人教版高中数学选修4-5练习:第三讲3.3排序不等式 Word版含解析
人教版高中数学选修4-5《3.3排序不等式》

三、 解决 问题
OAi=ai , a1<a2<••• < an ,
Bn
OBj=bj , b1<b2< ••• < bn
B
Bi
B2 B1 O A1 A2 Ai An A
例1.有10人各拿一只水桶去接水, 设水龙头注满第 i(i=1, 2,… …, 10)个人的水桶需要ti分, 假定这些ti各不 相同, 问只有一个水龙头时, 应如何安排10人的顺序, 使他们等候的总时间最少?这个最小时间等于多少?
(P 45 3. )课堂练习 a1a2 a2a3 a3a1 设 a1,a2,a3 为正数,求证: + + ≥a1+a2+a3. a3 a1 a2 证明:不妨设 0<a1≤a2≤a3,于是
a1a2≤a1a3≤a2a3, 1 1 1 ≤ ≤ , a3 a2 a1 由排序不等式:顺序积的和≥乱序积的和,得 a1a2 a3a1 a2a3 1 1 1 + + ≥ · a1a2+ · a1a3+ · a2a3 a3 a2 a1 a1 a3 a2 =a2+a1+a3. aa aa aa 即 1 2+ 2 3+ 3 1≥a1+a2+a3. a3 a1 a2
28 32 最小值是_____. 最大值是_____,
对应关系
(1,2,3) (4,5,6) (1,2,3) (4,6,5) (1,2,3) (5,4,6) (1,2,3) (5,6,4) (1,2,3) (6,4,5) (1,2,3) (6,5,4)
2019/1/24
和
32 31 31 29 29 28
c 如此继续下去,经有限步调整,可知一切和数中,最大和数所对应的情 况只能是数组{ci}由小到大排序的情况,即 S≤S2. 同样可以证明,最小和数是反序积的和,即S1≤S.
人教版高中数学选修4-5教材用书第三讲 柯西不等式与排序不等式 三 排序不等式 Word版含答案

三排序不等式.顺序和、乱序和、反序和为这两+…++称,的任一排列,…,,是,…,,,为两组实数≤≤…≤,≤≤…≤设反简称(为这两个实数组的反序积之和+…+-+称,)顺序和简称(个实数组的顺序积之和.)乱序和简称(为这两个实数组的乱序积之和+…++称,)序和.排序不等式(排序原理)定理:(排序不等式,又称为排序原理) 设≤≤…≤,≤≤…≤为两组实数,,,…,)反序和等于顺序和(等号成立,+…++≤+…++≤+…+-+则,的任一排列,…,,是⇔==…=或==…=.顺序和.≤乱序和≤反序和排序原理可简记作:分析题目中已明确≥≥,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.∵≥>,∴≤. 又>,从而≥. 同理≥,从而≥≥.又由于顺序和不小于乱序和,故可得 ++≥++ =++ ≥++=++ =++.∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组..已知<α<β<γ<,求证:αβ+βγ+γα>( α+β+γ).证明:∵<α<β<γ<,且=在为增函数,=在为减函数,∴< α< β< γ,α> β> γ>.∴αβ+βγ+γα> αα+β· β+γγ=( α+β+γ)..设≥,求证:+++…+≥(+).证明:∵≥,∴≤≤≤…≤.由排序原理,得+++…+≥·+·-+…+-·+·,即+++…+≥(+).①又因为,,…,为,,,…,的一个排列,由排序原理,得·+·+…+-·+·≥·+·-+…+-·+·,得++…+-+≥(+).②将①②相加,得+++…+≥(+).可构造△的边和角的有序数列,应用排序不等式来证明.不妨设≤≤,于是≤≤.由排序不等式,得++≥++,++≥++,++≥++.相加,得(++)≥(++)(++)=π(++),得≥.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系..设,,…,为正数组,,…,的某一排列,求证:++…+≥.证明:不妨设<≤≤…≤,则≥≥…≥.因为,,…,是,,…,的一个排列,由排序原理,得。
高中数学 3.3排序不等式 新人教A版选修4-5

t2,…,t10},t1<t2<…<t10.Fra bibliotek编辑课件
首先我们来证明m=5,若不然,即m>5,我们让在第
一水龙头打水的第一人到第二个水龙头的第一位去,
则总的花费时间变为
T′=(m-1)p2+…+pm+(11-m)p1+(10-m)q1+…+
q10-m.
栏
所以T-T′=(2m-11)p1>0,即当m>5时,我们让第一
栏
根据排序原理,知
目 链
接
ab2×1b+ba2×1a≥ab2×1a+ba2×b1,
即ba2+ba2≥ab+ba.
编辑课件
设 a1,a2,…,an 是 1,2,…,n 的一个排列,求证:12+23+…
+n-n 1≤aa12+aa23+…+aan-n1.
分析:构造出数组,利用排序原理证明.
栏
目
证明:设
1.设 a,b,c 都是正数,求证:bac+abc+acb≥a+b+c.
证明:由题意不妨设 a≥b≥c>0,
栏
∴ab≥ac≥bc,1c≥1b≥a1.
目 链
接
由排序原理,知
ab×1c+ac×b1+bc×a1≥ab×b1+ac×1a+bc×1c=a+c+b.
编辑课件
应用题
有十个人各拿一只水桶去打水,设水龙头灌满第i
第三讲 柯西不等式与排序不 等式
3.3 排序不等式
编辑课件
栏 目 链 接
编辑课件
不等式证明
设 a,b 都是正数,求证:
栏 目
ba2+ba2≥ba+ba.
链 接
分析:观察不等式找出数组,并比较大小,并用排序原理证明.
编辑课件
高中数学第三讲三排序不等式学案含解析新人教A版选修4_5

三排序不等式考纲定位重难突破1.了解排序不等式的数学思想和背景.2.了解排序不等式的结构与基本原理.3.理解排序不等式的简单应用.重点:排序不等式的结构与基本原理.难点:排序不等式的简单应用.授课提示:对应学生用书第32页[自主梳理]一、顺序和、乱序和、反序和的概念设a1≤a2≤a3≤…≤a n,b1≤b2≤b3≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则称a i与b i(i=1,2,…,n)的相同顺序相乘所得积的和a1b1+a2b2+…a n b n为顺序和,和a1c1+a2c2+…+a n c n为乱序和,相反顺序相乘所得积的和a1b n+a2b n-1+…+a n b1为反序和.二、排序不等式(排序原理)设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和,此不等式简记为反序和≤乱序和≤顺序和.[双基自测]1.已知a,b,c∈R+,则a5+b5+c5与a3b2+b3c2+c3a2的大小关系是()A.a5+b5+c5>a3b2+b3c2+c3a2B.a5+b5+c5≥a3b2+b3c2+c3a2C.a5+b5+c5<a3b2+b3c2+c3a2D.a5+b5+c5≤a3b2+b3c2+c3a2解析:取两组数a3,b3,c3和a2,b2,c2,由排序不等式,得a5+b5+c5≥a3b2+b3c2+c3a2.答案:B2.设两组数1,2,3,4和4,5,6,7的顺序和为A,反序和为B,则A=________,B=________.解析:A=1×4+2×5+3×6+4×7=4+10+18+28=60.B=1×7+2×6+3×5+4×4=7+12+15+16=50.答案:60503.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s,4 s,3 s,7 s ,每个人接完水后就离开,则他们等候的总时间最短为________ s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:41授课提示:对应学生用书第32页探究一 利用排序不等式证明不等式[例1] 设a ,b ,c 都是正数,求证:bc a +ca b +abc ≥a +b +c .[证明] 由题意不妨设a ≥b ≥c >0,由不等式的单调性,知ab ≥ac ≥bc ,1c ≥1b ≥1a .由排序不等式,知 ab ×1c +ac ×1b +bc ×1a≥ab ×1b +ac ×1a +bc ×1c,即所证不等式bc a +ca b +abc ≥a +b +c 成立.1.利用排序不等式证明不等式时,若已知条件中已给出两组量的大小关系,则需要分析清楚顺序和、乱序和及反序和.利用排序不等式证明即可.2.若在解答数学问题时,涉及一些可以比较大小的量,它们之间并没有预先规定大小顺序.那么在解答问题时,我们可以利用排序原理将它们按一定顺序排列起来,继而用不等关系来解题.1.设a ,b ,c 为正数,求证:a 12bc +b 12ac +c 12ab ≥a 10+b 10+c 10.证明:不妨设a ≥b ≥c >0,则a 12≥b 12≥c 12, 1bc ≥1ac ≥1ab>0, ∴由顺序和≥乱序和,得a 12bc +b 12ac +c 12ab ≥a 12ab +b 12bc +c 12ac =a 11b +b 11c +c 11a .①又∵a 11≥b 11≥c 11,1c ≥1b ≥1a ,∴由乱序和≥反序和,得a 11b +b 11c +c 11a ≥a 11a +b 11b +c 11c =a 10+b 10+c 10,②由①②两式得:a 12bc +b 12ac +c 12ab≥a 10+b 10+c 10.探究二 利用排序不等式求最值[例2] 设a ,b ,c 为任意正数,求a b +c +b c +a +ca +b 的最小值.[解析] 不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b ,由排序不等式得,ab +c +b c +a +c a +b ≥b b +c +c c +a +a a +b a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b 上述两式相加得: 2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3, 即ab +c +b c +a +c a +b ≥32. 当且仅当a =b =c 时, ab +c +b c +a +c a +b 取最小值32.利用排序不等式求最值的方法利用排序不等式求最值时,先要对待证不等式及已知条件仔细分析,观察不等式的结构,明确两个数组的大小顺序,分清顺序和、乱序和及反序和,由于乱序和是不确定的,根据需要写出其中的一个即可.一般最值是顺序和或反序和.2.设0<a ≤b ≤c 且abc =1.试求1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值.解析:令S =1a 3(b +c )+1b 3(a +c )+1c 3(a +b ),则S =(abc )2a 3(b +c )+(abc )2b 3(a +c )+(abc )2c 3(a +b )=bc a (b +c )·bc +ac b (a +c )·ac +abc (a +b )·ab .由已知可得:1a (b +c )≥1b (a +c )≥1c (a +b ),ab ≤ac ≤bc .∴S ≥bc a (b +c )·ac +ac b (a +c )·ab +abc (a +b )·bc=ca (b +c )+a b (a +c )+bc (a +b ).又S ≥bc a (b +c )·ab +ac b (a +c )·bc +abc (a +b )·ac=ba (b +c )+c b (a +c )+a c (a +b ),两式相加得:2S ≥1a +1b +1c ≥3·31abc=3.∴S ≥32,即1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值为32.探究三 利用排序不等式解决实际问题[例3] 若某网吧的3台电脑同时出现了故障,对其维修分别需要45 min,25 min 和30 min ,每台电脑耽误1 min ,网吧就会损失0.05元.在只能逐台维修的条件下,按怎么样的顺序维修,才能使经济损失降到最小?[解析] 设t 1,t 2,t 3为25,30,45的任一排列,由排序原理知3t 1+2t 2+t 3≥3×25+2×30+45=180(min),所以按照维修时间由小到大的顺序维修,可使经济损失降到最小.利用排序不等式解决实际问题的关键是将实际问题转化为数学问题,构造排序不等式的模型.3.某座大楼共有n 层,在每层有一个办公室,每个办公室的人员步行上下楼,他们的速度分别为v 1,v 2,…,v n (他们各不相同),为了能使得办公室的人员上下楼梯所用的时间总和最小,应该如何安排?(假设每两层楼的楼梯长都一样)解析:设两层楼间的楼梯长为s ,则第一层需要走的路程为s ,第二层需要走的路程为2s ,…,第n 层需要走的路程为ns .不妨设v ′1>v ′2>…>v ′n 为v 1,v 2,…,v n 从大到小的排列,显然1v ′1<1v ′2<…<1v ′n ,由排序不等式,可得ns 1v ′1+(n -1)s 1v ′2+…+s 1v ′n的和最小,所以将速度快的放在高层,速度慢的放在低层,可使上下楼的时间最短.在运用排序不等式时不能准确找到相应有序数组致误[典例] 一般地,对于n 个正数a 1,a 2,…,a n ,几何平均数G n =na 1a 2…a n ,算术平均数A n =a 1+a 2+…+a nn,利用排序不等式可以判断G n ,A n 的大小关系为________.[解析] 令b i =a iG n (i =1,2,…,n ),则b 1b 2…b n =1,故可取x 1≥x 2≥…≥x n >0,使得b 1=x 1x 2,b 2=x 2x 3,…,b n -1=x n -1x n ,b n =x nx 1.由排序不等式有:b 1+b 2+…+b n =x 1x 2+x 2x 3+…+x n x 1≥x 1·1x 1+x 2·1x 2+…+x n ·1x n=n ,当且仅当x 1=x 2=…=x n 时取等号,所以a 1G n +a 2G n +…+a nG n ≥n ,即a 1+a 2+…+a n n ≥G n ,即A n ≥G n . [答案] A n ≥G n[规律探究] (1)利用排序不等式的关键是正确地寻找两组有序实数组,构造的恰当是正确解题的前提,如本例中构造的两组数,恰好能够解决反序和为n ,使得问题得以解决.(2)利用排序不等式求解完成后,一定要说明等号成立的条件,若取不到等号也应该说明原因,使得解题更加清晰和准确.(3)运用排序不等式的解题步骤是①构造两组有序数组使之满足排序不等式的条件;②运用排序不等式得到不等关系;③找出等号成立的条件并以此得出证明的结论.[随堂训练] 对应学生用书第34页1.设正实数a 1,a 2,a 3的任一排列为a ′1,a ′2,a ′3,则a 1a ′1+a 2a ′2+a 3a ′3的最小值为( )A .3B .6C .9D .12解析:设a 1≥a 2≥a 3>0,则1a 3≥1a 2≥1a 1>0,由排列不等式可知a 1a ′1+a 2a ′2+a 3a ′3≥a 1a 1+a 2a 2+a 3a 3=3. 当且仅当a ′1=a 1,a ′2=a 2,a ′3=a 3时等号成立. 答案:A2.设a 1,a 2,a 3为正数,E =a 1a 2a 3+a 2a 3a 1+a 3a 1a 2,F =a 1+a 2+a 3,则E ,F 的大小关系是( ) A .E <F B .E ≥F C .E =FD .E ≤F解析:不妨设a 1≥a 2≥a 3>0,于是1a 1≤1a 2≤1a 3,a 2a 3≤a 3a 1≤a 1a 2.由排序不等式:顺序和≥乱序和,得a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥1a 2·a 2a 3+1a 3·a 3a 1+1a 1·a 1a 2=a 3+a 1+a 2,即a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3. ∴E ≥F . 答案:B3.已知a ,b ,x ,y ∈R +,且1a >1b ,x >y ,则x x +a ________yy +b (填“>”或“<”).解析:∵1a >1b ,a >0,b >0,∴b >a >0,又x >y >0,∵bx >ay , ∴bx -ay >0, 又x +a >0,y +b >0,∴x x +a -yy +b =bx -ay (x +a )(y +b )>0, 即xx +a >y y +b . 答案:>。
选修4-5 3.3排序不等式

a b c 3
.
证明:不妨设a b c 0,则 lg a lg b lg c, 由排序不等式知: a lg a b lg b c lg c b lg a c lg b a lg c,
a lg a b lg b c lg c c lg a a lg b b lg c,
以上两式相加,两边再加上a lg a b lg b c lg c, 3 a lg a b lg b c lg c a b c lg a lg b lg c ,
a b c lg abc . lg a b c 3
a b c
典例分析
例2 设a1,a2,…,an是n个互不相等的正整 数,求证:
1 1 ... 1 a a 2 a 3 ... a n . 1 1 2 2 2 2 3 n 2 3 n
证明:设b1,b2,…,bn是a1,a2,… , an的一个排 列,且有 b1<b2<…<bn 因为b1,b2,…,bn是互不相等的正整数, 所以b1≥1,b2≥2,…,bn≥n.
2. 已 知 a,,是 正 数 , 用 排 序 不 等 式 证 明 : b c 2( a b c ) a ( b c ) b ( a c ) c ( a b ).
3 3 3 2 2 2
3. 设a1, 2, 3为正数,求证 : a a a1a2 a a2
4.设 a 1 , 2 , , n为 正 数 , 试 分 别 用 柯 西 不 等 式 a ... a 与排序不等式证明: a a a a ... a 1 a 2 ... a n . a2 a3 an a1
2019-2020学年人教版高中数学选修4-5教材用书:第三讲 柯西不等式与排序不等式 三 排序不等式 Word版含答案

三排序不等式1.顺序和、乱序和、反序和设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,称a1b1+a2b2+…+a n b n为这两个实数组的顺序积之和(简称顺序和),称a1b n+a2b n-1+…+a n b1为这两个实数组的反序积之和(简称反序和),称a1c1+a2c2+…+a n c n为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序不等式,又称为排序原理) 设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,等号成立(反序和等于顺序和)⇔a1=a2=…=a n或b1=b2=…=b n.排序原理可简记作:反序和≤乱序和≤顺序和.已知a,b,c为正数,且a≥b≥c,求证:b3c3+c3a3+a3b3≥a+b+c.分析题目中已明确a≥b≥c,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.∵a≥b>0,∴1a ≤1b.又c>0,从而1bc ≥1 ca.同理1ca≥1ab,从而1bc≥1ca≥1ab.又由于顺序和不小于乱序和,故可得a5 b3c3+b5c3a3+c5a3b3≥b5b3c3+c5c3a3+a5a3b3=b2c3+c2a3+a2b3⎝⎛⎭⎪⎫∵a2≥b2≥c2,1c3≥1b3≥1a3≥c2c3+a2a3+b2b3=1c+1a+1b=1a+1b+1c.∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γcos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y =sin x 在⎝ ⎛⎭⎪⎫0,π2为增函数,y =cos x 在⎝ ⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin β·cos β+sin γcos γ=12(sin2α+sin 2β+sin 2γ).2.设x ≥1,求证:1+x +x 2+…+x 2n≥(2n +1)x n. 证明:∵x ≥1,∴1≤x ≤x 2≤…≤x n.由排序原理,得12+x 2+x 4+…+x 2n≥1·x n +x ·x n -1+…+xn -1·x +x n·1,即1+x 2+x 4+…+x 2n ≥(n +1)x n.①又因为x ,x 2,…,x n,1为1,x ,x 2,…,x n的一个排列, 由排序原理,得1·x +x ·x 2+…+x n -1·x n +x n·1≥1·x n +x ·xn -1+…+xn -1·x +x n·1,得x +x 3+…+x2n -1+x n≥(n +1)x n.②将①②相加,得1+x +x 2+…+x 2n≥(2n +1)x n.在△ABC 中,试证:3≤a +b +c.可构造△ABC 的边和角的有序数列,应用排序不等式来证明. 不妨设a ≤b ≤c ,于是A ≤B ≤C . 由排序不等式,得aA +bB +cC ≥aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC .相加,得3(aA +bB +cC )≥(a +b +c )(A +B +C )=π(a +b +c ),得aA +bB +cC a +b +c ≥π3.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设c 1,c 2,…,c n 为正数组a 1,a 2,…,a n 的某一排列,求证:a1c1+a2c2+…+ancn ≥n .证明:不妨设0<a 1≤a 2≤…≤a n ,则1a1≥1a2≥…≥1an. 因为1c1,1c2,…,1cn 是1a1,1a2,…,1an 的一个排列,由排序原理,得a 1·1a1+a 2·1a2+…+a n ·1an ≤a 1·1c1+a 2·1c2+…+a n ·1cn ,即a1c1+a2c2+…+an cn≥n .4.设a 1,a 2,…,a n 是1,2,…,n 的一个排列, 求证:12+23+…+n -1n ≤a1a2+a2a3+…+an -1an.证明:设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n -1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1,则1c1>1c2>…>1cn -1且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a1a2+a2a3+…+an -1an ≥b1c1+b2c2+…+bn -1cn -1≥12+23+…+n -1n . ∴原不等式成立.课时跟踪检测(十一)1.有一有序数组,其顺序和为A ,反序和为B ,乱序和为C ,则它们的大小关系为( ) A .A ≥B ≥C B .A ≥C ≥B C .A ≤B ≤CD .A ≤C ≤B解析:选B 由排序不等式,顺序和≥乱序和≥反序和知:A ≥C ≥B .2.若A =x 21+x 2+…+x 2n ,B =x 1x 2+x 2x 3+…+x n -1x n +x n x 1,其中x 1,x 2,…,x n 都是正数,则A 与B 的大小关系为( )A .A >BB .A <BC .A ≥BD .A ≤B解析:选C 序列{x n }的各项都是正数,不妨设0<x 1≤x 2≤…≤x n ,则x 2,x 3,…,x n ,x 1为序列{x n } 的一个排列.由排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 21+x 2+…+x 2n ≥x 1x 2+x 2x 3+…+x n x 1.3.锐角三角形中,设P =a +b +c 2,Q =a cos C +b cos B +c cos A ,则P ,Q 的关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C , 则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R=R (sin C +sin A +sin B )=P =a +b +c2. 4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花________元.( )A .76B .20C .84D .96解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28. 答案:32 286.有4人各拿一只水桶去接水,设水龙头注满每个人的水桶分别需要5 s 、4 s 、3 s 、7 s ,每个人接完水后就离开,则他们总的等候时间最短为________s.解析:由题意知,等候的时间最短为3×4+4×3+5×2+7=41. 答案:417.在Rt △ABC 中,∠C 为直角,A ,B 所对的边分别为a ,b ,则aA +bB 与π4(a +b )的大小关系为________.解析:不妨设a ≥b >0,则A ≥B >0,由排序不等式⎭⎪⎬⎪⎫aA +bB≥aB+bA aA +bB =aA +bB ⇒2(aA +bB )≥a (A +B )+b (A +B )=π2(a +b ), ∴aA +bB ≥π4(a +b ). 答案:aA +bB ≥π4(a +b ) 8.设a ,b ,c 都是正数,求证:a +b +c ≤a4+b4+c4abc .证明:由题意不妨设a ≥b ≥c >0.由不等式的性质,知a 2≥b 2≥c 2,ab ≥ac ≥bc . 根据排序原理,得a 2bc +ab 2c +abc 2≤a 3c +b 3a +c 3b .① 又由不等式的性质,知a 3≥b 3≥c 3,且a ≥b ≥c .再根据排序不等式,得a 3c +b 3a +c 3b ≤a 4+b 4+c 4.②由①②及不等式的传递性,得a 2bc +ab 2c +abc 2≤a 4+b 4+c 4.两边同除以abc 得证原不等式成立.9.设a ,b ,c 为任意正数,求a b +c +b c +a +ca +b 的最小值.解:不妨设a ≥b ≥c ,则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b .由排序不等式,得a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , a b +c +b c +a +c a +b ≥c b +c +a c +a +b a +b, 以上两式相加,得2⎝ ⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3,∴a b +c +b c +a +c a +b ≥32, 即当且仅当a =b =c 时, a b +c +b c +a +c a +b 的最小值为32.10.设x ,y ,z 为正数,求证:x +y +z ≤x2+y22z +y2+z22x +z2+x22y. 证明:由于不等式关于x ,y ,z 对称, 不妨设0<x ≤y ≤z ,于是x 2≤y 2≤z 2,1z ≤1y ≤1x ,由排序原理:反序和≤乱序和,得x 2·1x +y 2·1y +z 2·1z ≤x 2·1z +y 2·1x +z 2·1y, x 2·1x+y 2·1y+z 2·1z≤x 2·1y+y 2·1z+z 2·1x,将上面两式相加,得2(x +y +z )≤x2+y2z +y2+z2x +z2+x2y ,于是x +y +z ≤x2+y22z +y2+z22x +z2+x22y.本讲高考热点解读与高频考点例析考情分析从近两年高考来看,对本部分内容还未单独考查,可也不能忽视,利用柯西不等式构造“平方和的积”与“积的和的平方”,利用排序不等式证明成“对称”形式,或两端是“齐次式”形式的不等式问题.真题体验(陕西高考)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.解:(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1.(2)-3t +12+t =3·4-t +t ≤3+4-t+t=24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t)max =4.1122n n )2(a i ,b i ∈R ,i =1,2,…,n ),形式简洁、美观,对称性强,灵活地运用柯西不等式,可以使一些较为困难的不等式证明问题迎刃而解.已知a ,b ,c ,d 为不全相等的正数,求证:1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.由柯西不等式⎝ ⎛⎭⎪⎫1a2+1b2+1c2+1d2⎝ ⎛ 1b2+1c2+⎭⎪⎫1d2+1a2≥⎝ ⎛⎭⎪⎫1ab +1bc +1cd +1da 2, 于是1a2+1b2+1c2+1d2≥1ab +1bc +1cd +1da.①等号成立⇔1a 1b =1b 1c =1c 1d =1d 1a⇔b a =c b =d c =ad ⇔a =b =c =d .又已知a ,b ,c ,d 不全相等,则①中等号不成立. 即1a2+1b2+1c2+1d2>1ab +1bc +1cd +1da.关的不等式问题,利用排序不等式解决往往很简便.设a ,b ,c 为实数,求证:a12bc +b12ca +c12ab ≥a 10+b 10+c 10.由对称性,不妨设a ≥b ≥c , 于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab .由排序不等式:顺序和≥乱序和,得a12bc +b12ca +c12ab ≥a12ab +b12bc +c12ca =a11b +b11c +c11a .① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c,再次由排序不等式:反序和≤乱序和,得 a11a +b11b +c11c ≤a11b +b11c +c11a .② 由①②得a12bc +b12ca +c12ab≥a 10+b 10+c 10.理.在这类题目中,利用柯西不等式或排序不等式处理往往比较容易.已知5a 2+3b 2=158,求a 2+2ab +b 2的最大值.解:∵⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫552+⎝ ⎛⎭⎪⎫332 ≥⎝⎛⎭⎪⎫55×5a +33×3b 2=(a +b )2=a 2+2ab +b 2,当且仅当5a =3b ,即a =38,b =58时,等号成立.∴815×(5a 2+3b 2)≥a 2+2ab +b 2. ∴a 2+2ab +b 2≤815×(5a 2+3b 2)=815×158=1. ∴a 2+2ab +b 2的最大值为1.已知正实数x 1,x 2,…,x n 满足x 1+x 2+…+x n =P ,P 为定值,求F =x21x2+x22x3+…+x2n -1xn +x2nx1的最小值.不妨设0<x 1≤x 2≤…≤x n , 则1x1≥1x2≥…≥1xn>0,且0<x 21≤x 2≤…≤x 2n . ∵1x2,1x3,…,1xn ,1x1为序列⎩⎨⎧⎭⎬⎫1xn 的一个排列, 根据排序不等式,得F =x21x2+x22x3+…+x2n -1xn +x2nx1≥x 21·1x1+x 2·1x2+…+x 2n ·1xn=x 1+x 2+…+x n =P (定值),当且仅当x 1=x 2=…=x n =Pn 时,等号成立.即F =x21x2+x22x3+…+x2n -1xn +x2n x1的最小值为P .。
人教新课标版数学高二人教A选修4-5试题 3-3排序不等式

第三节 排序不等式解答题1.若a 1≤a 2≤…≤a n ,而b 1≥b 2≥…≥b n 或a 1≥a 2≥…≥a n 而b 1≤b 2≤…≤b n ,证明:a 1b 1+a 2b 2+…+a n b n n ≤⎝⎛⎭⎫a 1+a 2+…+a n n ·⎝⎛⎭⎫b 1+b 2+…+b n n .当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时等号成立.证明 不妨设a 1≤a 2≤…≤a n ,b 1≥b 2≥…≥b n .则由排序原理得:a 1b 1+a 2b 2+…+a n b n =a 1b 1+a 2b 2+…+a n b na 1b 1+a 2b 2+…+a n b n ≤a 1b 2+a 2b 3+…+a n b 1a 1b 1+a 2b 2+…+a n b n ≤a 1b 3+a 2b 4+…+a n -1b 1+a n b 2……a 1b 1+a 2b 2+…+a n b n ≤a 1b n +a 2b 1+…+a n b n -1.将上述n 个式子相加,得:n (a 1b 1+a 2b 2+…+a n b n )≤(a 1+a 2+…+a n )(b 1+b 2+…+b n )上式两边除以n 2,得:a 1b 1+a 2b 2+…+a n b n n≤⎝⎛⎭⎫a 1+a 2+…+a n n ⎝⎛⎭⎫b 1+b 2+…+b n n .等号当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时成立.2.设a 1,a 2,…,a n 为实数,证明:a 1+a 2+…+a n n ≤ a 21+a 22+…+a 2n n. 证明 不妨设a 1≤a 2≤a 3≤…≤a n由排序原理得a 21+a 22+a 23+…+a 2n =a 1a 1+a 2a 2+a 3a 3+…+a n a n .a 21+a 22+a 23+…+a 2n ≥a 1a 2+a 2a 3+a 3a 4+…+a n a 1a 21+a 22+a 23+…+a 2n ≥a 1a 3+a 2a 4+a 3a 5+…+a n a 2a 21+a 22+a 23+…+a 2n ≥a 1a n +a 2a 1+a 3a 2+…+a n a n -1以上n 个式子两边相加n (a 21+a 22+a 23+…+a 2n )=(a 1+a 2+a 3+…+a n)2 两边同除以n 2得a 21+a 22+a 23+…+a 2n n ≥⎝⎛⎭⎫a 1+a 2+a 3+…+a n n 2所以 a 21+a 22+a 23+…+a 2n n ≥a 1+a 2+a 3+…+a n n 结论得证. 3.设a 1,a 2,…,a n 为正数,求证:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n . 证明 不妨设a 1>a 2>…>a n >0,则有a 21>a 22>…>a 2n也有1a 1<1a 2<…<1a n , 由排序原理:乱序和≥反序和,得:a 21a 2+a 22a 3+…+a 2n a 1≥a 21a 1+a 22a 2+…+a 2n a n=a 1+a 2+…+a n . 4.设A 、B 、C 表示△ABC 的三个内角的弧度数,a ,b ,c 表示其对边,求证:aA +bB +cC a +b +c≥π3. 证明 法一 不妨设A >B >C ,则有a >b >c由排序原理:顺序和≥乱序和∴aA +bB +cC ≥aB +bC +cAaA +bB +cC ≥aC +bA +cBaA +bB +cC =aA +bB +cC上述三式相加得3(aA +bB +cC )≥(A +B +C )(a +b +c )=π(a +b +c )∴aA +bB +cC a +b +c≥π3. 法二 不妨设A >B >C ,则有a >b >c ,由排序不等式aA +bB +cC 3≥A +B +C 3·a +b +c 3, 即aA +bB +cC ≥π3(a +b +c ), ∴aA +bB +cC a +b +c≥π3. 5.设a ,b ,c 为正数,利用排序不等式证明a 3+b 3+c 3≥3abc .证明 不妨设a ≥b ≥c >0,∴a 2≥b 2≥c 2,由排序原理:顺序和≥反序和,得:a 3+b 3≥a 2b +b 2a ,b 3+c 3≥b 2c +c 2bc 3+a 3≥a 2c +c 2a三式相加得2(a 3+b 3+c 3)≥a (b 2+c 2)+b (c 2+a 2)+c (a 2+b 2).又a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca .所以2(a 3+b 3+c 3)≥6abc ,∴a 3+b 3+c 3≥3abc .当且仅当a =b =c 时,等号成立.6.设a ,b ,c 是正实数,求证:a a b b c c ≥(abc )a +b +c 3. 证明 不妨设a ≥b ≥c >0,则lg a ≥lg b ≥lg c .据排序不等式有:a lg a +b lg b +c lg c ≥b lg a +c lg b +a lg ca lg a +b lg b +c lg c ≥c lg a +a lg b +b lg ca lg a +b lg b +c lg c =a lg a +b lg b +c lg c上述三式相加得:3(a lg a +b lg b +c lg c )≥(a +b +c )(lg a +lg b +lg c )即lg(a a b b c c )≥a +b +c 3lg(abc ) 故a a b b c c ≥(abc )a +b +c 3. 7.设x i ,y i (i =1,2,…,n )是实数,且x 1≥x 2≥…≥x n ,y 1≥y 2≥…≥y n ,而z 1,z 2,…,z n是y 1,y 2,…,y n 的一个排列.求证:∑n i =1 (x i -y i )2≥∑n i =1(x i -z i )2. 证明 要证∑n i =1 (x i -y i )2≥∑n i =1(x i -z i )2 只需证∑n i =1y 2i -2∑n i =1x i y i ≥∑n i =1z 2i -2∑n i =1x i z i . 因为∑ni =1y 2i =∑n i =1z 2i ,∴只需证∑n i =1x i z i ≤∑n i =1x i y i . 而上式左边为乱序和,右边为顺序和.由排序不等式得此不等式成立.故不等式∑n i =1 (x i -y i )2≥∑n i =1 (x i -z i )2成立.8.已知a ,b ,c 为正数,且两两不等,求证:2(a 3+b 3+c 3)>a 2(b +c )+b 2(a +c )+c 2(a +b ).证明 不妨设a >b >c >0.则a 2>b 2>c 2,a +b >a +c >b +c ,∴a 2(a +b )+b 2(a +c )+c 2(b +c )>a 2(b +c )+b 2(a +c )+c 2(a +b ),即a 3+c 3+a 2b +b 2a +b 2c +c 2b>a 2(b +c )+b 2(a +c )+c 2(a +b ),又∵a2>b2>c2,a>b>c,∴a2b+b2a<a3+b3,b2c+c2b<b3+c3.即a2b+b2a+b2c+c2b<a3+2b3+c3,所以有2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).。
数学人教A版选修4-5课后导练:3.3排序不等式含解析

课后导练基础达标1若A=x 12+x 22+…+x n 2,B=x 1x 2+x 2x 3+…+x n-1x n +x n x 1, 其中x 1,x 2,…,x n 都是正数,则A 与B 的大小关系是( ) A 。
A 〉B B 。
A<B C.A≥B D。
A≤B解析:依序列{x n }的各项都是正数,不妨设x 1≤x 2≤…≤x n ,则x 2,x 3,…,x n ,x 1为序列{x n }的一个排列。
依排序原理,得x 1x 1+x 2x 2+…+x n x n ≥x 1x 2+x 2x 3+…+x n x 1,即x 12+x 22+…+x n 2≥x 1x 2+x 2x 3+…+x n x 1.答案:C2设a,b 都是正数,P=(ba )2+(ab )2,Q=ba +ab ,则( )A.P≥Q B。
P≤Q C 。
P 〉Q D.P 〈Q 解析: ∵a,b都是正数,∴ab 、b a 22与b1,a1顺序相同。
∴ba 2·b1+ab 2·a1≥ba 2·a1+ab 2·b1。
∴(ba )2+(ab )2≥ba +ab ,即P≥Q. 答案:A3设a ,b ,c∈R ,则cab bca abc ++____________a+b+c 。
解析:设a≥b≥c≥0,则bc≤ca≤ab,a1≤b1≤c1,∴cab bca abc ++≥ac·c1+aab +bbc=a+b+c 。
答案:≥4若△ABC 的三内角为A ,B,C,三边为a,b,c ,则cb a cC bB aA ++++___________3π.解析:设a≤b≤c,A≤B≤C。
作序列a,a,a ,b,b,b,c ,c,c ,A ,A ,A,B,B ,B ,C ,C ,C. aA+aA+aA+bB+bB+bB+cC+cC+cC≥(aA+aB+aC)+(bA+bB+bC)+(cA+cB+cC),∴3(aA+bB+cC )≥(a+b+c)(A+B+C),即cb a cC bB aA ++++≥3C B A ++=3π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲柯西不等式与排序不等式
3.3 排序不等式
A级基础巩固
一、选择题
1.设正实数a1,a2,a3的任一排列为a1′,a2′,a3′,则a1
a1′+a2
a2′
+a3
a3′的最小值为( )
A.3 B.6
C.9 D.12
解析:a1≥a2≥a3>0,则
1
a3≥
1
a2≥
1
a1>0,
由乱序和不小于反序和知,
所以
a1
a1′+
a2
a2′+
a3
a3′≥
a1
a1+
a2
a2+
a3
a3=3,
所以
a1
a1′+
a2
a2′+
a3
a3′的最小值为3,故选A.
- 1 -
答案:A
2.车间里有5 台机床同时出了故障,从第1 台到第5 台的修复时间依次为4 min,8 min,6 min,10 min,5 min,每台机床停产1 min损失5 元,经合理安排损失最少为( )
A.420 元B.400 元
C.450 元D.570 元
解析:损失最少为5(1×10+2×8+3×6+4×5+5×4)=420(元),反序和最小.
答案:A
3.设a,b,c∈R+,M=a5+b5+c5,N=a3bc+b3ac+c3ab,则M与N的大小关系是( )
A.M≥N B.M=N
C.M<N D.M>N
解析:不妨设a≥b≥c>0,
则a4≥b4≥c4,
运用排序不等式有:
a5+b5+c5=a·a4+b·b4+c·c4≥ac4+ba4+cb4,
又a3≥b3≥c3>0,且ab≥ac≥bc>0,
所以a4b+b4c+c4a=a3ab+b3bc+c3ca≥a3bc+b3ac+c3ab,
- 1 -
即a5+b5+c5≥a3bc+b3ac+c3ab,即M≥N.
答案:A
4.已知a,b,c≥0,且a3+b3+c3=3,则a b+b c+c a 的最大值是( )
A.1 B.2
C.3 D.
3 3
解析:设a≥b≥c≥0,所以a≥b≥c.
由排序不等式可得a b+b c+c a≤a a+b b+c c.
而(a a+b b+c c)2≤(a a)2+(b b)2+(c c)2](1+1+1)=9,即a a+b b+c c≤3.
所以a b+b c+c a≤3.
答案:C
5.已知a,b,c∈(0,+∞),则a2(a2-bc)+b2(b2-ac)+c2(c2-ab)的正负情况是( )
A.大于零B.大于等于零
C.小于零D.小于等于零
解析:设a≥b≥c>0,所以a3≥b3≥c3,
- 1 -。