解决两个变量的线性规划问题, 而在实际应用中还有多个变量的线性规划 问题无法解决。 • 因此, 1947年G.B.Dantzig提出的单纯形 法提供了方便、有效的通用算法求解线性 规划。
基本概念
• 基:已知A 是约束条件的 m×n 系数矩阵,其秩为m。若B是A中m ×m阶非奇异子矩阵(即可逆矩阵),则称B是线性规划问题中的 一个基。 • 基向量:基B中的一列即称为一个基向量。基B中共有m个基向量。 • 非基向量:在A中除了基B之外的一列则称之为基B的非基向量。
i 1
m
若所有 b≤0 ,则问题已得到最优解,停止计算, 否则转入下步。 ④在大于0的检验数中,若某个bj﹥0,而所对应的列 中没有正数,则此问题是无界解,停止计算,否则 转入下步。
⑤根据 max{dj | dj > 0}=dk 原则,确定 xk 为换入 变量(进基变量),再按规则计算:=min{bi ′/a ′| a ′ > 0}=b ′/ a ′ 确定出换出变 ik ik l ik 量。建立新的单纯形表,此时换入非基变量 取代了换出基变量的位置。 aik′ 为主元 素进行迭代,把 xk 所对应的列向量变为单位 列向量,即 aik′ 变为 1 ,同列中其它元素为 0 。 后转第③ 步。
①若存在非基变量的检验数为零,则有无穷多解。 ②若不存在非基变量的检验数为零,则有唯一解
• (2)如果单纯形表中,某一检验数大于零,而且对应 变量所在列中没有正数,则线性规划问题为无界解。
• 2.利用单纯形法一定可以求出线性规划问题的最优解 或可以判断线性规划问题无最优解。
cB
0
0 -4
xB
cj xj
x3
x4 x2
-3 x1
-4 x2
0 x3
0 x4
0 x5
常数 d
相关文档
最新文档