matlab《数字图像处理》第7章 空间域滤波

合集下载

数字图像处理空间域滤波实验报告

数字图像处理空间域滤波实验报告

一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空间域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。

4.掌握傅立叶变换及逆变换的基本原理方法;5.理解频域滤波的基本原理及方法;6.掌握进行图像的频域滤波的方法。

二.实验结果与分析1.平滑空间滤波:a)读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中;(提示:imnoise)b)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示;(提示:fspecial、imfilter或filter2)c)使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像采用不同的填充方式,效果略有不同。

d)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像;(提示:利用fspecial 函数的’average’类型生成均值滤波器)e)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

(提示:medfilt2)中值滤波后的图像比均值滤波后的图像更加平滑。

f)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;滤波后图像变得平滑。

2.锐化空间滤波a)读出blurry_moon.tif这幅图像,采用3×3的拉普拉斯算子w =[ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波;观察原图与拉普拉斯掩模滤波后的图像,滤波后的图像不再那么平滑,使图像产生锐化效果。

b)编写函数w = genlaplacian(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]本函数见文件夹下genlaplacian.m文件。

空间域滤波和频率域处理的特点

空间域滤波和频率域处理的特点

空间域滤波和频率域处理的特点1.引言空间域滤波和频率域处理是数字图像处理中常用的两种图像增强技术。

它们通过对图像进行数学变换和滤波操作来改善图像质量。

本文将介绍空间域滤波和频率域处理的特点,并比较它们之间的异同。

2.空间域滤波空间域滤波是一种直接在空间域内对图像像素进行处理的方法。

它基于图像的局部像素值来进行滤波操作,常见的空间域滤波器包括均值滤波器、中值滤波器和高斯滤波器等。

2.1均值滤波器均值滤波器是最简单的空间域滤波器之一。

它通过计算像素周围邻域的平均值来实现滤波操作。

均值滤波器能够有效地去除图像中的噪声,但对图像细节和边缘保留较差。

2.2中值滤波器中值滤波器是一种非线性的空间域滤波器。

它通过计算像素周围邻域的中值来实现滤波操作。

中值滤波器能够在去除噪声的同时保持图像细节和边缘,对于椒盐噪声有较好的效果。

2.3高斯滤波器高斯滤波器是一种线性的空间域滤波器。

它通过对像素周围邻域进行加权平均来实现滤波操作。

高斯滤波器能够平滑图像并保留图像细节,它的滤波核可以通过调整方差来控制滤波效果。

3.频率域处理频率域处理是一种将图像从空间域转换到频率域进行处理的方法。

它通过对图像进行傅里叶变换或小波变换等操作,将图像表示为频率分量的集合,然后对频率分量进行处理。

3.1傅里叶变换傅里叶变换是一种将信号从时域转换到频域的数学变换。

在图像处理中,可以应用二维傅里叶变换将图像从空间域转换到频率域。

在频率域中,图像的低频分量对应于图像的整体结构,高频分量对应于图像的细节和边缘。

3.2小波变换小波变换是一种基于小波函数的时频分析方法。

它能够在频率和时间上同时提供图像的信息,对于图像的边缘和纹理特征有较好的表达能力。

小波变换在图像压缩和特征提取等方面具有广泛应用。

4.空间域滤波与频率域处理的对比空间域滤波和频率域处理都可以用来改善图像质量,但它们有着不同的特点和适用场景。

4.1处理方式空间域滤波是直接对图像像素进行处理,操作简单直接,适用于小规模图像的处理。

数字图像处理图像滤波ppt课件

数字图像处理图像滤波ppt课件
素位置重合; 读取模板下各对应像素的灰度值; 将这些灰度值从小到大排成一列; 找出这些值的中间值; 将这个值赋给对应模板中心位置的像素。
47
噪声图像
中值滤波3x3
48
平均滤波与中值滤波比较
噪声图像
均值滤波
中值滤波
均值滤波和中值滤波都采用的是2x2 的模板
49
均值,中值和最频值
均值是模板内像素点灰度的平均值,中值是数值排列 后处于中间的值,最频值是出现次数最多的灰度值;
8
常用像素距离公式
欧几里德距离
DE
(
p,
q)


x

s 2


y

t
2

范数距离
D( p, q) x s y t
棋盘距离
D( p, q) max x s , y t
9
像素间的基本运算
算术运算:
加法: p + q
减法: p - q
乘法: p * q
这三者都与直方图有着密切的关系; 直方图的一个峰对应一个区域,如果这个峰是对称的,
那么均值等于中值,等于最频值。
50
中值滤波的代码实现 Matlab中函数medfilt1和medfilt2,第一个是一维
的中值滤波,第二个是二维的中值滤波。 使用help查看函数功能
51
示例
52
代码讲解
0.25
0.10 0.05
0.125 01 2
34
56
7
P r 关系目标曲线 r
原始图像中的P-r点位置 对应变换后的P-r点位置
24
算法描述 设像素共分为L级(r = 0,1,2,…L1),变换后对应的

《基于MATLAB与FPGA的图像处理教程》记录

《基于MATLAB与FPGA的图像处理教程》记录

《基于MATLAB与FPGA的图像处理教程》读书记录1. 第一章我无法直接提供《基于MATLAB与FPGA的图像处理教程》这本书的具体内容,因为这需要访问该书的实体或电子版。

我可以为你创建一个读书笔记的框架,你可以根据实际的书籍内容来填充。

在这一章节中,我们可以介绍图像处理的基本概念、重要性以及MATLAB和FPGA在图像处理中的应用背景。

图像处理的基本概念:解释什么是图像处理,包括图像的定义、图像处理的目的是什么,以及图像处理的主要应用领域(如医学成像、计算机视觉、军事侦察等)。

MATLAB与FPGA在图像处理中的作用:简要介绍MATLAB在图像处理中的软件工具优势,如丰富的图像处理函数库、易于使用的图形用户界面等。

阐述FPGA在图像处理中的硬件加速作用,包括并行处理能力、低功耗优势以及可编程性等。

本书的目标:明确本书的学习目标,例如教授读者如何使用MATLAB和FPGA进行图像处理实验,介绍基本的图像处理算法,以及探讨更高级的FPGA实现技术等。

阅读建议:给出一些阅读本书的建议,如建议读者先了解图像处理的基础知识,准备好必要的编程环境(MATLAB和FPGA开发板),以及鼓励读者动手实践以加深理解。

当你有了具体的书籍内容后,可以按照这个框架来填充和整理你的读书笔记。

2. 第二章由于您没有提供具体的《基于MATLAB与FPGA的图像处理教程》第二章的内容,我将为您提供一个通用的读书笔记模板,您可以根据实际书籍内容进行填充。

在这一章节中,我们将介绍图像处理的基本概念、原理和方法。

这些知识将为后续章节中利用MATLAB和FPGA进行图像处理打下坚实的基础。

图像作为二维数组,由像素点组成,每个像素点包含颜色信息(通常用RGB或灰度值表示)。

图像的分辨率是指图像中像素的数量,通常以像素宽度(宽)和像素高度(高)来衡量。

本章介绍了图像处理的基本概念、目的和类型,以及一些基本的处理操作。

为后续章节的学习打下坚实的基础,特别是如何使用MATLAB和FPGA进行图像处理。

MATLAB的7种滤波方法(重制版)

MATLAB的7种滤波方法(重制版)

MATLAB的7种滤波方法(重制版)滤波是信号和图像处理中常用的一种方法,用于去除噪音,增强信号或图像的特征。

MATLAB提供了丰富的滤波函数和工具箱,包括7种常用的滤波方法,分别是均值滤波、中值滤波、高斯滤波、拉普拉斯滤波、Sobel滤波、Prewitt滤波和Canny边缘检测。

1.均值滤波:均值滤波是使用一个窗口对图像进行平滑处理的方法,窗口内的像素值取平均值作为输出像素值。

这种滤波方法可以有效地去除高频噪声,但会导致图像细节的模糊。

2.中值滤波:中值滤波是一种非线性滤波方法,它使用一个窗口对图像进行平滑处理,窗口内的像素值按照大小排序,然后取中值作为输出像素值。

这种滤波方法能够很好地去除椒盐噪声和脉冲噪声,但无法处理其他类型的噪声。

3.高斯滤波:高斯滤波是一种线性平滑滤波方法,它使用一个高斯函数对图像进行卷积处理,窗口内的像素值按照高斯分布加权求和作为输出像素值。

这种滤波方法能够平滑图像并保持图像的细节信息,但会导致图像的边缘模糊。

4.拉普拉斯滤波:拉普拉斯滤波是一种边缘增强滤波方法,它使用一个拉普拉斯算子对图像进行卷积处理,突出图像中的边缘信息。

这种滤波方法能够提高图像的锐度和对比度,但会增强图像中的噪声。

5. Sobel滤波:Sobel滤波是一种边缘检测滤波方法,它使用Sobel算子对图像进行卷积处理,突出图像中的边缘信息。

这种滤波方法能够检测出图像中的水平和垂直边缘,但对于斜向边缘检测效果较差。

6. Prewitt滤波:Prewitt滤波是一种边缘检测滤波方法,它使用Prewitt算子对图像进行卷积处理,突出图像中的边缘信息。

与Sobel滤波类似,Prewitt滤波也能够检测出图像中的水平和垂直边缘,但对于斜向边缘检测效果较差。

7. Canny边缘检测:Canny边缘检测是一种广泛应用的边缘检测算法,它使用多个步骤对图像进行处理,包括高斯滤波、计算梯度、非极大值抑制和双阈值处理。

这种滤波方法能够检测出图像中的所有边缘,并进行细化和连接,对于复杂的边缘检测有较好的效果。

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

数字图像处理实验报告:灰度变换与空间滤波(附带程序,不看后悔)

1.灰度变换与空间滤波一种成熟的医学技术被用于检测电子显微镜生成的某类图像。

为简化检测任务,技术决定采用数字图像处理技术。

发现了如下问题:(1)明亮且孤立的点是不感兴趣的点;(2)清晰度不够,特别是边缘区域不明显;(3)一些图像的对比度不够;(4)技术人员发现某些关键的信息只在灰度值为I1-I2的范围,因此,技术人员想保留I1-I2区间范围的图像,将其余灰度值显示为黑色。

(5)将处理后的I1-I2范围内的图像,线性扩展到0-255灰度,以适应于液晶显示器的显示。

请结合本章的数字图像处理处理,帮助技术人员解决这些问题。

1.1问题分析及多种方法提出(1)明亮且孤立的点是不够感兴趣的点对于明亮且孤立的点,其应为脉冲且灰度值为255(uint8)噪声,即盐噪声,为此,首先对下载的细胞图像增加盐噪声,再选择不同滤波方式进行滤除。

均值滤波:均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。

优点:速度快,实现简单;缺点:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。

其公式如下:使用矩阵表示该滤波器则为:中值滤波:滤除盐噪声首选的方法应为中值滤波,中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值。

其过程为:a 、存储像素1,像素2.....像素9的值;b 、对像素值进行排序操作;c 、像素5的值即为数组排序后的中值。

优点:由于中值滤波本身为一种利用统计排序方法进行的非线性滤波方法,故可以滤除在排列矩阵两边分布的脉冲噪声,并较好的保留图像的细节信息。

缺点:当噪声密度较大时,使用中值滤波后,仍然会有较多的噪声点出现。

《数字图像处理及MATLAB实现》图像增强与平滑实验

《数字图像处理及MATLAB实现》图像增强与平滑实验

《数字图像处理及MATLAB实现》图像增强与平滑实验一.实验目的及要求1、熟悉并掌握MA TLAB 图像处理工具箱的使用;2、理解并掌握常用的图像的增强技术。

二、实验设备MATLAB 6.5 以上版本、WIN XP 或WIN2000 计算机三、实验内容(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。

熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。

(可将每段程序保存为一个.m文件)1.直方图均衡化clear all; close all % Clear the MATLAB workspace of any variables% and close open figure windows.I = imread('pout.tif'); % Reads the sample images ‘pout.tif’, and stores it inimshow(I) % an array named I.display the imagetext(60,20,'李荣桉1909290239','horiz','center','color','r')figure, imhist(I) % Create a histogram of the image and display it in% a new figure window.[I2,T] = histeq(I); % Histogram equalization.figure, imshow(I2) % Display the new equalized image, I2, in a new figure window.text(60,20,'李荣桉1909290239','horiz','center','color','r')figure, imhist(I2) % Create a histogram of the equalized image I2.figure,plot((0:255)/255,T); % plot the transformation curve.imwrite (I2, 'pout2.png'); % Write the newly adjusted image I2 to a disk file named% ‘pout2.png’.imfinfo('pout2.png') % Check the contents of the newly written file2.直接灰度变换clear all; close allI = imread('cameraman.tif'); 注意:imadjust()功能:调整图像灰度值或颜色映像表,也可实现伽马校正。

matlab图像的空域滤波实验

matlab图像的空域滤波实验
其实filter2和conv2是等价的。MATLAB在计算filter2时先将卷积核旋转180度,再调用conv2函数进行计算。
Fspecial函数用于创建预定义的滤波算子,其语法格式为:
h = fspecial(type)
h = fspecial(type,parameters)
参数type制定算子类型,parameters指定相应的参数,具体格式为:
除了对噪声有上述假定之外,该算法还基于这样一种假设:图象是由许多灰度值相近的小块组成。这个假设大体上反映了许多图象的结构特征。(2)式表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。
可用模块反映领域平均算法的特征。对模版沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图象。模版内各系数和为1,用这样的模版处理常数图象时,图像没有变化;对一般图象处理后,整幅图像灰度的平均值可不变。
type='average',为均值滤波,参数为n,代表模版尺寸,用向量表示,默认值为[3,3]。
type= 'gaussian',为高斯低通滤波器,参数有两个,n表示模版尺寸,默认值为[3,3],sigma表示滤波器的标准差,单位为像素,默认值为0.5。
type= 'laplacian',为拉普拉斯算子,参数为alpha,用于控制拉普拉斯算子的形状,取值范围为[0,1],默认值为0.2。
中值滤波很容易推广到二维的情况。二维窗口的形式可以是正方形、近似圆形的或十字形的。在图像增强的具体应用中,中值滤波只能是一种抑制噪声的特殊工具,在处理中应监视其效果,以决定最终是福才有这种方案。实施过程中的关键问题是探讨一些快速算法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 图像处理工具箱的标准线性空间滤波器
工具箱支持一些预定义的二维线性空间滤波器,可由 函数fspecial来实现。 用来生成滤波掩模w的函数fspecial的语法为: w=fspecial (‘type’, parameters) ‘type’ 表示滤波器类型 ‘parameters’ 进一步定义了指定的滤波器
38
5 拉普拉斯算子
39
5 拉普拉斯算子
(2)
40
41
锐化(拉普拉斯)滤波器 例3 f=imread('moon.tif'); imshow(f) w4=fspecial('laplacian',0); w8=[1,1,1;1,-8,1;1,1,1]; f=im2double(f); g4=f-imfilter(f,w4,'replicate'); g8=f-imfilter(f,w8,'replicate'); imshow(f) figure,imshow(g4) figure,imshow(g8)
印刷中的细微层次强调。弥补扫描对图像的钝化;
超声探测成像,分辨率低,边缘模糊,通过锐化来改


图像识别中,分割前的边缘提取 锐化处理过度处理的钝化,曝光不足的图像 尖端武器的目标识别、定位
10
4 相关和卷积
11
4 相关和卷积
相关是指掩模w按下页图所示的方式在图f中移动的 过程

卷积是相同的过程,只是在图像中移动w前,要将w旋 转180度。

18

滤波后的图像的每个元素使用双精度浮 点算术进行计算。然而,imfilter会将输 出图像转换为与输入图像相同的类型。

若f是一个整数数组,则输出中超过整型 范围的元素将被截断,且小数部分会四 舍五入。
若结果要求更高的精度,则f需要在使用 函数imfilter之前利用im2double或double 转换为double类型。
1 1 1 1 0 1 H3 1 8 1 1 1
0 0 1 4 1 1 1 H4 1 2 4 4 1 0 4 0
32
均值滤波器 例1
33
均值滤波器 例2
34
4 锐化滤波器
微分滤波器的原理
35
微分滤波器的原理
36
37
5 拉普拉斯算子
25
函数fspecial支持的空间滤波器
1) fspecial (‘average’, [r c]). 大小为r*c的一个矩形平均滤 波器。默认值为3*3.若由一个数来代替[r c],则表示方形 滤波器 2) fspecial (‘disk’, r). 一个圆形平均滤波器(包含在2r+1 大小的正方形内),半径为r。默认半径为5 3) fspecial (‘gaussian’, [r c], sig). 一个大小为 r*c的高斯低 通滤波器,标准偏差为sig(正)。默认值为3*3和0.5.若由 一个数来代替[r c],则表示方形滤波器
P的默认值是0

函数的一个周期来扩展
15
size_options : ‘full’ 输出图像的大小与被扩展图像的大小相同 ‘same’ 输出图像的大小与输入图像的大小相同。该 值为默认值
16
2 imfilter通用语法
g=imfilter (f, w, ‘replicate’ )
对旋转过的滤波器执行相关操作与对原始滤波器 进行卷积操作是相同的;
gs=imfilter(f,w,'symmetric'); figure() imshow(gs,[])
23

f8=im2uint8(f); g8r=imfilter(f8, w,'replicate'); figure,imshow(g8r,[])
24
解决方法归一化系数,w0= 1/(31.^2)*w 或是以im2double格式输入数据
42
原 图 像
43
使用中心为-4 的拉普拉斯滤 波器增强后的 图像
44
使用中心为-8 的拉普拉斯滤 波器增强后的 图像
45
6 梯度算子(非线性锐化滤波器)
46
6 梯度算子
47
例: 梯度用于边缘增强
48
导数的性质

在图像的一阶导数运算中,一阶导数通常产生 较厚的边缘。


一阶导数对灰度阶跃有较强的响应。

若函数对称移动,则卷积和相关操作会产生相同的结 果

12
13
7.2线性空间滤波
1 imfilter——实现线性空间滤波
函数的语法
g=imfilter (f, w, filtering_mode, boundary_option , size_options )
f是输入图像,w是滤波掩模,g为滤波结果 filtering_mode制定滤波过程中是使用相关( corr) 还是卷积(conv) boundary_option用于处理边界填充零问题,边界 的大小由滤波器的大小确定。 size_options 可以是’same’或’full’
21


w=ones(31); gd=imfilter(f,w); figure() imshow(gd,[])
gc=imfilter(f,w,'circular'); figure() imshow(gc,[])
22

gr=imfilter(f,w,'replicate'); figure() imshow(gr,[])
第7章 空间域滤波
学习重点
图像平滑 图像锐化
中值滤波
2
学习内容
7.1 引言
7.2
线性空间滤波
7.3 非线性空间滤波
3
7.1 引言
1 空间域滤波增强定义:
空间域滤波增强采用模板处理方法对图像进
行滤波,去除图像噪声或增强图像的细节。
模板本身被称为空间滤波器
4
空域滤波是将邻域内的图像像素值 同对应的与邻域有相同维数的子图 像值相作用 子图像亦称作:filter(滤波器)、 mask(掩模)、 kernel(核)、 template(模板)、 window(窗)
他们都是非线性滤波器,其响应基于对图象邻域中 所包含的像素进行排序,然后使用排序结果确定的 值来替代领域中的中心像素的值。
50
2 统计排序滤波器
是一种非线性滤波器 基于滤波器所在图象区域中像素的排序,由排
序结果决定的值代替中心像素的值
分类:
最大值滤波器:用像素邻域内的最大值代替该像素 中值滤波器: 用像素邻域内的中间值代替该像素 最小值滤波器:用像素邻域内的最小值代替该像素
19

例子:使用函数imfilter
f是一副double类型图像,大小为512*512像素
20
f=zeros(512); f(1:256,256:512)=1; f(256:512,1:256)=1; imshow(f)
用一个大小为31*31的简单滤波器 W =ones(31); 该滤波器近似为一个平均滤波器

14
filtering_mode:相关(corr),该值是默认值,卷积 (conv) boundary_option:

P 输入图像的边界通过用值p(无引号)来填充来扩展。
‘replicate’ 图像大小通过复制外边界的值来扩展 ‘symmetric’图像大小通过镜像反射其边界来扩展 ‘circular’图像大小通过将图像看成是一个二维 周期
61
3)实现中值滤波器
基于实际应用中的重要性,工具箱提供一个二维 中值滤波器函数: g=medfilt2(f, [m n], padopt)
数组[m n]定义了一个大小为m*n的邻域,中值就在该邻 域上计算; Padopt指定了三个可能的边界填充选项之一:
‘zeros’:默认值 ‘symmetric’ :f按照镜像反射方式对称地沿其
5
2
6
2
7
3 平滑和锐化滤波器
平滑空间滤波器的作用:
模糊处理:去除图像中一些不重要的细节 减少噪声
8
3 平滑和锐化滤波器
平滑空间滤波器的分类:
线性滤波器:均值滤波器
非线性滤波器
最大值滤波器 中值滤波器 最小值滤波器
9
锐化空间滤波器的作用:

突出图像中的细节,增强了被模糊的细节;
二阶导数对细微结构有较强的响应,如细线和
孤立点。
• •
二阶导数在灰度级阶跃变化时产生双响应。
二阶导数对线的响应比对阶跃的响应强,对点
的响应比对线强。
49
7.3 非线性空间滤波
1 ordfilt2——实现非线性空间滤波
ordfilt2函数可以生成统计排序(order- statistic)滤 波器(也称为排序滤波器,rank filter).
若滤波器关于其中心对称,则两个选项将产生同 样的结果
17
在使用预先旋转的滤波器或对称的滤波器时, 希望执行相关,就有两种方法:

第一: g=imfilter(f, w, ‘conv’, ‘replicate’) 第二:使用函数rot90(w,2), 将图像旋转 180°,然后使用g=imfilter(f, w, ‘replicate’)
51
2 统计排序滤波器
52
2 统计排序滤波器
53
3 中值滤波的原理
54
55
4 中值滤波的实现
将模板区域内的像素排序,求出中间值
56
4 中值滤波的实现
57
5 中值滤波的特点
在去除噪声的同时,可以比较好地保留边的锐 度和图像的细节(优于均值滤波器)
相关文档
最新文档