边界层理论及边界层分离现象
流体力学教案第8章边界层理论

第八章 边界层理论§8-1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。
对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。
速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。
若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。
对于非粘性流场,则可按理想流体来处理。
则N-S 方程可由欧拉方程代替,从而使问题大为简化。
Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。
由vVl==粘性力惯性力Re ,则在这些流动中,惯性力>>粘性力,所以可略去粘性力。
但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。
所以,在这一薄层中,两者均不能略去。
这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现。
a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。
b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。
层内,粘性流,主要速度降在此,有旋流动。
c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。
d .按流动状态,边界层又分为层流边界层和紊流边界层。
由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。
所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,图8-2空气沿平板边界层速度分布外部区域边界层边界层外的流动是无旋的势流。
边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。
(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。
边界层理论

0
eue dy eue
其中, ue 为边界层外缘速 度。由于粘性的存在,实 际流体通过的质量流量为
0
u dy
此处 u 是边界层中距物面为 y 处的流速。上述两部 份流量之差是
0
( eu e u)dy
EXIT
5.1、边界层近似及其特征
这就是设想各点皆以外流速度流动时比实际流量多
位流区
边界层
流动分为三个区域:1. 边界层:N-S化简为边界层方程 2. 尾迹区:N-S方程 3. 位流区:理想流方程
EXIT
5.2、平面不可压缩流体层流边界层方程 2. 平壁面上边界层方程 根据Prandtl边界层概念,通过量级比较,可对N-S方程 组进行简化,得到边界层近似方程。对于二维不可压缩流动 ,连续方程和N-S方程为:
个典型的例子。 那么,如何考虑流体的粘性,怎样解决扰流物
体的阻力问题,这在当时确实是一个阻碍流体力学 发展的难题。
EXIT
5.1、边界层近似及其特征 直到1904年流体力学大师德国学者 L.Prandtl 通
过大量实验发现,虽然整体流动的Re数很大,但在
靠近物面的薄层流体内,流场的特征与理想流动相 差甚远,沿着法向存在很大的速度梯度,粘性力无 法忽略。 Prandtl 把这一物面近区粘性力起重要作用的薄 层称为边界层(Boundary layer)。
第5章下
边界层理论及其近似
5.1、边界层近似及其特征 5.2、平面不可压缩流体层流边界层方程 5.3、平板层流边界层的相似解 5.4、边界层动量积分方程 5.5、边界层的分离现象
EXIT
5.1、边界层近似及其特征
1、边界层概念的提出 我们已知道,流动Re数(O.Reynolds,1883年,英国流体 力学家)是用以表征流体质点的惯性力与粘性力对比关系 的。根据量级分析,作用于流体上的惯性力和粘性力可表 示为: 惯性力:
传递过程原理讲课提纲05第四章边界层理论

第四章 边界层理论问题的提出:以管内流动为例:流体流经管道时,所产生的阻力来源于二个方面-即主体阻力及边界层阻力,对于边界层内,由于流速小,故惯性力(Re 数)小,而边界层外(主体中)则流速大,惯性力(Re 数)亦大,那么能否认为此时流动阻力主要来源于主体或反之?根据牛顿粘性定律可知:阻力大小仅取决于流体本身粘度大小,还与流动空间的速度梯度有关。
狭义牛顿粘性定律为 dydu μτ-=广义牛顿粘性定律为 ()dydu H εμτ+-=§1 边界层概念1.边界层概念普兰德Prandtl 1904年提出:实际流体流经物体表面时,必然会在紧靠壁面处,形成一层极薄的流体膜附着于其上,且在壁面上其流速为零处于静止,且在其上方与流向相垂直的方向上存在很大的速度梯度,此即为边界层,其厚度取决于Re 数。
2.边界层的形成 形成原因:粘度形成过程:如图所示。
随着自由流向前流动,速度受影响的区域逐渐增大。
平板前端受影响较小时的一段区域称层流边界层。
平板尾部受影响较大的一段区域称为湍流边界层。
处于二者之 间为过渡层。
应当注意的是: ① 即使在湍流边界层内,靠近壁面的位置仍有层流内层存在;在层流内层稍上方,有过渡缓冲区;中心 部分为湍流主体。
② 当边界层的厚度不再随自由流流过的距离(平板或管道长度)而变化时,称为充分发展的(层流或湍流)流动。
③ 层流边界层与湍流边界层的分界位置(长度或距离)c x 与壁面形状、粗糙度、流体性质及其流速有关。
即 ()c c f x Re = μρ0Reu x c x c=图 29图 30自由流对于光滑平板 cx Re在2×105~3×106之间。
3.边界层的厚度严格地说,在流动空间中,对于实际流体没有所谓的“不受影响”的“自由流”即“主体”存在。
故边界层为无限厚,但为了讨论问题方便,常将流速小于或等于99%自由流(主体)流速所对应的流体层厚度(与流速相垂直方向的离开壁面的距离)称为边界层厚度。
边界层

dp = 0则整个流场压力处处相等。 dx 边界层微分方程虽然是在平壁的情况下导出的,但对曲率不太大的
dU e = ,, 0 dx
曲线壁面仍然适用。此时,x轴沿壁面方向,y轴沿壁面法线方向。
§8—3 边界层动量积分方程
一、边界层动量积分方程
由卡门在1921年提出。
推导前提:二元定常,忽略质量力,且u>>υ(由边界 层微分方程的数量级比较可看出),所以只考虑x方向 的动量变化,不引入y方向的流速υ。
+ = 0 ,u~1, 并且边界层内,由u≥υ,故认为或由连续方程 ∂x ∂y υ~△ ∵x~1并且我们认为u~1,而y~△,必然是υ~△,这样才能满足连续方 1 ∆ 程,∂ u ∂ υ + =1 + =0 ,1 ∆ 。 ∂x ∂y dy ∆y = lim 注意:导数又称为微商,例如 dx ∆x→0 ∆x ,类似地在进行数量级比较 时,我们可以写成 ∂ u ~ 1 ,即 ∂y 是1的数量级。
1 ∂p ∂υ ∂υ ∂ 2υ ∂ 2υ u +υ =− + v( 2 + 2 ) ∂x ∂y ∂x ∂y ρ ∂y ∆ ∆ ∆ ∆ 1 ∆ ∆2 2 1 ∆ 1 ∆
∂u ∂u ∂ 2u 1 ∂p +v =− +ν u ∂x ∂y ∂y 2 ρ ∂x
∂p =0 ∂y
∂u ∂ υ + =0 ∂x ∂ y
方程第二项积分的物理意义为:
∫
δ
0
ρu (U e − u )dy 表示了因粘性影响而产生的流体动量的减少量。
ρδ 2 ⋅1⋅U e 2 = ρ ∫ u (U e − u )dy
0
令
δ
δ2 =
1 Ue
边界层理论PPT精选文档

5.1、边界层近似及其特征
普朗特重视观察和分析力学现象,养成了非凡的直观洞察能力,善 于抓住物理本质,概括出数学方程。他曾说:“我只是在相信自己对物 理本质已经有深入了解以后,才想到数学方程。方程的用处是说出量的 大小,这是直观得不到的,同时它也证明结论是否正确。” 普朗特 指导过81名博士生,著名学者Blasius、Von Karman是其学生之一。我 国著名的空气动力学专家、北航流体力学教授陆士嘉先生(女,1911– 1986)是普朗特正式接受的唯一中国学生,唯一的女学生。
粘性流体流经任一物体(例如机翼与机身)的问题,归结 为在相应的边界条件下解N—S方程的问题。由于N—S方程太复 杂,在很多实际问题中,不能不作一些近似假设使其简化,以 求问题得以近似地解决。简化时,必须符合物理事实,因此首 先看看空气流过静止物体(例如翼型)的物理图画:
位流区
边界层
流动分为三个区域:1. 边界层:N-S化简为边界层方程 2. 尾迹区:N-S方程 3. 位流区:理想流方程
EXIT
5.1、边界层近似及其特征
2、边界层的特征
(1)边界层定义 严格而言,边界层区与主流区之间无明显界线,通常
以速度达到主流区速度的0.99倍作为边界层的外缘。由边 界层外缘到物面的垂直距离称为边界层名义厚度,用δ表 示。
(2)边界层的有涡性 粘性流体运动总伴随涡量的产生、扩散、衰减。边界
层就是涡层,当流体绕过物面时,无滑移边界条件相当于 使物面成为具有一定强度的连续分布的涡源。
对于曲率不大的弯曲物面,上述边界层方程也近似成立。 只是要将x和y按上述曲线坐标处理即可。当然如果曲率过大, 则沿法向压强保持不变的条件就很难满足了。
EXIT
5.2、平面不可压缩流体层流边界层方程
边界层理论及边界层分离现象

边界层理论及边界层分离现象一.边界层理论1.问题的提出在流体力学中,雷诺数Re∝惯性力/粘性力,当Re<1时,惯性力<<粘性力,可以略去惯性力项,用N-S方程解决一些实际问题(如沉降、润滑、渗流等),并可以获得比较满意的结果。
但对于工程流动问题,绝大多数的Re很大。
这时就不可以完全略去粘性力,略去粘性力的结果与实际情况相差很大。
突出的一例即“达朗倍尔佯谬——在流体中作等速运动的物体不受阻力。
”究竟应当怎样才能正确地处理大Re数的流动呢?这个矛盾一直到1904年,德国流体力学家普朗特提出了著名的边界层理论,即大Re数的流动中,大部分区域的惯性力>>粘性力,但在紧靠固壁的极薄流层中,惯性力≈粘性力,这才令人满意地解决了大Re数的流动的阻力问题。
2.边界层的划分Ⅰ流动边界层(速度边界层)以平板流动为例,x方向一维稳态流动,在垂直壁面的y方向上,流动可划分为性质不同的两个区域:(1)y<δ(边界层):受壁面影响,法向速度变化急剧,du/dy很大,粘性力大(与惯性同阶),不能忽略。
(2)y>δ(层外主流层):壁面影响很弱,法向速度基本不变,du/dy≈0。
所以可忽略粘性力(即忽略法向动量传递)。
可按理想流体处理,Euler方程适用。
这两个区域在边界层的外缘衔接起来,由于层内的流动趋近于外流是渐进的,不是突变的,因此,通常约定:在流动边界层的外缘处(即y=δ处),ux=0.99u∞,δ为流动边界层厚度,且δ=δ(x)。
Ⅱ传热边界层(温度边界层)当流体流经与其温度不相等的固体壁面时,在壁面上形成流动边界层,同时,还会由于传热而形成温度分布,可分成两个区域:(1)y<δt(传热边界层):受壁面影响,法向温度梯度dt/dy很大,不可忽略,即不能忽略法向热传导。
(2) y>δt(层外区域):法向温度梯度dt/dy≈0,可忽略法向热传导。
通常约定:在传热边界层的外缘处(即y=δt处),ts-t=0.99(ts-t0) ≈ ts-t0,δt 为温度边界层厚度,且δt=f(x);ts为壁面温度;t0为热边界层外(主流体)区域的温度。
流体力学第六章边界层理论(附面层理论)

通过减小边界层的阻力,降低流体机械的能耗,提高运行效率。
流动分离控制
控制边界层的流动分离,防止流体机械中的流动失稳和振动,提 高设备稳定性。
流体动力学中的边界层效应
流动特性的影响
边界层内的流动特性对整体流动行为产生重要影响,如湍流、分离 流等。
流动阻力
边界层内的流动阻力决定了流体动力学的性能,如流体阻力、升力 等。
在推导过程中,需要考虑流体与固体表面之间的相互作用力,如粘性力和压力梯 度等,以及流体内部的动量传递和能量传递过程。
边界层方程的求解方法
边界层方程是一个复杂的偏微分方程,求解难度较大。常用的求解方法包括分离变量法、积分变换法、有限差分法和有限元 法等。
分离变量法是将多维问题简化为多个一维问题,通过求解一维问题得到原问题的解。积分变换法是通过积分变换将偏微分方 程转化为常微分方程,从而简化求解过程。有限差分法和有限元法则是将偏微分方程离散化,通过求解离散化的方程组得到 原问题的近似解。
边界层内的流动可以从层流转变为湍流,或从湍 流转为层流。
边界层内的流动状态
层流边界层
流速在物体表面附近呈现平滑变化的流动状态。
湍流边界层
流速在物体表面附近呈现不规则变化的流动状态。
混合流动状态
边界层内的流动状态可以是层流和湍流的混合状态。
03
边界层方程与求解方法
边界层方程的推导
边界层方程是流体力学中的重要方程,用于描述流体在固体表面附近的流动行为 。其推导基于Navier-Stokes方程,通过引入边界层假设,即认为在靠近固体表 面的薄层内,流体的速度梯度变化剧烈,而远离固体表面的流体则可以视为均匀 流动。
展望
随着科技的不断进步和研究的深入,边界层理论在未来 有望取得以下突破。首先,随着计算能力的提升,更加 精确和可靠的数值模拟方法将得到发展,这有助于更好 地理解和预测复杂流动现象。其次,随着实验技术的进 步,将能够获得更高精度的实验数据,为理论模型的发 展提供有力支持。最后,随着多学科交叉研究的深入, 将能够从不同角度全面揭示流体流动的内在机制,推动 流体力学理论的进一步发展。
雷诺准数

三、边界层分离现象 (Boundary layer separation)
边界层分离的必要条件是:逆压、流体具有粘性 这两个因素缺一不可。
压力逐渐减小
y
压力逐渐增大
y
y A S 分离点
D
E
边界层分离现象 (Boundary layer separation)
流体流过圆管
流体流过管束
边界层分离对流动的影响
流体绕固体表面的流动:
① 当流速较小时 流体贴着固体壁缓慢流过,(爬流)
② 流速不断提高,达到某一程度时,边界层分离
边界层分离现象 (Boundary layer separation)
B
C
分离点
u0
A
C’ 倒流 D
x
AB:流道缩小,顺压强梯度,加速减压 BC:流道增加,逆压强梯度,减速增压 CC’以上:分离的边界层 CC’以下:在逆压强梯度的推动下形成倒流,产生大量旋涡
u dA
3
1 u A
3
R
0
u
3
2 rdr 1 . 06
pg 21 Eq 1 40 ( 写出具体的积分过程 思考题 1 15 题 )
雷诺准数Re=duρ/μ(无因次数群,推导) Re≤2000 稳定的层流 ≥4000 湍流 2000~4000 过渡区(生产操作中,Re>3000,可视作湍流)பைடு நூலகம்Re=duρ/μ=Re=du/υ=Re=dG/μ =ρu2/(μu/d)→惯性力/粘性力 对流动量传递/分子动量传递 当惯性力占主导地位时,Re较大,湍流程度大; 当粘滞力占主导地位时,Re较小,将抑制流体的流动。
流体流动的类型---层流及湍流 1、雷诺试验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边界层理论及边界层分离现象
一.边界层理论
1. 问题的提出
在流体力学中,雷诺数RP惯性力/粘性力,当Re<1时,惯性力<<粘性力,可以略去惯性力项,用N-S方程解决一些实际问题(如沉降、润滑、渗流等),并可以获得比较满意的结果。
但对于工程流动问题,绝大多数的Re很大。
这时就不可以完全略去粘性力,略去粘性力的结果与实际情况相差很大。
突出的一例即“达朗倍尔佯谬——在流体中作等速运动的物体不受阻力。
”
究竟应当怎样才能正确地处理大Re数的流动呢?这个矛盾一直到1904 年,德国流体力学家普朗特提出了著名的边界层理论,即大Re数的流动中,大
部分区域的惯性力>>粘性力,但在紧靠固壁的极薄流层中,惯性力琲占性力,这才令人满意地解决了大Re数的流动的阻力问题。
2. 边界层的划分
I流动边界层(速度边界层)
以平板流动为例,x方向一维稳态流动,在垂直壁面的y方向上,流动可划分为性质不同的两个区域:(1)y<S (边界层):受壁面影响,法向速度变化急剧,du/dy很大,粘性力大(与惯性同阶),不能忽略。
(2)y>&层外主流层):壁面影响很弱,法向速度基本不变,du/dy〜0所以可忽略粘性力(即忽略法向动量传递)。
可按理想流体处理,Euler方程适用。
这两个区域在边界层的
外缘衔接起来,由于层内的流动趋近于外流是渐进的,不是突变的,因此,通常约定:在流动边界层的外缘处(即y= 3处),ux= 0.99u T 3为流动边界层厚度,且
3= &x)。
II传热边界层(温度边界层)
当流体流经与其温度不相等的固体壁面时,在壁面上形成流动边界层,同时,还会由于传热而形成温度分布,可分成两个区域:(1)y< 8t (传热边界层):受壁面影响,法向温度梯度dt/dy 很大,不可忽略,即不能忽略法向热传导。
(2)
y>8t (层外区域):法向温度梯度dt/dy 可忽略法向热传导。
通常
约定:在传热边界层的外缘处(即y=8t处),ts—t = 0.99(ts—10)~4stO, 8t 为温度边界层厚度,且8t = f(x); ts为壁面温度;t0为热边界层外(主流体)区域的温度。
Pr= V ax动量传递能力/热量传递能力。
一般情况下,对于液体Pr>1, S>8t ;对于气体Pr S^t ;而对于液态金属Pr <0.1, 8< 8t。
皿传质边界层(浓度边界层)
当流体流经某种固体壁面时,如果固体壁面会溶解(如苯甲酸)或升华
(如萘),或者壁面为多孔板(会从孔内渗入或渗出某组分A),由于这些原因之一,使流体与固体壁面形成流动边界层S的同时,还会由于传质而形成浓度分布。
其浓度场可划分为两个区域:(1)y<sc (传质边界层):法向浓度梯度很大,在法向分子扩散很重要,不可忽略。
(2) y>9c (层外区域):法向浓度梯度约为0,可忽略法向分子扩散。
3. 边界层的形成与发展
I外部流动的边界层形成与发展
流体一经与固体表面接触,就黏附在表面上,速度为零。
这层静止流体对临近的流体层施加粘性阻力,使第二层流体速度减慢,开始形成边界层。
由于第二层流体损失了动量,它开始对第三层施加粘性阻力,于是第三层流体也损失动量,随着x增大(流体向前运动),越来越多的流体层速度减慢,使边界层沿x方向(流体方向)不断增厚。
在边界层的起始段,当x小于临界长度时,流动为完全层流,为层流边界层区,它既不受表面粗糙度的影响,也不管来流是层流还是湍流。
由于此时边界层很薄,其中dux/dy 很-1-
大,形成湍流的可能性很小,这表明壁面对湍流的发展具有抑制作用。
但
只要平板足够长,当x大于临界长度后,边界层的流动变得不稳定起来,而且S 随x 增大迅速增大,这时进入过渡边界层区。
再经过一段距离以后,边界层内的流体流动完全转变为湍流流动,称为湍流边界层区。
II内部流动的边界层形成与发展
在管道进口处,流体速度均匀,法向du/dy = 0, 5= 0。
一进入管道,因为粘附条件,在y= 0处,u = 0,开始形成边界层。
由于粘性作用,沿管长增加边界层厚度5增大。
直至边界层发展到轴心,之后速度分布不再变化,边界层充满了整个流动截面,建立了“充分发展了的流动”。
在充分发展开始的轴心点, 若边界层还是层流边界层,则之后全管为层流;若边界层已发展成为湍流边界层,则之后全管湍流。
(管内湍流仍可分为层流底层,缓冲区,湍流核心三层。
)
二.边界层分离
边界层内的传递机理:
(1)层流:法向是依靠分子扩散传递。
(2)湍流:①层流内层:分子扩散传递;②缓冲区:旋涡混合传递吩子扩散传递;③ 湍流核心:旋涡混合传递>>分子扩散传递。
故在一般情况下,层流内层的传递阻力R内层最大,是流体一侧传递速度
的控制因数,设法使层流底层厚度5b 减厚是强化对流传递的主要条件之一。
边界层要分离必须满足两个条件,一个是流体有粘性,第二个是流体必须流过物面。
边界层分离是边界层脱离物面并在物面附近出现回流的现象。
当边界层外流压力沿流动方向增加得足够快时,与流动方向相反的压差作用力和壁面粘性阻力使边界层内流体的动量减少,从而在物面某处开始产生分离,形成回流区或漩涡,导致很大的能量耗散。
绕流过圆柱、圆球等钝头物体后的流动,角度大的锥形扩散管内的流动是这种分离的典型例子。
分离区沿物面的压力分布与按无粘性流体计算的结果有很大出入,常由实验决定。
边界层分离区域大的绕流物体,由于物面压力发生大的变化,物体前后压力明显不平衡,一般存在着比粘性摩擦阻力大得多的压差阻力(又称形阻)。
当层流边界层在到达分离点前已转变为湍流时,由于湍流的强烈混合效应,分离点会后移。
这样,虽然增大了摩擦阻力,但压差阻力大为降低,从而减少能量损失。
二维边界层分离有两种情况,一是发生在光滑物面上,另一是发生在物面有尖角或其他外形中断或不连续处。
光滑物面上发生分离的原因在于,边界层内的流体因克服粘性阻力而不断损失动量,当存在逆压梯度时,更需要将动能转变为压力能,以便克服前方压力而运动,这种情况越接近物面越严重。
因此边界层内法向速度梯度越接
近物面下降越甚,当物面法向速度梯度在某位置上小到零时,表示一部分流体速度已为零,边界层流动无法沿物面发展,只能从物面脱离,该位置称为分离点。
分离后的边界层在下游形成较大的旋涡区;但也可能在下游某处又回附到物面上,形成局部回流区或气泡。
尖点处发生边界层分离的原因在于附近的外流流速很大,压强很小,因而向下游必有很大的逆压梯度,在其作用下,边界层即从尖点处发生分离。
三维边界层的分离比较复杂,是正在深入研究的课题。
边界层分离导致绕流物体压差阻力增大,如果发生在机翼上那就是失速。
边界层分离还会使机翼的阻力大大增加,机翼被设计成园头尖尾的流线型就是为了减小阻力。
在高亚音速飞机上采用的超临界翼型,也是为了避免边界层的分离。
但有时也可利用分离,如小展弦比尖前缘机翼的前缘分离涡可导致很强的涡升力。
-2-。